[1] Abdelrahman M, El-Sayed M A, Hashem A, et al.  Metabolomics and transcriptomics in legumes under phosphate deficiency in relation to nitrogen fixation by root nodules[J]. Frontiers in Plant Science, 2018, 9: 922-.   doi: 10.3389/fpls.2018.00922
[2] Aulakh M S, Garg A K, Kabba B S.  Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics[J]. Soil Use and Management, 2007, 23(4): 417-427.   doi: 10.1111/j.1475-2743.2007.00124.x
[3] Gilbert N.  Environment: The disappearing nutrient[J]. Nature, 2009, 461(7265): 716-718.   doi: 10.1038/461716a
[4] Bargaz A, Lyamlouli K, Chtouki M, et al.  Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system[J]. Frontiers in Microbiology, 2018, 9: 1606-.   doi: 10.3389/fmicb.2018.01606
[5] Adesemoye A O, Kloepper J W.  Plant-microbes interactions in enhanced fertilizer-use efficiency[J]. Applied Microbiology and Biotechnology, 2009, 85(1): 1-12.   doi: 10.1007/s00253-009-2196-0
[6] Li T, Sun Y Q, Ruan Y, et al.  Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress[J]. Mycorrhiza, 2016, 26(8): 879-893.   doi: 10.1007/s00572-016-0723-2
[7] 姚青, 赵紫娟, 冯固, 等.  VA菌根真菌外生菌丝对难溶性无机磷酸盐的活化及利用[J]. 核农学报, 2000, 14(3): 145-150.   doi: 10.3969/j.issn.1000-8551.2000.03.004
[8] 张玉凤, 冯固, 李晓林.  丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响[J]. 生态学报, 2003, 23(1): 30-37.   doi: 10.3321/j.issn:1000-0933.2003.01.005
[9] Smith S E, Gianinazzi P V, Koide R, et al.  Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis[J]. Plant and Soil, 1994, 159(1): 103-113.
[10] Raven J A, Lambers H, Smith S E, et al.  Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence[J]. New Phytologist, 2018, 217(4): 1420-1427.   doi: 10.1111/nph.14967
[11] Sawers R J H, Svane S F, Quan C, et al.  Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters[J]. New Phytologist, 2017, 214(2): 632-643.   doi: 10.1111/nph.14403
[12] Ezawa T, Yoshida T.  Characterization of phosphatase in marigold roots infected with vesicular-arbuscular mycorrhizal fungi[J]. Soil Science and Plant Nutrition, 1994, 40(2): 255-264.   doi: 10.1080/00380768.1994.10413299
[13] 刘进法, 王鹏, 罗园, 等.  低磷胁迫下AM真菌对枳实生苗吸磷效应及根系分泌有机酸的影响[J]. 亚热带植物科学, 2010, 39(1): 9-13.
[14] Urcoviche R C, Gazim Z C, Dragunski D C, et al.  Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus[J]. Industrial Crops and Products, 2015, 67: 103-107.   doi: 10.1016/j.indcrop.2015.01.016
[15] Schweiger R, Mueller C.  Leaf metabolome in arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology, 2015, 26: 120-126.   doi: 10.1016/j.pbi.2015.06.009
[16] Xie W, Hao Z, Yu M, et al.  Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis[J]. Plant and Soil, 2019, 439(1–2): 243-257.
[17] 仇焕广, 张世煌, 杨军, 等.  中国玉米产业的发展趋势、面临的挑战与政策建议[J]. 中国农业科技导报, 2013, 15(1): 20-24.
[18] Gómez-Muñoz B, Jensen L S, de Neergaard A, et al.  Effects of Penicillium bilaii on maize growth are mediated by available phosphorus[J]. Plant and Soil, 2018, 431(1-2): 159-173.   doi: 10.1007/s11104-018-3756-9
[19] Willmann M, Gerlach N, Buer B, et al.  Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils[J]. Frontiers in Plant Science, 2013, 4: 533-.
[20] Gerlach N, Schmitz J, Polatajko A, et al.  An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis[J]. Plant, Cell & Environment, 2015, 38(8): 1591-1612.
[21] Tian H, Drijber R A, Li X, et al.  Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.)[J]. Mycorrhiza, 2013, 23(6): 507-514.   doi: 10.1007/s00572-013-0491-1
[22] 李腾腾, 傅智峰, 李侠.  低磷土壤接种菌根真菌和解磷细菌对大田玉米生长和磷吸收的影响[J]. 土壤通报, 2017, 48(4): 922-929.
[23] 徐丽娇, 姜雪莲, 郝志鹏, 等.  丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性[J]. 植物生态学报, 2017, 41(8): 815-825.   doi: 10.17521/cjpe.2017.0018
[24]

Trouvelot A, Kough, J L, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle[A]. Gianinazzi-Pearson V, Gianinazzi S. Physiological and genetical aspects of mycorrhizae[M]. Paris: INRA, 1986: 217–221.

