[1] 赵鑫, 宇万太, 李建东, 等.  不同经营管理条件下土壤有机碳及其组分研究进展[J]. 应用生态学报, 2006, 17(11): 2203-2209.   doi: 10.3321/j.issn:1001-9332.2006.11.040
[2] 林治安, 赵秉强, 袁亮, 等.  长期定位施肥对土壤养分与作物产量的影响[J]. 中国农业科学, 2009, 42(8): 2809-2819.   doi: 10.3864/j.issn.0578-1752.2009.08.021
[3] 徐明岗, 于荣, 孙小凤, 等.  长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J]. 植物营养与肥料学报, 2006, 12(4): 459-465.   doi: 10.3321/j.issn:1008-505X.2006.04.001
[4] 张贵龙, 赵建宁, 宋晓龙, 等.  施肥对土壤有机碳含量及碳库管理指数的影响[J]. 植物营养与肥料学报, 2012, 18(2): 359-365.   doi: 10.11674/zwyf.2012.11209
[5] Liu E, Yan C, Mei X, et al.  Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China[J]. PLoS ONE, 2013, 8(2): e56536-.   doi: 10.1371/journal.pone.0056536
[6] 任凤玲, 张旭博, 孙楠, 等.  施用有机肥对中国农田土壤微生物量影响的整合分析[J]. 中国农业科学, 2018, 51(1): 119-128.   doi: 10.3864/j.issn.0578-1752.2018.01.011
[7] 史康婕, 周怀平, 杨振兴, 等.  长期施肥下褐土易氧化有机碳及有机碳库的变化特征[J]. 中国生态农业学报, 2017, 25(4): 542-552.
[8] Luo G, Friman V P, Chen H, et al.  Long-term fertilization regimes drive the abundance and composition of N-cycling-related prokaryotic groups via soil particle-size differentiation[J]. Soil Biology and Biochemistry, 2018, 116: 213-223.   doi: 10.1016/j.soilbio.2017.10.015
[9] 刘金光, 李孝刚, 王兴祥.  连续施用有机肥对连作花生根际微生物种群和酶活性的影响[J]. 土壤, 2018, 50(2): 305-311.
[10] Xiong W, Guo S, Jousset A, et al.  Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry, 2017, 114: 238-247.   doi: 10.1016/j.soilbio.2017.07.016
[11] Liu H, Xiong W, Zhang R, et al.  Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J]. Plant and Soil, 2018, 423: 229-240.   doi: 10.1007/s11104-017-3504-6
[12] Allison S D, Jastrow J D.  Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3245-3256.   doi: 10.1016/j.soilbio.2006.04.011
[13] Qi R, Li J, Lin Z, et al.  Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes[J]. Applied Soil Ecology, 2016, 102: 36-45.   doi: 10.1016/j.apsoil.2016.02.004
[14] 刘恩科, 赵秉强, 李秀英, 等.  长期施肥对土壤微生物量及土壤酶活性的影响[J]. 植物生态学报, 2008, 32(1): 176-182.   doi: 10.3773/j.issn.1005-264x.2008.01.020
[15] Cusack D F, Silver W L, Torn M S, et al.  Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests[J]. Ecology, 2011, 92(3): 621-632.   doi: 10.1890/10-0459.1
[16] Zhang Y J, Guo S L, Zhao M, et al.  Soil moisture influence on the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau[J]. Biogeosciences, 2015, 12(11): 3655-3664.   doi: 10.5194/bg-12-3655-2015
[17] 周璞, 魏亮, 魏晓梦, 等.  稻田土壤β-1,4-葡萄糖苷酶活性对温度变化的响应特征[J]. 环境科学研究, 2018, 31(7): 1282-1288.
[18]

周桂香, 陈林, 张佳宝, 等. 温度和水分对秸秆还田土壤有机碳的影响[A]. 中国土壤学会. 第七次全国土壤生物与生物化学学术研讨会暨第二次全国土壤健康学术研讨会论文集[C]. 武汉: 中国土壤学会, 2014.

Zhou G X, Chen L, Zhang J B, et al. Effects of temperature and moisture on soil organic carbon of straw returning to field[A]. Soil Science Society of China. The seventh national symposium on soil biology and biochemistry and the second national symposium on soil health[C]. Wuhan: Soil Science Society of China, 2014.

