• ISSN 1008-505X
  • CN 11-3996/S
张振华. 作物硝态氮转运利用与氮素利用效率的关系[J]. 植物营养与肥料学报, 2017, 23(1): 217-223. DOI: 10.11674/zwyf.15357
引用本文: 张振华. 作物硝态氮转运利用与氮素利用效率的关系[J]. 植物营养与肥料学报, 2017, 23(1): 217-223. DOI: 10.11674/zwyf.15357
ZHANG Zhen-hua. The relationship between nitrate transport and utilization in crop and nitrogen utilization efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 217-223. DOI: 10.11674/zwyf.15357
Citation: ZHANG Zhen-hua. The relationship between nitrate transport and utilization in crop and nitrogen utilization efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 217-223. DOI: 10.11674/zwyf.15357

作物硝态氮转运利用与氮素利用效率的关系

The relationship between nitrate transport and utilization in crop and nitrogen utilization efficiency

  • 摘要:
    目的 铵态氮(NH4+)和硝态氮(NO3-)是作物氮素吸收利用的主要形态,旱作作物NO3-的累积与利用是氮素营养研究的主要组成部分,关系到理解作物NO3-的转运和利用关系及作物体内NO3-含量和氮素利用效率(nitrogen utilization efficiency,NUE)高低的问题。
    主要进展 作物吸收的NO3-分为被作物直接利用、分泌到根外、储存在液泡和向地上部分运输四种途径。其中NO3-短途分配(液泡NO3-分配)和长途转运(地上、地下部NO3-的转运)共同调控着NO3-的利用效率,进而影响作物的NUE。液泡NO3-不能被作物直接利用,只有分配到液泡外细胞质中的NO3-才能被作物迅速代谢和利用;同时有更大比例的NO3-分配到地上部分,使得作物可以充分利用太阳光能进行NO3-代谢和能量转换,从而提高了作物的NUE。此外,液泡对NO3-起到分隔作用,储存在液泡中的NO3-并不能对NO3-转运相关基因(如NR、NO3-长途转运基因NRT1.5NRT1.8)起到诱导效果;只有分配在液泡外原生质体中的NO3-才能对NO3-诱导基因产生强烈的诱导。因此,作物细胞原生质体中液泡内、外NO3-的分配不仅影响了NO3-的同化利用,而且直接影响了NO3-的长途转运。
    展望 本文对植物原生质体中液泡内、外NO3-的短途分配和地上、地下部间NO3-的长途转运机制进行了总结,为进一步深入研究作物地上、地下部NO3-长途转运和液泡NO3-短途分配的关系,以及更好地揭示作物NUE对NO3-转运和利用的响应机理提供参考。

     

    Abstract:
    Objectives Ammonia (NH4+) and nitrate (NO3-) are the primary forms for crop nitrogen (N) absorption and utilization. NO3- accumulation and utilization in plant tissues of dry land crops are the main components of N nutrient study, which are related to the NO3- content and N utilization efficiency (NUE) in plant tissues.
    Main advances Absorbed NO3- in crop can be assimilated into organic N directly, secreted to the root, accumulated into vacuolar space and transported from roots to shoots. NO3- utilization efficiency and NUE were regulated by NO3- short distribution (vacuole NO3- distribution) and NO3- long transportation (between roots and shoots). Vacuole NO3- can not be assimilated into organic N, but the NO3- outside of the vacuole in protoplast can be utilized by crop directly. The higher proportion of NO3- in shoots has higher NUE, because the NO3- assimilation in shoots will take full advantage of the solar energy. In addition, NO3- is separated by vacuole, NO3- assimilation genes (NR) and transportation genes (NRT1.5and NRT1.8for long transport of NO3-) can not be induced by vacuole NO3-, but can be stimulated by the cytosolic NO3-. Consequently, not only NO3- assimilation is regulated by NO3- short distribution, but also affected the NO3- long transport between roots and shoots.
    Prospective We summarized the mechanisms of NO3- short distribution and long transportation in this review, and provided some implications for further study on the relationship between NO3- long transportation and vacuole NO3- short distribution, and the response of crop NUE to NO3- transportation and utilization.

     

/

返回文章
返回