[1] Fowler D, Coyle M, Skiba U, et al.  The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B–Biological Sciences, 2013, 368: 20130164: -.   doi: 10.1098/rstb.2013.0164
[2] Erisman J W, Sutton M A, Galloway J, et al.  How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639.   doi: 10.1038/ngeo325
[3] 马洪斌, 李晓欣, 胡春胜.  中国地下水硝态氮污染现状研究[J]. 土壤通报, 2012, 43(6): 1532-1536.
[4] Smeets E M W, Bouwman L F, Stehfest E, et al.  Contribution of N2O to the greenhouse gas balance of first-generation biofuels[J]. Global Change Biology, 2009, 15(1): 1-23.   doi: 10.1111/j.1365-2486.2008.01704.x
[5] Hattori S, Palma Y N, Itoh Y, et al.  Isotopic evidence for seasonality of microbial internal nitrogen cycles in a temperate forested catchment with heavy snowfall[J]. Science of the Total Environment, 2019, 690: 290-299.   doi: 10.1016/j.scitotenv.2019.06.507
[6] 林伟, 房福力, 张薇, 等.  稳定同位素技术在土壤N2O溯源研究中的应用[J]. 应用生态学报, 2017, 28(7): 2344-2352.
[7] Stein L Y, Klotz M G.  The nitrogen cycle[J]. Current Biology, 2016, 26(3): R94-R98.   doi: 10.1016/j.cub.2015.12.021

Gordillo-Vázquez F J, Pérez-Invernón F J, Huntrieser H, et al. Global chemical influence of lightning with CAM5: Comparison of lightning schemes with observations[A]. EGU. Geophysical Research Abstracts[C]. 2019.

[9] Vitousek P M, Menge D N L, Reed S C, et al.  Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems[J]. Philosophical Transactions of the Royal Society B–Biological Sciences, 2013, 368: 20130119: -.   doi: 10.1098/rstb.2013.0119
[10] Canfield D E, Glazer A N, Falkowski P G.  The evolution and future of earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196.   doi: 10.1126/science.1186120
[11] Sutton M A, Reis S, Riddick S N, et al.  Towards a climate-dependent paradigm of ammonia emission and deposition[J]. Philosophical Transactions of the Royal Society B–Biological Sciences, 2013, 368:20130166: -.   doi: 10.1098/rstb.2013.0166
[12] Voss M, Bange H W, Dippner J W, et al.  The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change[J]. Philosophical Transactions of the Royal Society B–Biological Sciences, 2013, 368: 20130121: -.   doi: 10.1098/rstb.2013.0121
[13] Ganzeveld L N, Lelieveld J, Dentener F J, et al.  Global soil-biogenic NOx emissions and the role of canopy processes[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D16): 1-9.
[14] Van V D P, Bouwman L F, Smith S J, et al.  Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature[J]. Current Opinion in Environmental Sustainability, 2011, 3(5): 359-369.   doi: 10.1016/j.cosust.2011.08.014
[15] Stevenson D S, Dentener F J, Schultz M G, et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone[J]. Journal of Geophysical Research: Atmospheres, 2006, : 111: D08301-.   doi: 10.1029/2005JD006338
[16] Brasseur G P, Schultz M, Granier C, et al.  Impact of climate change on the future chemical composition of the global troposphere[J]. Journal of Climate, 2006, 19(16): 3932-3951.   doi: 10.1175/JCLI3832.1
[17] Gruber N, Galloway J N.  An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296.   doi: 10.1038/nature06592

Sarkadi L S. Effects of fertilizer on food supply [A]. Chemistry’s role in food production and sustainability: past and present[M]. American Chemical Society, 2019.127–143.