[19] 王玺洋, 于东升, 廖丹, 等.  长三角典型水稻土有机碳组分构成及其主控因子[J]. 生态学报, 2016, 36(15): 4729-4738.
[20] 颜晓元, 夏龙龙, 遆超普.  面向作物产量和环境双赢的氮肥施用策略[J]. 中国科学院院刊, 2018, 33(2): 177-183.
[21] 马文奇, 张福锁, 张卫锋.  关乎我国资源、环境、粮食安全和可持续发展的化肥产业[J]. 资源科学, 2005, 27(3): 33-40.   doi: 10.3321/j.issn:1007-7588.2005.03.006
[22] 张淑英, 褚贵新, 梁永超.  增铵营养对低温胁迫下棉花幼苗氮代谢的影响[J]. 植物营养与肥料学报, 2017, 23(4): 983-990.   doi: 10.11674/zwyf.16394
[23] 王雪薇, 刘涛, 褚贵新.  三种硝化抑制剂抑制土壤硝化作用比较及用量研究[J]. 植物营养与肥料学报, 2017, 23(1): 54-61.   doi: 10.11674/zwyf.16126
[24]

石元亮. 稳定性肥料对现代农业的贡献[N]. 中国农资, 2013–9–13(25).

Shi Y L. Contribution of stable fertilizer to modern agriculture[N]. Chinese Agricultural Materials, 2013–9–13(25).

[25] 武志杰, 石元亮, 李东坡, 等.  稳定性肥料发展与展望[J]. 植物营养与肥料学报, 2017, 23(6): 1614-1621.   doi: 10.11674/zwyf.17303
[26] Jia C, Zhang X, Li Y, et al.  Synthesis and characterization of bio–based PA/EP interpenetrating network polymer as coating material for controlled release fertilizers[J]. Journal of Applied Polymer Science, 2017, 135(13): 1-10.
[27] 侯红乾, 冀建华, 刘益仁, 等.  缓/控释肥对双季稻产量、氮素吸收和平衡的影响[J]. 土壤, 2018, 50(1): 43-50.
[28] Zheng W K, Liu Z G, Zhang M, et al.  Improving crop yields, nitrogen use efficiencies, and profits by using mixtures of coated controlled-release and uncoated urea in a wheat–maize system[J]. Field Crops Research, 2017, 205: 106-115.   doi: 10.1016/j.fcr.2017.02.009
[29] 张文学, 孙刚, 何萍, 等.  脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1411-1419.   doi: 10.11674/zwyf.2013.0615
[30] Sanz-Cobena A, Abalos D, Meijide A, et al.  Soil moisture determines the effectiveness of two urease inhibitors to decrease N2O emission[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(7): 1131-1144.
[31]

Trenkel M E. Slow- and controlled-release and stabilized fertilizers: An option for enhancing nutrient efficiency in agriculture (2nd edition)[M]. Paris, France: International Fertilizer Industry Association, 2010.

[32] Watson C J, Miller H, Poland P, et al.  Soil properties and the ability of the urease inhibitor N-(n-BUTYL) thiophosphorictriamide (nBTPT) to reduce ammonia volatilization from surface-applied urea[J]. Soil Biology and Biochemistry, 1994, 26(9): 1165-1171.   doi: 10.1016/0038-0717(94)90139-2
[33] Tian X, Geng J, Guo Y, et al.  Controlled-release urea decreased ammonia volatilization and increased nitrogen use efficiency of cotton[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(6): 1-9.
[34] Tao R, Li J, Guan Y, et al.  Effects of urease and nitrification inhibitors on the soil mineral nitrogen dynamics and nitrous oxide (N2O) emissions on calcareous soil[J]. Environmental Science and Pollution Research International, 2018, 25(9): 1-10.
[35] 刘畅, 唐国勇, 童成立, 等.  不同施肥措施下亚热带稻田土壤碳、氮演变特征及其耦合关系[J]. 应用生态学报, 2008, 19(7): 1489-1493.
[36]

鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

Bao S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000.

