[1] Haynes R J.  Labile organic matter fractions as central components of the quality of agricultural soils: an overview[J]. Advances in Agronomy, 2005, 85: 221-268.   doi: 10.1016/S0065-2113(04)85005-3
[2] Ghani A, Dexter M, Perrott K W.  Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J]. Soil Biology and Biochemistry, 2003, 35(9): 1231-1243.   doi: 10.1016/S0038-0717(03)00186-X
[3] Bronick C J, Lal R.  Soil structure and management: a review[J]. Geoderma, 2005, 124: 3-22.   doi: 10.1016/j.geoderma.2004.03.005
[4] 赵红, 吕贻忠, 杨希, 等.  不同配肥方案对黑土有机碳含量及碳库管理指数的影响[J]. 中国农业科学, 2009, 42(9): 3164-3169.
Zhao H, Lv Y Z, Yang X, et al.  Effects of different fertilization proportions on organic carbon content of black soil and carbon pool management index[J]. Scientia Agricultura Sinica, 2009, 42(9): 3164-3169.
[5] 林新坚, 曹卫东, 吴一群, 等.  紫云英研究进展[J]. 草业科学, 2011, 28(1): 135-140.
Lin X J, Cao W D, Wu Y Q, et al.  Advance in Astragalus sinicus research[J]. Pratacultural Science, 2011, 28(1): 135-140.
[6] 高嵩涓, 曹卫东, 白金顺, 等.  长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902-910.
Gao S J, Cao W D, Bai J S, et al.  Long-term application of winter green manures changed the soil microbial biomass properties in end paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902-910.
[7] 杨滨娟, 黄国勤, 兰延, 等.  施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响[J]. 应用生态学报, 2014, 25(10): 2907-2913.
Yang B J, Huang G Q, Lan Y, et al.  Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913.
[8] 胡晓珊, 唐树梅, 曹卫东, 等.  温室夏闲季种植翻压绿肥对土壤可溶性有机碳氮及无机氮的影响[J]. 中国土壤与肥料, 2015, 3: 21-28.   doi: 10.11838/sfsc.20150304
Hu X S, Tang S H, Cao W D, et al.  Effects of plantation and utilization of green manures during the summer fallow season on soil dissolved organic carbon and nitrogen, and inorganic nitrogen in greenhouse[J]. Soil and Fertilizer Sciences in China, 2015, 3: 21-28.   doi: 10.11838/sfsc.20150304
[9] 周国朋, 曹卫东, 白金顺, 等.  多年紫云英−双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学, 2016, 49(21): 4096-4106.   doi: 10.3864/j.issn.0578-1752.2016.21.004
Zhou G P, Cao W D, Bai J S, et al.  Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106.   doi: 10.3864/j.issn.0578-1752.2016.21.004
[10] Sun Y N, Huang S, Yu X C, et al.  Stability and saturation of soil organic carbon in rice fields: evidence from a long-term fertilization experiment in subtropical China[J]. Journal of Soils and Sediments, 2013, 13(8): 1327-1334.   doi: 10.1007/s11368-013-0741-z
[11] Mi W H, Wu L H, Brooks P C, et al.  Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers[J]. Soil and Tillage Research, 2016, 163: 64-70.   doi: 10.1016/j.still.2016.05.009
[12] Chen S, Xu C M, Yan J X, et al.  The influence of the type of crop residue on soil organic carbon fractions: an 11-year field study of rice-based cropping systems in southeast China[J]. Agriculture, Ecosystems and Environment, 2016, 223: 261-269.   doi: 10.1016/j.agee.2016.03.009
[13] Williams M A, Myrold D D, Bottomley P J.  Distribution and fate of 13C-labeled root and straw residues from ryegrass and crimson clover in soil under western Oregon field conditions[J]. Biology and Fertility of Soils, 2006, 42(6): 523-531.   doi: 10.1007/s00374-005-0046-5
[14] Chen X L, Chen H Y H, Chen X, et al.  Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology, 2016, 107: 162-169.   doi: 10.1016/j.apsoil.2016.05.016
[15] Li S, Zhang S R, Pu Y L, et al.  Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289-297.   doi: 10.1016/j.still.2015.07.019
[16] Wickings K, Grandy A S, Reed S C, et al.  The origin of litter chemical complexity during decomposition[J]. Ecology Letter, 2012, 15(10): 1180-1188.   doi: 10.1111/j.1461-0248.2012.01837.x
[17] 王建红, 曹凯, 张贤.  紫云英还田配施化肥对单季晚稻养分利用和产量的影响[J]. 土壤学报, 2014, 51(4): 888-896.
Wang J H, Cao K, Zhang X.  Effects of incorporation of Chinese milk vetch coupled with application of chemical fertilizer on nutrient use efficiency and yield of single-cropping later rice[J]. Acta Pedologica Sinica, 2014, 51(4): 888-896.
[18]

鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.

[19] Jones D L, Willett V B.  Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry, 2006, 38(5): 991-999.   doi: 10.1016/j.soilbio.2005.08.012
[20] Wu J, Joergensen R G, Pommerening B, et al.  Measurement of soil microbial biomass C by fumigation-extraction−an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169.   doi: 10.1016/0038-0717(90)90046-3
[21] Cambardella C A, Elliott E T.  Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783.   doi: 10.2136/sssaj1992.03615995005600030017x
[22] Blair G J, Lefroy R D, Lisle L.  Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.   doi: 10.1071/AR9951459
[23]

关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986

Guan S Y. Soil enzyme and study method[M]. Beijing: Agricultural Press, 1986.

[24] Shi W, Dell E, Bowman D, et al.  Soil enzyme activities and organic matter composition in a turfgrass chronosequence[J]. Plant and Soil, 2006, 288(1-2): 285-296.   doi: 10.1007/s11104-006-9116-1
[25] Garcia-Ruiz R, Ochoa V, Hinojosa M B, et al.  Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems[J]. Soil Biology and Biochemistry, 2008, 40(9): 2137-2145.   doi: 10.1016/j.soilbio.2008.03.023
[26] 和文祥, 谭向平, 王旭东, 等.  土壤总体酶活性指标的初步研究[J]. 土壤学报, 2010, 47(6): 1232-1236.
He W X, Tan X P, Wang X D, et al.  Study on total enzyme activity index in soils[J]. Acta Pedologica Sinica, 2010, 47(6): 1232-1236.
[27]

常单娜. 我国主要绿肥种植体系中土壤可溶性有机物特性研究[D]. 北京: 中国农业科学院硕士学位论文, 2015

Chang D N. Characteristics of soil dissolved organic matter in main green manure plantation systems in China[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2015.

[28] 朱祖祥.  从绿肥的起爆效应探讨它的肥效机制及其在施用上的若干问题[J]. 浙江农业科学, 1963, 3: 104-109.
Zhu Z X.  To investigate green manure’s mechanism of fertilizer efficiency and some problems of its application for its priming effect[J]. Journal of Zhejiang Agricultural Sciences, 1963, 3: 104-109.
[29] 杨滨娟, 黄国勤, 钱海燕.  秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响[J]. 土壤学报, 2014, 51(1): 150-157.
Yang B J, Huang G Q, Qian H Y.  Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities[J]. Acta Pedologica Sinica, 2014, 51(1): 150-157.
[30] Shah Z, Ahmad S R, Rahman H U.  Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice-wheat system[J]. Pakistan Journal of Botany, 2010, 42(4): 2589-2598.
[31]

Gianfreda L, Ruggiero P. Enzyme activities in soil[A]. Nannipieri P, Smalla K. Nucleic acids and proteins in soil[M]. Berlin: Springer, 2006. 257–311.

[32] Allison V J, Condron L M, Peltzer D A, et al.  Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J]. Soil Biology and Biochemistry, 2007, 39(7): 1770-1781.   doi: 10.1016/j.soilbio.2007.02.006
[33] Sinsabaugh R L.  Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology and Biochemistry, 2010, 42(3): 391-404.   doi: 10.1016/j.soilbio.2009.10.014
[34] Martinez A T, Speranza M, Ruiz-Duenas F J, et al.  Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin[J]. International Microbiology, 2005, 8: 195-204.