[19] Duce R A, LaRoche J, Altieri K, et al.  Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5878): 893-897.   doi: 10.1126/science.1150369
[20] Toyoda S, Yoshida N, Koba K.  Isotopocule analysis of biologically produced nitrous oxide in various environments[J]. Mass Spectrometry Reviews, 2017, 36: 135-160.   doi: 10.1002/mas.21459
[21] Ibraim E, Wolf B, Harris E, et al.  Attribution of N2O sources in a grassland soil with laser spectroscopy based isotopocule analysis[J]. Biogeosciences, 2019, 16: 3247-3266.   doi: 10.5194/bg-16-3247-2019
[22] Maeda K, Toyoda S, Philippot L, et al.  Relative contribution of nirK-and nirS-bacterial denitrifiers as well as fungal denitrifiers to nitrous oxide production from dairy manure compost[J]. Environmental Science Technology, 2017, 51: 14083-14091.   doi: 10.1021/acs.est.7b04017
[23] Kuypers M M, Marchant H K, Kartal B.  The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276.   doi: 10.1038/nrmicro.2018.9
[24] Denk T R A, Mohn J, Decock C, et al.  The nitrogen cycle: A review of isotope effects and isotope modeling approaches[J]. Soil Biology and Biochemistry, 2017, 105: 121-137.   doi: 10.1016/j.soilbio.2016.11.015
[25] McRose D L, Zhang X, Kraepiel A M L, et al.  Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments[J]. Frontiers in Microbiology, 2017, 8: 267-.   doi: 10.3389/fmicb.2017.00267
[26] Zehr J P, Jenkins B D, Short S M, et al.  Nitrogenase gene diversity and microbial community structure: a cross‐system comparison[J]. Environmental Microbiology, 2003, 5(7): 539-554.   doi: 10.1046/j.1462-2920.2003.00451.x
[27] Bauersachs T, Schouten S, Compaoré J, et al.  Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria[J]. Limnology and Oceanography, 2009, 54(4): 1403-1411.   doi: 10.4319/lo.2009.54.4.1403
[28] Zhang X N, Sigman D M, Morel F M, et al.  Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia[J]. Proceedings of the National Academy of Sciences, 2014, 111(13): 4782-4787.   doi: 10.1073/pnas.1402976111
[29] Minagawa M, Wada E.  Nitrogen isotope ratios of red tide organisms in the east China Sea: a characterization of biological nitrogen fixation[J]. Marine Chemistry, 1986, 19(3): 245-259.   doi: 10.1016/0304-4203(86)90026-5
[30] Pjevac P, Schauberger C, Poghosyan L, et al.  AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017, 8: 1-11.
[31] Simon J, Klotz M G.  Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations[J]. Biochimica et Biophysica Acta (BBA)–Bioenergetics, 2013, 1827(2): 114-135.   doi: 10.1016/j.bbabio.2012.07.005
[32] Arp D J, Stein L Y.  Metabolism of inorganic N compounds by ammonia-oxidizing bacteria[J]. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38: 471-495.   doi: 10.1080/10409230390267446
[33] Kobayashi K, Makabe A, Yano M, et al.  Dual nitrogen and oxygen isotope fractionation during anaerobic ammonium oxidation by anammox bacteria[J]. The ISME Journal, 2019, 13(10): 2426-2436.   doi: 10.1038/s41396-019-0440-x
[34] Schweiger P F.  Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder[J]. Journal of Plant Physiology, 2016, 205: 84-92.   doi: 10.1016/j.jplph.2016.08.004
[35] Daims H, Lücker S, Michael W.  A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712.   doi: 10.1016/j.tim.2016.05.004
[36] Griffin B M, Schott J, Schink B.  Nitrite, an electron donor for anoxygenic photosynthesis[J]. Science, 2007, 316: 1870-.   doi: 10.1126/science.1139478
[37] Schott J, Griffin B M Schink B.  Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17[J]. Microbiology, 2010, 156: 2428-2437.   doi: 10.1099/mic.0.036004-0
[38] Strous M, Pelletier E, Mangenot S, et al.  Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature, 2006, 440(7085): 790-794.   doi: 10.1038/nature04647
[39] Casciotti K L.  Inverse kinetic isotope fractionation during bacterial nitrite oxidation[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2061-2076.   doi: 10.1016/j.gca.2008.12.022
[40] Mandernack K W, Mills C T, Johnson C A, et al.  The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria[J]. Chemical Geology, 2009, 267(1−2): 96-107.   doi: 10.1016/j.chemgeo.2009.06.008
[41] Sutka R L, Ostrom N E, Ostrom P H, et al.  Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances[J]. Applied and Environmental Microbiology, 2006, 72(1): 638-644.   doi: 10.1128/AEM.72.1.638-644.2006
[42] Pérez T, Garcia-Montiel D, Trumbore S, et al.  Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils[J]. Ecological Applications, 2006, 16(6): 2153-2167.   doi: 10.1890/1051-0761(2006)016[2153:NONADN]2.0.CO;2
[43] Heil J, Wolf B, Brüggemann N, et al.  Site-specific 15N isotopic signatures of abiotically produced N2O[J]. Geochimica et Cosmochimica Acta, 2014, 139: 72-82.   doi: 10.1016/j.gca.2014.04.037
[44] Butala N S, Falkinham J O.  Nitrate and nitrite reductase activities of Mycobacterium avium[J]. International Journal of Mycobacteriology, 2018, 7(4): 328-331.   doi: 10.4103/ijmy.ijmy_118_18
[45] Philippot L, Hallin S, Schloter M.  Ecology of denitrifying prokaryotes in agricultural soil[J]. Advances in Agronomy, 2007, 96: 249-305.   doi: 10.1016/S0065-2113(07)96003-4

Rohe L. Nitrous oxide from fungal denitrification–pure culture and soil studies using stable isotope and microbial inhibitor approaches[D]. Göttingen: PhD Dissertation of Georg August Universität Göttingen, 2014.

