[1] 曹卫东, 包兴国, 徐昌旭, 等.  中国绿肥科研 60 年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450-1461.   doi: 10.11674/zwyf.17291
[2] 曹卫东, 黄鸿翔.  关于我国恢复和发展绿肥若干问题的思考[J]. 中国土壤与肥料, 2009, (4): 1-3.   doi: 10.3969/j.issn.1673-6257.2009.04.001
[3]

焦彬. 中国绿肥[M]. 北京: 中国农业出版社, 1986.

Jiao B. Green manures in China[M]. Beijing: Agriculture Press, 1986.

[4] Crews T E, Peoples M B.  Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs[J]. Agriculture, Ecosystems & Environment, 2004, 102(3): 279-297.
[5] Voisin A S, Guéguen J, Huyghe C, et al.  Legumes for feed, food, biomaterials and bioenergy in Europe: A review[J]. Agronomy for Sustainable Development, 2014, 34(2): 361-380.   doi: 10.1007/s13593-013-0189-y
[6] Kim M K, Lee Y H, Kang T H, et al.  Influence of Chinese milk vetch (Astragalus sinicus, L.) with no-tillage on soil biotic factors and rice yield[J]. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54(6): 899-909.   doi: 10.1007/BF03253178
[7] 黄晶, 高菊生, 刘淑军, 等.  冬种紫云英对水稻产量及其养分吸收的影响[J]. 中国土壤与肥料, 2013, (1): 88-92.
[8] Lee C H, Park K D, Jung K Y, et al.  Effect of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil[J]. Agriculture, Ecosystems & Environment, 2010, 138(3): 343-347.
[9] Wang Y F, Liu X M, Butterly C, et al.  pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime[J]. Journal of Soils & Sediments, 2013, (4): 654-663.
[10] 高菊生, 曹卫东, 李冬初, 等.  长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J]. 生态学报, 2011, 31(16): 4542-4548.
[11] 万水霞, 朱宏斌, 唐杉, 等.  紫云英与化肥配施对安徽沿江双季稻区土壤生物学特性的影响[J]. 植物营养与肥料学报, 2015, 21(2): 389-397.
[12]

中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018.

Statistics Bureau of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2018.

[13] 罗文丽, 周柳强, 谭宏伟, 李伏生.  水稻秸秆腐解规律及养分释放特征[J]. 南方农业学报, 2014, 45(5): 808-812.   doi: 10.3969/j:issn.2095-1191.2014.5.808
[14] Singh G, Jalota S K, Singh Y.  Manuring and residue management effects on physical properties of a soil under the rice-wheat system in Punjab, India[J]. Soil & Tillage Research, 2007, 94(1): 229-238.
[15] Mary B, Recous S, Darwis D, et al.  Interactions between decomposition of plant residues and nitrogen cycling in soil[J]. Plant and Soil, 1996, 181(1): 71-82.   doi: 10.1007/BF00011294
[16] Ntanos D A, Koutroubas S D.  Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions[J]. Field Crops Research, 2002, 74(1): 93-101.   doi: 10.1016/S0378-4290(01)00203-9
[17] Yang L, Zhang L, Yu C, et al.  Nitrogen fertilizer and straw applications affect uptake of 13C, 15N-glycine by soil microorganisms in wheat growth stages[J]. PLoS ONE, 2017, 12(1): e0169016-.   doi: 10.1371/journal.pone.0169016
[18] Schwendener C M, Lehmann J, de Camargo P B, et al.  Nitrogen transfer between high- and low-quality leaves on a nutrient-poor oxisol determined by 15N enrichment[J]. Soil Biology and Biochemistry, 2005, 37(4): 787-794.   doi: 10.1016/j.soilbio.2004.10.011
[19] 叶静, 邹平, 张贤, 等.  不同施肥方式对红壤生地紫云英产量及养分累积的影响[J]. 浙江农业科学, 2019, 60(11): 2121-2123.
[20] Yang L, Zhou X, Liao Y, et al.  Co-incorporation of rice straw and green manure benefits rice yield and nutrient uptake[J]. Crop Science, 2019, 59(2): 749-759.   doi: 10.2135/cropsci2018.07.0427
[21]

鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000.

Bao S D. Soil and agricultural chemistry analysis (Third Edition)[M]. Beijing: China Agricultural Press, 2000.

[22] Vance E D, Brookes P C, Jenkinson D S.  An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19(6): 703-707.
[23] Saiya-Cork K R, Sinsabaugh R L, Zak D R.  The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315.
[24] DeForest J.  The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186.   doi: 10.1016/j.soilbio.2009.02.029
[25]

Dilz K. Efficiency of uptake and utilization of fertilizer nitrogen by plants[A]. Jenkinson D S, Smith K A. Nitrogen efficiency in agricultural soils[C]. London: Elsevier Applied Science, 1988.

[26]

Sanchez G. PLS path modeling with R[M]. Trowchez Editions, Berkeley, 2013.

[27]

Sanchez G, Trinchera L. PLSPM: Partial least squares data analysis methods (R package version 0.2-2)[DB/OL]. 2012, http://cran.r–project.org/package=plspm.

