[1] 王义祥, 辛思洁, 叶菁, 等.  生物炭对强酸性茶园土壤酸度的改良效果研究[J]. 中国农学通报, 2018, 34(12): 108-111.   doi: 10.11924/j.issn.1000-6850.casb17030001
[2] 杨冬雪, 钟珍梅, 陈剑侠, 等.  福建省茶园土壤养分状况评价[J]. 海峡科学, 2010, (6): 129-131.   doi: 10.3969/j.issn.1673-8683.2010.06.046
[3] 黄燕, 黎珊珊, 蔡凡凡, 等.  生物质炭土壤调理剂的研究进展[J]. 土壤通报, 2016, 47(6): 1514-1520.
[4] Xu R K, Yuan J H, Zhang H.  The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497.   doi: 10.1016/j.biortech.2010.11.018
[5] Wang L, Butterly C R, Wang Y, et al.  Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils[J]. Soil Use & Management, 2014, 30(1): 119-128.
[6] 江福英, 吴志丹, 尤志明, 等.  生物黑炭对茶园土壤理化性状及茶叶产量的影响[J]. 茶叶科学技术, 2015, 56(1): 16-22.   doi: 10.3969/j.issn.1007-4872.2015.01.005
[7] Demisie W, Liu Z Y, Zhang M K.  Effect of biochar on carbon fractions and enzyme activity of red soil[J]. Catena, 2014, 121: 214-221.   doi: 10.1016/j.catena.2014.05.020
[8] 高文慧, 叶菁, 刘朋虎, 等.  农业废弃物生物质炭化技术及其应用进展[J]. 亚热带农业研究, 2019, 15(4): 279-284.
[9] 王芬, 刘会, 冯敬涛, 等.  牛粪和生物炭对苹果根系生长、土壤特性和氮素利用的影响[J]. 中国生态农业学报, 2018, 26(12): 1795-1801.
[10] 张又弛, 李会丹.  生物炭对土壤中微生物群落结构及其生物地球化学功能的影响[J]. 生态环境学报, 2015, 24(5): 898-905.
[11] Wang H H, Ren T B, Yang H J, et al.  Research and application of biochar in soil CO2 emission, fertility, and microorganisms: A sustainable solution to solve China’s agricultural straw burning problem[J]. Sustainability, 2020, 12(5): 1922-.   doi: 10.3390/su12051922
[12] Chen J H, Liu X Y, Zheng J W, et al.  Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44.   doi: 10.1016/j.apsoil.2013.05.003
[13] Dempster D N, Gleeson D B, Soliman Z M, et al.  Decreased soil microbial biomass and nitrogen mineralization with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354(1–2): 311-324.
[14] 王洪媛, 盖霞普, 翟丽梅, 等.  生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19): 5998-6011.
[15] Hao M M, Hu H Y, Liu Z, et al.  Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning[J]. Applied Soil Ecology, 2019, 136: 43-54.   doi: 10.1016/j.apsoil.2018.12.016
[16]

鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2007.

Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2007.