[37]

Dick R P. Methods of soil enzymology[M]. Soil Science Society of America Inc., Madison, 2011.

[38]

戚瑞敏. 不同施肥制度潮土有机碳矿化对温度和牛粪的响应及其机制研究[D]. 北京: 中国农业科学院硕士论文, 2016.

Qi R M. Responses of soil organic carbon mineralization under long-term fertilization regimes to temperature changes and cattle manure addition[D]. Beijing: Ms Thesis of Chinese Academy of Agricultural Sciences, 2016.

[39] 张瑞, 张贵龙, 姬艳艳, 等.  不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1): 277-282.
[40] 陶玥玥, 金梅娟, 汤云龙, 等.  水生植物堆肥替代部分氮肥提高水稻产量与稻田土壤肥力[J]. 农业工程学报, 2017, 33(18): 196-202.   doi: 10.11975/j.issn.1002-6819.2017.18.026
[41] 董春华, 高菊生, 曾希柏, 等.  长期有机无机肥配施下红壤性稻田水稻产量及土壤有机碳变化特征[J]. 植物营养与肥料学报, 2014, 20(2): 336-345.   doi: 10.11674/zwyf.2014.0209
[42] 周旋, 戴锋, 董春华.  生化抑制剂组合与施肥模式对黄泥田稻季氨挥发的影响[J]. 农业环境科学学报, 2018, 37(2): 399-408.   doi: 10.11654/jaes.2017-0703
[43] 李东坡, 武志杰, 梁成华, 等.  缓/控释氮素肥料对土壤生物学活性的影响[J]. 农业环境科学学报, 2006, 25(3): 664-669.   doi: 10.3321/j.issn:1672-2043.2006.03.024
[44] Bending G D, Lincoln S D.  Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products[J]. Soil Biology and Biochemistry, 2000, 32(8–9): 1261-1269.
[45] 孙志梅, 武志杰, 陈立军, 等.  土壤硝化作用的抑制剂调控及其机理[J]. 应用生态学报, 2008, 19(6): 1389-1395.
[46] 于冰, 宋阿琳, 李冬初, 等.  长期施用有机和无机肥对红壤微生物群落特征及功能的影响[J]. 中国土壤与肥料, 2017, (6): 58-65.   doi: 10.11838/sfsc.20170609
[47] 王艳霞, 冯宏, 李华兴, 等.  生物复混肥对土壤微生物的影响研究[J]. 植物营养与肥料学报, 2008, 14(6): 1206-1211.   doi: 10.3321/j.issn:1008-505X.2008.06.028
[48] 薛峰, 颜廷梅, 杨林章, 等.  施用有机肥对土壤生物性状影响的研究进展[J]. 中国生态农业学报, 2010, 18(6): 1372-1377.   doi: 10.3724/SP.J.1011.2010.01372
[49] 孙瑞莲, 赵秉强, 朱鲁生, 等.  长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406-410.   doi: 10.3321/j.issn:1008-505X.2003.04.005
[50] 曾玲玲, 张兴梅, 洪音, 等.  长期施肥与耕作方式对土壤酶活性的影响[J]. 中国土壤与肥料, 2008, (2): 27-30.   doi: 10.3969/j.issn.1673-6257.2008.02.007
[51] 陶磊, 褚贵新, 刘涛, 等.  有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J]. 生态学报, 2014, 34(21): 6137-6146.
[52] Liu S, Wang J J, Tian Z, et al.  Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies[J]. Journal of Environmental Sciences, 2017, 57(7): 196-210.
[53] 李雪松, 刘占军, 陈竹君, 等.  氮肥及硝化抑制剂配合施用对石灰性土壤二氧化碳释放的影响[J]. 农业环境科学学报, 2017, 36(8): 1658-1663.   doi: 10.11654/jaes.2017-0110
[54] 王平, 李凤民, 刘淑英.  长期施肥对土壤生物活性有机碳库的影响[J]. 水土保持学报, 2010, 24(1): 224-228.
[55] 刘涛, 梁永超, 褚贵新.  氯甲基吡啶对滴灌棉田土壤微生物群落功能多样性的影响[J]. 中国生态农业学报, 2017, 25(7): 968-974.