[28] De'Ath G.  Boosted trees for ecological modeling and prediction[J]. Ecology, 2007, 88(1): 243-251.   doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
[29] 杨园园, 高志岭, 王雪君.  有机、无机氮肥施用对苜蓿产量、土壤硝态氮和温室气体排放的影响[J]. 应用生态学报, 2016, 27(3): 822-828.
[30] 宋秀丽, 王冰雪, 陆杰, 等.  化肥与秸秆配施对大豆生长及产量的影响[J]. 黑龙江农业科学, 2015, (7): 35-39.
[31] Kumar K, Goh K M.  Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance[J]. European Journal of Agronomy, 2002, 16(4): 295-308.   doi: 10.1016/S1161-0301(01)00133-2
[32] Conde E, Cardenas M, Ponce-Mendoza A, et al.  The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline alkaline soil[J]. Soil Biology and Biochemistry, 2005, 37(4): 681-691.   doi: 10.1016/j.soilbio.2004.08.026
[33]

Bhupinderpal-Singh, Rengel Z. The role of crop residues in improving soil fertility[A]. Marschner P, Rengel Z. Nutrient cycling in terrestrial ecosystems[M]. Springer, 2007: 183–214.

[34] Novoa R, Loomis R S.  Nitrogen and plant production[J]. Plant and Soil, 1981, 58(1): 177-204.
[35] 曾庆利, 龚春华, 徐永士, 等.  紫云英不同翻压量对水稻产量和产值的影响[J]. 湖南农业科学, 2009, (6): 76-77, 88.   doi: 10.3969/j.issn.1006-060X.2009.06.025
[36] 劳秀荣, 孙伟红, 王真, 等.  秸秆还田与化肥配合施用对土壤肥力的影响[J]. 土壤学报, 2003, 40(4): 618-623.   doi: 10.3321/j.issn:0564-3929.2003.04.020
[37] Xie W J, Wu L F, Zhang Y P, et al.  Effects of straw application on coastal saline topsoil salinity and wheat yield trend[J]. Soil and Tillage Research, 2017, 169: 1-6.   doi: 10.1016/j.still.2017.01.007
[38] 成臣, 汪建军, 程慧煌, 等.  秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响[J]. 土壤学报, 2018, 55(1): 247-257.   doi: 10.11766/trxb201707090275
[39] 吴立鹏, 张士荣, 娄金华, 等.  秸秆还田与优化施氮对稻田土壤碳氮含量及产量的影响[J]. 华北农学报, 2019, 34(4): 158-166.   doi: 10.7668/hbnxb.201751345
[40] 戴志刚, 鲁剑巍, 李小坤, 等.  不同作物还田秸秆的养分释放特征试验[J]. 农业工程学报, 2010, 26(6): 272-276.   doi: 10.3969/j.issn.1002-6819.2010.06.047
[41] 宋长青, 吴金水, 陆雅海, 等.  中国土壤微生物学研究 10 年回顾[J]. 地球科学进展, 2013, 28(10): 1087-1105.   doi: 10.11867/j.issn.1001-8166.2013.10.1087
[42]

Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil[A]. Wilson J R. Advances in nitrogen cycling in agricultural ecosystems[C]. Walling ford: Common Wealth Agricultural Bureau International, 1988, 368–386.

[43] 王军, 丁效东, 张士荣, 等.  不同碳氮比有机肥对沙泥田烤烟根际土壤碳氮转化及酶活性的影响[J]. 生态环境学报, 2015, 24(8): 1280-1286.
[44] 孙瑞莲, 赵秉强, 朱鲁生, 等.  长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406-410.   doi: 10.3321/j.issn:1008-505X.2003.04.005
[45] Sinsabaugh R L, Lauber C L, Weintraub M N, et al.  Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264.   doi: 10.1111/j.1461-0248.2008.01245.x
[46] Caldwell B A.  Enzyme activities as a component of soil biodiversity: A review[J]. Pedobiologia, 2005, 49(6): 0-644.
[47] Zhao S C, Li K J, Zhou W, et al.  Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82-88.
[48] 高金虎, 孙占祥, 冯良山, 吴昌娟.  秸秆与氮肥配施对辽西旱区土壤酶活性与土壤养分的影响[J]. 生态环境学报, 2012, 21(4): 677-681.   doi: 10.3969/j.issn.1674-5906.2012.04.015
[49]

何翠翠. 长期不同施肥措施对黑土土壤碳库及其酶活性的影响研究[D]. 北京: 中国农业科学院硕士学位论文, 2014.

He C C. Effects of long-term fertilization on soil carbon pools and enzymes activity of black soil in cropland of northeast China[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2014.

[50] 矫丽娜, 李志洪, 殷程程, 等.  高量秸秆不同深度还田对黑土有机质组成和酶活性的影响[J]. 土壤学报, 2015, 52(3): 665-672.
[51] 殷陶刚, 窦向丽, 刘晶婧, 李玉泽.  兰州新区不同土地利用类型对土壤有机质和养分及酶活性的影响[J]. 中国土壤与肥料, 2019, (6): 32-37.
[52] 黄容, 高明, 万毅林, 等.  秸秆还田与化肥减量配施对稻–菜轮作下土壤养分及酶活性的影响[J]. 环境科学, 2016, 37(11): 4446-4456.
[53] 赵晶, 孟庆峰, 周连仁, 等.  长期施用有机肥对草甸碱土土壤酶活性及养分特征的影响[J]. 中国土壤与肥料, 2014, (2): 23-26, 34.   doi: 10.11838/sfsc.20140205
[54] Wei L, Hao H L, Wu W, et al.  Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development[J]. Soil Biology & Biochemistry, 2008, 40(2): 475-486.
[55] 莫晶, 闫文德, 刘曙光, 吴小红.  油茶–花生间作土壤酶活性与养分的关系[J]. 中南林业科技大学学报, 2017, 37(6): 89-95.
[56] Dai X, Zhou W, Liu G, et al.  Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments[J]. Geoderma, 2019, 337: 1116-1125.   doi: 10.1016/j.geoderma.2018.11.023
[57] Bowles T M, Acosta-Martínez V, Calderón F, Jackson L E.  Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape[J]. Soil Biology and Biochemistry, 2014, 68: 252-262.   doi: 10.1016/j.soilbio.2013.10.004