[1] 汤勇华, 黄耀.  中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征[J]. 农业环境科学学报, 2009, 28(5): 1070-1078.
[2]

郝锐敏. 农业部首度发布化肥农药利用率数据[N]. 农资导报, 2015-12-11.

Hao R M. Fertilizer and pesticide use efficiency data was first issued by Ministry of Agriculture [N]. AgriGoods Herald, 2015-12-11.

[3]

宋长青. 土壤科学三十年: 从经典到前沿[M]. 北京: 商务印书馆, 2016.

Song C Q. Development of soil science in the past 30 years: From classic to frontier [M]. Beijing: The Commercial Press, 2016.

[4] 孙华, 张桃林, 熊德祥.  退化砂姜黑土的有机磷特性及其活化研究[J]. 山东农业大学学报(自然科学版), 2003, 34(2): 214-216.
[5] 李东坡, 武志杰, 陈利军, 等.  长期培肥黑土脲酶活性动态变化及其影响因素[J]. 应用生态学报, 2003, 14(12): 2208-2212.
[6] 孙波, 张桃林, 赵其国.  我国中亚热带缓丘区红粘土红壤肥力的演化Ⅱ.化学和生物学肥力的演化[J]. 土壤学报, 1999, 36(2): 203-217.
[7] 李忠佩, 唐永良, 石华, 张桃林.  不同轮作措施下瘠薄红壤中碳氮积累特征[J]. 中国农业科学, 2002, 35(10): 1236-1242.
[8] 关连珠, 张伯泉, 颜丽, 等.  有机肥料配施化肥对土壤有机质组分及生物活性影响的研究[J]. 土壤通报, 1990, 21(4): 180-184.
[9] 廖先苓, 徐银华, 朱兆良.  淹水种稻条件下化肥氮的硝化–反硝化损失的初步研究[J]. 土壤学报, 1982, 19(3): 257-263.
[10] 郑林用, 黄怀琼, 刘世全.  酸性紫色土中钼对花生–根瘤菌共生固氮的影响[J]. 四川农业大学学报, 1990, 8(2): 129-135.
[11] 唐振尧, 张清华, 何首林.  菌根真菌在红壤中对柑桔吸收磷肥的研究[J]. 真菌学报, 1984, 3(3): 170-177.
[12]

杨明均, 江育璋. 半旱式耕作下紫色水稻土的脲酶活性与土壤肥力[J]. 西南农业大学学报, 1987, (增刊 2): 86–89.

Yang M J, Jiang Y Z. A study on relation of urease activity with fertility in the purple soil with rice ridge culture [J]. Journal of Southwest Agricultural University, 1987, (Suppl. 2): 86–89.

