[1] Sack L, Scoffoni C.  Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytologist, 2013, 198: 983-1000.   doi: 10.1111/nph.12253
[2] 李乐, 曾辉, 郭大立.  叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691-698.   doi: 10.3724/SP.J.1258.2013.00072
[3] Feldman A B, Leung H, Baraoidan M, et al.  Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number[J]. Frontier in Plant Science, 2017, 8: 1883-.   doi: 10.3389/fpls.2017.01883
[4] Nawarathna R N, Dassanayake K B, Nissanka S P, et al.  Is phenotypic variability in leaf vein density in rice associated with grain yield?[J]. Journal of Rice Research Development, 2017, 1: 1-9.   doi: 10.28926/jdr.v1i1.4
[5] Uhl D, Mosbrugger V.  Leaf venation density as a climate and/or environmental proxy: A critical review and new data[J]. Palaoclimatology, Palaogeography, Palaeoecology, 1999, 149: 15-26.   doi: 10.1016/S0031-0182(98)00189-8
[6] Boyce C K, Brodribb T J, Feild T S, et al.  Angiosperm leaf vein evolution was physiologically and environmentally transformative[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276: 1771-1776.   doi: 10.1098/rspb.2008.1919
[7] Ueno O, Kawano Y, Wakayama M, et al.  Leaf vascular systems in C3 and C4 grasses: a two-dimensional analysis[J]. Annals of Botany, 2006, 97: 611-621.   doi: 10.1093/aob/mcl010
[8] 陈伟月, 刘存海, 李秧秧, 等.  冬小麦品种(系)旗叶叶脉性状及其与气孔性状间的关联性[J]. 生态学杂志, 2014, 33(7): 1839-1846.
[9] Xiong D L, Yu T T, Zhang T, et al.  Leaf hydraulic conductance is coordinated with leaf morphoanatomical traits and nitrogen status in the genus Oryza[J]. Journal of Experimental Botany, 2015, 66(3): 741-748.   doi: 10.1093/jxb/eru434
[10] Caringella M A, Bongers F J, Sack L.  Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants[J]. Plant, Cell and Environment, 2015, 38: 2735-2746.   doi: 10.1111/pce.12584
[11] Nardini A, Pedà G, Rocca N L.  Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytologist, 2012, 196: 788-798.   doi: 10.1111/j.1469-8137.2012.04294.x
[12] Bolton J K, Brown R H.  Photosynthesis of grass species differing in carbon dioxide fixation pathways. V. Response of Panicum maximum, Panicummilioides, and tall fescue (Festuca arundinacea) to nitrogen nutrition[J]. Plant Physiology, 1980, 66: 97-100.   doi: 10.1104/pp.66.1.97
[13] Tabassum M A, Ye Y H, Yu T T, et al.  Rice (Oryza sativa L.) hydraulic conductivity links to leaf venation architecture under well-watered condition rather than PEG-induced water deficit[J]. Acta Physiologiae Plantarum, 2016, 38(92): 1-11.
[14] McKown A D, Cochard H, Sack L.  Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution[J]. American Naturalist, 2010, 175: 447-460.   doi: 10.1086/650721
[15] Carins Murphy M R, Jordan G J, Brodribb T J.  Differential leaf expansion can enable hydraulic acclimation to sun and shade[J]. Plant, Cell and Environment, 2012, 35: 1407-1418.   doi: 10.1111/j.1365-3040.2012.02498.x
[16] 宋丽清, 胡春梅, 侯喜林, 等.  高粱、紫苏叶脉密度与光合特性的关系[J]. 植物学报, 2015, 50(1): 100-106.   doi: 10.3724/SP.J.1259.2015.00100
[17] McElwain J C, Charilaos Y, Tracy L.  Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution[J]. New Phytologist, 2016, 209: 94-103.   doi: 10.1111/nph.13579
[18] Leigh A, Zwieniecki M A, Rockwell F E, et al.  Structural and hydraulic correlates of heterophylly in Ginkgo biloba[J]. New Phytologist, 2011, 189: 459-470.   doi: 10.1111/j.1469-8137.2010.03476.x
[19] Nardini A, Õunapuu-Pikas E, Savi T.  When smaller is better: leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes[J]. Functional Plant Biology, 2014, 41: 972-982.   doi: 10.1071/FP13302
[20] Sack L, Frole K.  Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees[J]. Ecology, 2006, 87: 483-491.   doi: 10.1890/05-0710
[21] Brodribb T J, Feild T S, Jordan G J.  Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiology, 2007, 144: 1890-1898.   doi: 10.1104/pp.107.101352
[22] Walls R L.  Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set[J]. American Journal of Botany, 2011, 98: 244-253.   doi: 10.3732/ajb.1000154
[23] Gleason S M, Blackman C J, Chang Y, et al.  Weak coordination among petiole, leaf, vein, and gas-exchange traits across Australian angiosperm species and its possible implications[J]. Ecology and Evolution, 2016, 6(1): 267-278.   doi: 10.1002/ece3.1860
[24] Tabassum M A, Zhu G L, Hafeez A, et al.  Influence of leaf vein density and thickness on hydraulic conductance and photosynthesis in rice (Oryza sativa L.) during water stress[J]. Scientific Reports, 2016, 6: 36894-.   doi: 10.1038/srep36894
[25] 徐婷, 赵成章, 韩玲, 等.  张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769.   doi: 10.17521/cjpe.2016.0188
[26]

