[1] Wang Y, Deng C, Liu Y, et al.  Identifying change in spatial accumulation of soil salinity in an inland river watershed, China[J]. Science of the Total Environment, 2018, 621: 177-185.   doi: 10.1016/j.scitotenv.2017.11.222
[2] Zhao X, Hao Q L, Sun Y Y.  Spatial heterogeneity of soil salinization and its influencing factors in the typical region of the Mu Us Desert-Loess Plateau transitional zone, Northwest China[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1761-1768.
[3] Lin J, Wang Y, Sun S, et al.  Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Science of the total Environment, 2017, 576: 234-241.   doi: 10.1016/j.scitotenv.2016.10.091
[4] Gao W, Xu F C, Guo D D, et al.  Calcium-dependent protein kinesis in cotton: insights into early plant responses to salt stress[J]. BMC Plant Biology, 2018, 18: 15-.   doi: 10.1186/s12870-018-1230-8
[5] Jin C W, Sun Y L, Cho D H.  Changes in photosynthetic rate, water potential, and proline content in kenaf seedlings under salt stress[J]. Canadian Journal of Plant Science, 2012, 92: 311-319.   doi: 10.4141/cjps2011-144
[6] Ma N, Hu C, Wan L, et al.  Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression[J]. Frontiers in Plant Science, 2017, 8: 1671-.   doi: 10.3389/fpls.2017.01671
[7]

茹蕾. 能源与环境视角下中国制糖业经济效率研究[D]. 北京: 中国农业大学博士学位论文, 2016.

Ru L. Research on economic efficiency of China's sugar industry from the perspective of energy and environment [D]. Beijing: PhD Dissertation of China Agricultural University, 2016.

[8] Hoffmann C M, Kenter C.  Yield potential of sugar beet-have we hit the ceiling[J]. Frontiers in Plant Science, 2018, 9: -.   doi: 10.3389/fpls.2018.00289
[9]

魏淑贞. 盐胁迫对甜菜品种筛选及幼苗生理生化性质的影响[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2017.

Wei S Z. Effects of salt stress on screening of sugar beet varieties and physiological and biochemical characteristics of seedlings [D]. Hohhot: MS Thesis of Inner Mongolia Agricultural University, 2017.

[10] Kandil A A, Sharief A E, Abido W A E, et al.  Effect of gibberellic acid on germination behavior of sugar beet cultivars under salt stress conditions of Egypt[J]. Sugar Technology, 2014, 16(2): 211-221.   doi: 10.1007/s12355-013-0252-7
[11] 郭德栋, 方晓华, 刘丽萍, 等.  无融合生殖甜菜单体附加系的获得和鉴定[J]. 云南大学学报, 2000, 21(3): 180-181.
[12] 王桂芝, 郭德栋, 贾树彪, 等.  栽培甜菜 (Beta vulgaris L.) 和白花甜菜 (Beta corolliflora Zoss.) 种间杂交及细胞遗传学的研究[J]. 中国甜菜糖业, 1994, 3: 7-15.
[13] Wu G Q, Wang J L, Feng R J, et al.  iTRAQ-based comparative proteomic analysis provides insights into molecular mechanisms of salt tolerance in sugar beet (Beta vulgaris L.)[J]. International Journal of Molecular Sciences, 2018, 19(12): 89-102.
[14] Lv X Y, Jin Y, Wang Y G.  De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14[J]. Computational Biology and Chemistry, 2018, 75: 1-10.   doi: 10.1016/j.compbiolchem.2018.04.014
[15] Wu C, Ma C Q, Pan Y, et al.  Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses[J]. Journal of Plant Research, 2013, 126(3): 415-425.   doi: 10.1007/s10265-012-0532-4
[16] Rozema J, Cornelisse D, Zhang Y, et al.  Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes[J]. Annals of Botany Plants, 2014, 7: -.   doi: 10.1093/aobpla/plu083
[17] Yang L, Ma C Q, Wang L, et al.  Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14[J]. Journal of Plant Physiology, 2012, 169(9): 839-850.   doi: 10.1016/j.jplph.2012.01.023
[18] Song S S, Long X H, Liu L, et al.  Effects of Na+/K+ ion distribution in vatious organs and photosynthetic characteristics of Catharanthus roseus at the flowering stage under salt stress[J]. Acta Pedologica Sinica, 2011, 48(4): 883-887.
[19]

张志良, 瞿伟菁. 植物生理学实验指导 (第三版)[M]. 北京: 高等教育出版社, 2003. 274–277.

Zhang Z L, QU W J. Plant Physiology Experiment Guide(Third Edition)[M]. Beijing: Higher Education Press, 2003. 274–277.

[20] Yamada N, Promden W, Yamane k, et al.  Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet-importance of long-distance translocation of betaine under normal and salt-stressed conditions[J]. Journal of Plant Physiology, 2009, 166(18): 2058-2070.   doi: 10.1016/j.jplph.2009.06.016
[21]

陈刚, 李胜. 植物生理学实验[M]. 北京: 高等教育出版社, 2016. 63–65.

Li G, Li S. Plant physiology test [M]. Beijing: Higher Education Press, 2016. 63-65.

[22]

王学奎, 黄见良. 植物生理生化实验原理与技术 (第3版)[M]. 北京: 高等教育出版社, 2006. 184–186.

Wang X K, Huang X L. Principles and techniques of plant physiological and biochemical experiments (3rd Edition) [M]. Beijing: Higher Education Press, 2006. 184–186.

[23] Song J, Ding X D, Feng G, et al.  Nutritional and osmotic roles of nitrate in a euhalophyte and xerophyte in saline conditions[J]. New Phytologist, 2006, 171: 357-366.   doi: 10.1111/j.1469-8137.2006.01748.x
[24]

谭苏娜. 硼对盐胁迫下甜菜生长抑制缓解机制的初步研究[D]. 济南: 山东师范大学硕士学位论文, 2014.

Tan S N. Preliminary study on the mechanism of boron inhibiting the inhibition of sugar beet growth under salt stress [D]. Jinan: MS Thesis of Shandong Normal University, 2014.

[25] 彭春雪, 耿贵, 於丽华, 等.  不同浓度钠对甜菜生长及生理特性的影响[J]. 植物营养与肥料学报, 2014, 20(2): 459-465.   doi: 10.11674/zwyf.2014.0223
[26] Masood A, Shah N A, Zeeshan M, et al.  Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides)[J]. Environmental and Experimental Botany, 2006, 58: 216-222.   doi: 10.1016/j.envexpbot.2005.08.002
[27] 姜慧, 黄健, 张云鹤, 等.  盐胁迫对甜高粱幼苗抗氧化酶活性的影响[J]. 沈阳师范大学学报, 2012, 30(2): 289-292.