[13] 陈吉棣, 刘建国, 陈松生, 等.  寄生双孢蘑菇的蛛网丝枝霉中国变种[J]. 真菌学报, 1984, 3(2): 96-101.
[14] 杨冬生, 王荣康, 万富寅, 乔光辉.  道孚棕色森林土火烧后主要酶系活性及理化性质的演变[J]. 四川林业科技, 1990, 11(2): 1-7.
[15] 孙瑞莲, 赵秉强, 朱鲁生, 等.  长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406-410.
[16] 陈国潮.  土壤微生物量测定方法现状及其在红壤上的应用[J]. 土壤通报, 1999, 30(6): 284-287.
[17] 李东坡, 武志杰, 陈利军, 等.  长期培肥黑土微生物量碳动态变化及影响因素[J]. 应用生态学报, 2004, 15(8): 1334-1338.
[18] 李东坡, 武志杰, 陈利军, 等.  长期定位培肥黑土土壤蔗糖酶活性动态变化及其影响因素[J]. 中国生态农业学报, 2005, 13(2): 102-105.
[19] 王智平, 曾江海, 张玉铭.  农田土壤 N2O 排放的影响因素[J]. 农业环境保护, 1994, 13(1): 40-42.
[20] 杨志新, 刘树庆.  重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J]. 环境科学学报, 2001, 21(1): 60-63.
[21] 陈法霖, 张凯, 郑华, 等.  PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2011, 17(2): 145-151.
[22] 刘定辉, 舒丽, 陈强, 等.  秸秆还田少免耕对冲积土微生物多样性及微生物碳氮的影响[J]. 应用与环境生物学报, 2011, 17(2): 158-162.
[23] 李鑫, 张会慧, 岳冰冰, 等.  桑树–大豆间作对盐碱土碳代谢微生物多样性的影响[J]. 应用生态学报, 2012, 23(7): 1825-1831.
[24] 刘若萱, 张丽梅, 白刃, 贺纪正.  模拟条件下土壤硝化作用及硝化微生物对不同水分梯度的响应[J]. 土壤学报, 2015, 52(2): 415-422.
[25] 张坚超, 徐镱钦, 陆雅海.  陆地生态系统甲烷产生和氧化过程的微生物机理[J]. 生态学报, 2015, 35(20): 6592-6603.
[26] 李忠佩, 吴晓晨, 陈碧云.  不同利用方式下土壤有机碳转化及微生物群落功能多样性变化[J]. 中国农业科学, 2007, 40(8): 1712-1721.
[27] 朱强根, 朱安宁, 张佳宝, 等.  保护性耕作下土壤动物群落及其与土壤肥力的关系[J]. 农业工程学报, 2010, 26(2): 70-76.
[28] Hyvonen R, Agren G I, Andren O.  Modelling long-term: Carbon and nitrogen dynamics in an arable soil receiving organic matter[J]. Ecological Applications, 1996, 6(4): 1345-1354.
[29] Simek M, Kalcik J.  Carbon and nitrate utilization in soils: the effect of long-term fertilization on potential denitrification[J]. Geoderma, 1998, 83(3-4): 269-280.
[30] Throback I N, Enwall K, Jarvis A, Hallin S.  Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417.
[31] Wang F E, Chen Y X, Tian G M, et al.  Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China[J]. Nutrient Cycling in Agroecosystems, 2004, 68(3): 181-189.
[32] Feng G, Zhang F S, Li X L, Christie P.  Uptake of nitrogen from indigenous soil pool by cotton plant inoculated with arbuscular mycorrhizal fungi[J]. Communications in Soil Science and Plant Analysis, 2002, 33(19-22): 3825-3836.
[33] Feng G, Song Y C, Li X L, Christie P.  Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil[J]. Applied Soil Ecology, 2003, 22(2): 139-148.
[34] Liao M, Chen C L, Huang C Y.  Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area[J]. Journal of Environmental Sciences, 2005, 17(5): 832-837.
[35] Banerjee S, Kirkby C A, Schmutter D, et al.  Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology & Biochemistry, 2016, 97: 188-198.
[36] Embacher A, Zsolnay A, Gattinger A, Munch J C.  The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem[J]. Geoderma, 2008, 148(1): 63-69.
[37] Cherif H, Ayari F, Ouzari H, et al.  Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate[J]. European Journal of Soil Biology, 2009, 45(2): 138-145.
[38] Ding W X, Meng L, Yin Y F, et al.  CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer[J]. Soil Biology & Biochemistry, 2007, 39: 669-679.
[39] Murase J, Matsui Y, Katoh M, et al.  Incorporation of 13 C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water[J]. Soil Biology & Biochemistry, 2006, 38: 3483-3491.
[40] Moore-Kucera J, Dick R P.  Application of C-13-labeled litter and root materials for in situ decomposition studies using phospholipid fatty acids[J]. Soil Biology & Biochemistry, 2008, 40: 2485-2493.
[41] Warnock D D, Mummey D L, McBride B, et al.  Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments[J]. Applied Soil Ecology, 2010, 46(3): 450-456.
[42] Yang X B, Ying G G, Peng P A, et al.  Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7915-7921.
[43] Sun B, Wang X Y, Wang F, et al.  Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition[J]. Applied and Environmental Microbiology, 2013, 79(11): 3327-3335.
[44] Zhang A F, Liu Y M, Pan G X, et al.  Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351(1-2): 263-275.
[45] Quilliam R S, DeLuca T H, Jones D L.  Biochar application reduces nodulation but increases nitrogenase activity in clover[J]. Plant and Soil, 2013, 366(1-2): 83-92.
[46] Schmidt M W I, Torn M S, Abiven S, et al.  Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56.
[47] Lehmann J, Kleber M.  The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60-68.
[48] Zhang Y G, Zhang X Q, Liu X D, et al.  Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes[J]. FEMS Microbiology Letters, 2007, 266(2): 144-151.
[49] Xie W J, Zhou J M, Wang H Y, et al.  Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization[J]. Agriculture Ecosystems & Environment, 2009, 129(4): 450-456.
[50] Pii Y, Mimmo T, Tomasi N, et al.  Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review[J]. Biology and Fertility of Soils, 2015, 51(4): 403-415.
[51] Li B, Li Y Y, Wu H M, et al.  Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496-6501.
[52] Yang C M, Yang L Z, Yan T M.  Chemical and microbiological parameters of paddy soil quality as affected by different nutrient and water regimes[J]. Pedosphere, 2005, 15(3): 369-378.
[53] Zhang P J, Zheng J F, Pan G X, et al.  Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China[J]. Colloids and Surfaces B: Biointerfaces, 2007, 58(2): 264-270.
[54] Zhong W H, Cai Z C.  Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2-3): 84-91.
[55] Nie M, Zhang X D, Wang J Q, et al.  Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization[J]. Soil Biology & Biochemistry, 2009, 41: 2535-2542.
[56] Tang X Y, Placella S A, Dayde F, et al.  Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient[J]. Plant and Soil, 2016, 407: 119-134.
[57]

Jiang Y, Liu M, Zhang J B, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level [J]. The ISME Journal, 2017. doi:10.1038/ismej. 2017.120.

[58] Jiang H, Deng Q, Zhou G, et al.  Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China[J]. Biogeosciences, 2013, 10(6): 3963-3982.
[59] Liu J J, Sui Y Y, Yu Z H, et al.  High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology & Biochemistry, 2014, 70: 113-122.
[60] Liang Y, Jiang Y, Wang F, et al.  Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover[J]. The ISME Journal, 2015, 9: 2561-2572.
[61] Zhou J, Deng Y, Luo F, et al.  Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. MBio, 2011, 2(4): e00122-11.
[62] Pan F J, Xu Y L, McLaughlin N B, et al.  Response of soil nematode community structure and diversity to long-term land use in the black soil region in China[J]. Ecological Research, 2012, 27(4): 701-714.
[63] Jiang Y J, Sun B, Li H X, et al.  Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil[J]. Soil Biology & Biochemistry, 2015, 88: 101-109.