Food and Agriculture Organization of the United Nations. Agriculture, food and water[M]. http://www.fao.org/3/Y4683E/y4683e00.htm#P-1_0, 2003.

[27]

鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2007.

Bao S D. Soil and agricultural chemistry analysis (3rd Edition)[M]. Beijing: China Agriculture Press, 2007.

[28] Ueno O.  Occurrence of distinctive cells in leaves of C4 species in Arthraxon and Microstegium (Andropogoneae-Poaceae) and the structural and immunocytochemical characterization of these cells[J]. International Journal of Plant Sciences, 1995, 156: 270-289.   doi: 10.1086/297249
[29] Sack L, Melcher P J, Zwieniecki M A, et al.  The hydraulic conductance of the angiosperm leaf lamina: A comparison of three measurement methods[J]. Journal of Experimental Botany, 2002, 53(378): 2177-2184.   doi: 10.1093/jxb/erf069
[30] Sack L, Scoffoni C, McKown A D, et al.  Developmentally based scaling of leaf venation architecture explains global ecological patterns[J]. Nature Communications, 2012, 3: 837-.   doi: 10.1038/ncomms1835
[31] Kawai K, Okada N.  How are leaf mechanical properties and water-use traits coordinated by vein traits? A case study in Fagaceae[J]. Functional Ecology, 2016, 30: 527-536.   doi: 10.1111/1365-2435.12526
[32] Bradshaw A D.  Evolutionary significance of phenotypic plasticity in plants[J]. Advance in Genetics, 1965, 13: 115-155.   doi: 10.1016/S0065-2660(08)60048-6
[33] Sack L, Holbrook N M.  Leaf hydraulics[J]. Annual Review of Plant Biology, 2006, 57: 361-381.   doi: 10.1146/annurev.arplant.56.032604.144141
[34] Zwieniecki M A, Melcher P J, Boyce C K, et al.  Hydraulic architecture of leaf venation in Laurus nobilis L[J]. Plant Cell and Environment, 2002, 25: 1445-1450.   doi: 10.1046/j.1365-3040.2002.00922.x
[35] van Kleunen M, Fischer M.  Constraints on the evolution of adaptive phenotypic plasticity in plants[J]. New Phytologist, 2005, 166: 49-60.   doi: 10.1111/j.1469-8137.2004.01296.x
[36] Yin Q L, Wang L, Lei M L, et al.  The relationships between leaf economics and hydraulic traits of woody plants depend on water availability[J]. Science of the Total Environment, 2018, 621: 245-252.   doi: 10.1016/j.scitotenv.2017.11.171