[47] Lewicka Szczebak D, Well R, Bol R, et al.  Isotope fractionation factors controlling isotopocule signatures of soil-emitted N2O produced by denitrification processes of various rates[J]. Rapid Communications in Mass Spectrometry, 2015, 29(3): 269-282.   doi: 10.1002/rcm.7102
[48] Phillips R, Grelet G, McMillan A, et al.  Fungal denitrification: Bipolaris sorokiniana exclusively denitrifies inorganic nitrogen in the presence and absence of oxygen[J]. FEMS Microbiology Letters, 2016, 363(4): fnw007-.   doi: 10.1093/femsle/fnw007
[49] Toyoda S, Mutobe H, Yamagishi H, et al.  Fractionation of N2O isotopomers during production by denitrifier[J]. Soil Biology and Biochemistry, 2005, 37(8): 1535-1545.   doi: 10.1016/j.soilbio.2005.01.009
[50] Well R, Eschenbach W, Flessa H, et al.  Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers?[J]. Geochimica et Cosmochimica Acta, 2012, 90: 265-282.   doi: 10.1016/j.gca.2012.04.045
[51] Graf D R H, Jones C M, Hallin S.  Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions[J]. PLoS ONE, 2014, 9(12): e114118-.   doi: 10.1371/journal.pone.0114118
[52] Sutka R L, Ostrom N E, Ostrom P H, et al.  Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath[J]. Rapid Communications in Mass Spectrometry, 2003, 17(7): 738-745.   doi: 10.1002/rcm.968
[53] Saraiva L M, Vicente J B, Teixeira M.  The role of the flavodiiron proteins in microbial nitric oxide detoxification[J]. Advances in Microbial Physiology, 2004, 49: 77-129.   doi: 10.1016/S0065-2911(04)49002-X
[54] Yang H, Gandhi H, Ostrom N E, et al.  Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N2O[J]. Environmental Science & Technology, 2014, 48(18): 10707-10715.
[55] Zumft W G, Kroneck P M H.  Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea[J]. Advances in Microbial Physiology, 2006, 52: 107-227.   doi: 10.1016/S0065-2911(06)52003-X
[56] Ostrom N E, Pitt A, Sutka R, et al.  Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112: G02005-.   doi: 10.1029/2006JG000287
[57] Maia L B, Moura J J G.  How biology handles nitrite[J]. Chemical Reviews, 2014, 114(10): 5273-5357.   doi: 10.1021/cr400518y
[58] Einsle O, Messerschmidt A, Stach P, et al.  Structure of cytochrome c nitrite reductase[J]. Nature, 1999, 400(6743): 476-480.   doi: 10.1038/22802
[59] Mobius J.  Isotope fractionation during nitrogen remineralization (ammoni-fication): implications for nitrogen isotope biogeochemistry[J]. Geochimica et Cosmochimica Acta, 2013, 105: 422-432.   doi: 10.1016/j.gca.2012.11.048
[60] Kartal B, Keltjens J T.  Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1011.   doi: 10.1016/j.tibs.2016.08.015
[61] Maalcke W J, Reimann J, De V S, et al.  Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle[J]. Journal of Biological Chemistry, 2016, 291(33): 17077-17092.   doi: 10.1074/jbc.M116.735530
[62] Wu D, Köster J R, Cárdenas L M, et al.  N2O source partitioning in soils using 15N site preference values corrected for the N2O reduction effect[J]. Rapid Communications in Mass Spectrometry, 2016, 30(5): 620-626.   doi: 10.1002/rcm.7493
[63] 林伟, 丁军军, 李玉中, 等.  有机肥和无机肥对菜地土壤N2O排放及其来源的影响[J]. 应用生态学报, 2018, 29(5): 1470-1478.
[64] 林伟, 张薇, 李玉中, 等.  有机肥与无机肥配施对菜地土壤N2O排放及其来源的影响[J]. 农业工程学报, 2016, 32(19): 148-153.   doi: 10.11975/j.issn.1002-6819.2016.19.021
[65] Lin W, Ding J J, Li Y Z, et al.  Partitioning of sources of N2O from soil treated with different types of fertilizers by the acetylene inhibition method and stable isotope analysis[J]. European Journal of Soil Science, 2019, 70(5): 1037-1048.
[66] Toyoda S, Yano M, Nishimura S I, et al.  Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis[J]. Global Biogeochemical Cycles, 2011, 25: GB2008-.   doi: 10.1029/2009GB003769
[67] Jung M Y, Well R, Min D, et al.  Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils[J]. The ISME Journal, 2014, 8(5): 1115-1125.   doi: 10.1038/ismej.2013.205
[68] Rohe L, Anderson T H, Braker G, et al.  Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification–a pure culture study[J]. Rapid Communications in Mass Spectrometry, 2014, 28(17): 1893-1903.   doi: 10.1002/rcm.6975
[69] Frame C H, Casciotti K L.  Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium[J]. Biogeosciences, 2010, 7: 2695-2709.