[17] 王义祥, 黄毅斌, 叶菁, 等.  水保措施对油桃园土壤有机碳库及其组分的影响[J]. 农业环境科学学报, 2014, 33(4): 803-809.   doi: 10.11654/jaes.2014.04.027
[18] Carrier M, Hardie A G, Uras Ü, et al.  Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar[J]. Journal of Analytical & Applied Pyrolysis, 2012, 96(3): 24-32.
[19] 郑慧芬, 吴红, 翁伯琦, 等.  施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料, 2019, (2): 68-74.
[20] Dai Z M, Zhang X J, Tang C, et al.  Potential role of biochars in decreasing soil acidification – A critical review[J]. Science of the Total Environment, 2017, 581–582: 601-611.
[21] Shi R Y, Ni N, Nkoh J N, et al.  Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification[J]. Chemosphere, 2019, 234: 43-51.   doi: 10.1016/j.chemosphere.2019.06.030
[22] Silveira M L A.  Dissolved organic carbon and bioavailability of N and P as indicators of soil quality[J]. Scientia Agricola, 2005, 62(5): 502-508.   doi: 10.1590/S0103-90162005000500017
[23] Qu X L, Fu H Y, Mao J D, et al.  Chemical and structural properties of dissolved black carbon released from biochars[J]. Carbon, 2016, 96: 759-767.   doi: 10.1016/j.carbon.2015.09.106
[24] De Wit H A, Groseth T, Mulder J.  Predicting aluminum and soil organic matter solubility using the mechanistic equilibrium model WHAM[J]. Soil Science Society of America Journal, 2001, 65(4): 1089-1100.   doi: 10.2136/sssaj2001.6541089x
[25] 刘杰云, 邱虎森, 汤宏, 等.  生物质炭对双季稻水稻土微生物生物量碳、氮及可溶性有机碳氮的影响[J]. 环境科学, 2019, 40(8): 3799-3807.
[26] Demisie W, Zhang W.  Effect of biochar application on microbial biomass and enzymatic activities in degraded red soil[J]. African Journal of Agricultural Research, 2015, 10(8): 755-766.   doi: 10.5897/AJAR2013.8209
[27] Warnock D D, Lehmann J, Kuyper T W, et al.  Mycorrhizal responses to biochar in soil—concepts and mechanisms[J]. Plant and Soil, 2007, 300(1/2): 9-20.
[28] Muhammad N, Dai Z M, Xiao K C, et al.  Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties[J]. Geoderma, 2014, 226/227: 270-278.   doi: 10.1016/j.geoderma.2014.01.023
[29] 周凤, 耿增超, 许晨阳, 等.  生物炭用量对土微生物量及碳源代谢活性的影响[J]. 植物营养与肥料学报, 2019, 25(8): 1277-1289.   doi: 10.11674/zwyf.18276
[30] 王海斌, 陈晓婷, 丁力, 等.  土壤酸度对茶树根际土壤微生物群落多样性影响[J]. 热带作物学报, 2018, 39(3): 448-454.   doi: 10.3969/j.issn.1000-2561.2018.03.007
[31] Lehmann J, Rillig M C, Thies J, et al.  Biochar effects on soil biota: A review[J]. Soil Biology & Biochemistry, 2011, 43(9): 1812-1836.
[32] Sait M, Davis K E R, Janssen P H.  Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil[J]. Applied and Environmental Microbiology, 2006, 72: 1852-1857.   doi: 10.1128/AEM.72.3.1852-1857.2006
[33] Griffiths R I, Thomson B C, James P, et al.  The bacterial biogeography of British soils[J]. Environmental Microbiology, 2011, 13: 1642-1654.   doi: 10.1111/j.1462-2920.2011.02480.x
[34] Lauber C L, Strickland M S, Bradford M A, et al.  The influence of soil properties on the structure of bacterial and fungal communities across land–use types[J]. Soil Biology and Biochemistry, 2008, 40: 2407-2415.
[35] You J, Das A, Dolan E M, et al.  Ammonia–oxidizing archaea involved in nitrogen removal[J]. Water Research, 2009, 43: 1801-1809.   doi: 10.1016/j.watres.2009.01.016
[36] Chen L J, Jiang Y J, Liang C, et al.  Competitive interaction with keystone taxa induced negative priming under biochar amendments[J]. Microbiome, 2019, 7(1): 77-.   doi: 10.1186/s40168-019-0693-7
[37] 杨尚东, 郭霜, 任奎喻, 等.  甘蔗宿根矮化病感病与非感病株根际土壤生物学性状及细菌群落结构特征[J]. 植物营养与肥料学报, 2019, 25(6): 910-916.   doi: 10.11674/zwyf.18484
[38] 赵晓楠, 李玉红, 芦阿虔, 等.  有机肥不同施肥量对茶园土壤微生物区系的影响[J]. 江苏农业科学, 2018, 46(24): 311-314.
[39]

刘雯雯. 喀斯特植被恢复不同阶段土壤微生物组成及氮磷土壤酶对生境响应[D]. 贵州: 贵州大学硕士学位论文, 2019.

Liu W W. Soil microbial composition and response of nitrogen and phosphorus soil enzymes to habitat in different stages of karst vegetation restoration[D]. Guizhou: MS Thesis of Guizhou University, 2019.