[25] 林先贵, 郝英文.  不同植物对VA菌根菌的依赖性[J]. 植物学报, 1989, 31(9): 721-725.
[26]

鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1998.

Bao S D. Soil and agro-chemistry analysis[M]. Beijing: China Agriculture Press, 1998.

[27] Berta G, Copetta A, Gamalero E, et al.  Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field[J]. Mycorrhiza, 2014, 24(3): 161-170.   doi: 10.1007/s00572-013-0523-x
[28] Carbonnel S, Gutjahr C.  Control of arbuscular mycorrhiza development by nutrient signals[J]. Frontiers in Plant Science, 2014, 5: 462-.
[29] Yu P, Wang C, Baldauf J A, et al.  Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots[J]. New Phytologist, 2018, 217(3): 1240-1253.   doi: 10.1111/nph.14893
[30] Liu W, Zhang Y L, Jiang S S, et al.  Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil[J]. Scientific Reports, 2016, 6: 24902-.   doi: 10.1038/srep24902
[31] Sugimura Y, Saito K.  Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis[J]. Mycorrhiza, 2017, 27(2): 139-146.   doi: 10.1007/s00572-016-0735-y
[32] 雷垚, 郝志鹏, 陈保冬.  土著菌根真菌和混生植物对羊草生长和磷营养的影响[J]. 生态学报, 2013, 33(4): 1071-1079.
[33] Cavagnaro T R.  Impacts of compost application on the formation and functioning of arbuscular mycorrhizas[J]. Soil Biology and Biochemistry, 2014, 78: 38-44.   doi: 10.1016/j.soilbio.2014.07.007
[34] Nagy R, Karandashov V, Chague V, et al.  The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species[J]. The Plant Journal, 2005, 42(2): 236-250.   doi: 10.1111/j.1365-313X.2005.02364.x
[35] Sabia E, Claps S, Morone G, et al.  Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: preliminary study on quantitative and qualitative aspects[J]. Italian Journal of Agronomy, 2015, 10(1): 30-33.
[36] Gosling P, Jones J, Bending G D.  Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management[J]. Mycorrhiza, 2016, 26(1): 77-83.   doi: 10.1007/s00572-015-0651-6
[37] Hijri M.  Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield[J]. Mycorrhiza, 2016, 26(3): 209-214.   doi: 10.1007/s00572-015-0661-4
[38] Dai M, Hamel C, Bainard L D, et al.  Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie[J]. Soil Biology and Biochemistry, 2014, 74: 156-166.   doi: 10.1016/j.soilbio.2014.03.016
[39] Thirkell T J, Charters M D, Elliott A J, et al.  Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security[J]. Journal of Ecology, 2017, 105(4): 921-929.   doi: 10.1111/1365-2745.12788
[40] 姚姗, 张东杰, Javkhlan B, 等.  冬小麦-夏玉米体系磷效率对土磷素肥力的响应[J]. 植物营养与肥料学报, 2018, 24(6): 1640-1650.   doi: 10.11674/zwyf.18262
[41] Tang X, Ma Y B, Hao X Y, et al.  Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China[J]. Plant and Soil, 2009, 323(1): 143-151.
[42] Bai Z H, Li H G, Yang X Y, et al.  The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types[J]. Plant and Soil, 2013, 372(1): 27-37.
[43] Liu Y, Shi G, Mao L, et al.  Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. New Phytologist, 2012, 194(2): 523-535.   doi: 10.1111/j.1469-8137.2012.04050.x
[44] Janos D P.  Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas[J]. Mycorrhiza, 2007, 17(2): 75-91.   doi: 10.1007/s00572-006-0094-1
[45] Tipping E, Smith E J, Lawlor A J, et al.  Predicting the release of metals from ombrotrophic peat due to drought-induced acidification[J]. Environmental Pollution, 2003, 123(2): 239-253.   doi: 10.1016/S0269-7491(02)00375-5