[1] 曹慧, 杨浩, 孙波, 等.  不同种植时间菜园土壤微生物生物量和酶活性变化特征[J]. 土壤, 2002, (4): 197-200.   doi: 10.3321/j.issn:0253-9829.2002.04.005
Cao H, Yang H, Sun B, et al.  Changes of microbial biomass and enzyme activity in vegetable garden soil at different planting times[J]. Soils, 2002, (4): 197-200.   doi: 10.3321/j.issn:0253-9829.2002.04.005
[2]

Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil[A]. Wilson J R. Advances in nitrogen cycling in agricultural ecosystems[M]. Wallingford, England: CAB International, 1988. 368–386.

[3] 俞慎, 李振高.  熏蒸提取法测定土壤微生物量研究进展[J]. 土壤学进展, 1994, 22(6): 42-50.
Yu S, Li Z G.  Research progress on the determination of soil microbial biomass by fumigation[J]. Advance in Soil Science, 1994, 22(6): 42-50.
[4] 胡婵娟, 刘国华, 吴雅琼.  土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(Z1): 1161-1167.
Hu C J, Liu G H, Wu Y Q.  Evaluation of soil microbial biomass and diversity[J]. Journal of Ecological Environment, 2011, 20(Z1): 1161-1167.
[5] 王淑英, 樊廷录, 丁宁平, 等.  长期施肥下黄土旱塬黑垆土供氮能力的变化[J]. 植物营养与肥料学报, 2015, 21(6): 1487-1495.
Wang S Y, Fan T L, Ding N P, et al.  Changes of nitrogen supply capacity in Loess Plateau under long-term fertilization in loessial soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1487-1495.
[6] 黄运湘, 王改兰, 冯跃华, 等.  长期定位试验条件下红壤性水稻土有机质的变化[J]. 土壤通报, 2005, (2): 181-184.   doi: 10.3321/j.issn:0564-3945.2005.02.009
Huang Y X, Wang G L, Feng Y H, et al.  Changes of organic matter in paddy soil derived from red soil in a long-term located experiment[J]. Journal of Soil Science, 2005, (2): 181-184.   doi: 10.3321/j.issn:0564-3945.2005.02.009
[7] 任仲杰, 顾孟迪.  我国农作物秸秆综合利用与循环经济[J]. 安徽农业科学, 2005, (11): 2105-2106.   doi: 10.3969/j.issn.0517-6611.2005.11.064
Ren Z J, Gu M D.  The comprehensive utilization and circulation economy of crop straw in China[J]. Journal of Anhui Agricultural Science, 2005, (11): 2105-2106.   doi: 10.3969/j.issn.0517-6611.2005.11.064
[8] Georgieva S, Christensen S, Petersen H, et al.  Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots[J]. Soil Biology and Biochemistry, 2005, 37(6): 1145-1155.   doi: 10.1016/j.soilbio.2004.11.012
[9] Yanni S F, Whalen J K, Simpson M J, et al.  Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues[J]. Soil Biology and Biochemistry, 2011, 43(1): 63-69.   doi: 10.1016/j.soilbio.2010.09.012
[10] Moritsuka N, Yanai J, Mori K, et al.  Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface[J]. Soil Biology and Biochemistry, 2004, 36(7): 1141-1148.   doi: 10.1016/j.soilbio.2004.02.024
[11] Parr J F, Parkinson D, Norman A G.  A glass micro-bead system for the investigation of soil microoganisms[J]. Nature, 1963, (200): 1227-1288.
[12] Henriksen T M, Breland T A.  Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999, 31(8): 1121-1134.   doi: 10.1016/S0038-0717(99)00030-9
[13] Shaukat A A, Tian X H, Wang D, et al.  Decomposition characteristic of maize straw with different carbon to nitrogen (C/N) ratios under various moisture regimes[J]. African Journal of Biotechnology, 2011, 10(50): 10149-10156.   doi: 10.5897/AJB
[14] 张丹, 付斌, 胡万里, 等.  秸秆还田提高水稻–油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报, 2017, 33(9): 133-140.
Zhang D, Fu B, Hu W L, et al.  Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 133-140.
[15] 唐晓雪, 刘明, 江春玉, 等.  不同秸秆还田方式对红壤性质及花生生长的影响[J]. 土壤, 2015, 47(2): 324-328.
Tang X X, Liu M, Jiang C Y, et al.  Effects of different ways of straw retuning on red soil properties and peanut growth[J]. Soils, 2015, 47(2): 324-328.
[16] 孔宏敏, 何圆球, 吴大付, 等.  长期施肥对红壤旱地作物产量和土壤肥力的影响[J]. 应用生态学报, 2004, (5): 782-786.   doi: 10.3321/j.issn:1001-9332.2004.05.010
Kong H M, He Y Q, Wu D F, et al.  Effect of long-term fertilization on crop yield and soil fertility of upland red soil[J]. Chinese Journal of Applied Ecology, 2004, (5): 782-786.   doi: 10.3321/j.issn:1001-9332.2004.05.010
[17] 林心雄, 吴顺龄, 车玉萍.  干旱和半干润地区测定有机物分解速率的尼龙袋法[J]. 土壤, 1992, (6): 315-318.
Lin X X, Wu S L, Che Y P.  Nylon bag method for determining the decomposition rate of organic matter in arid and semi dry areas[J]. Soils, 1992, (6): 315-318.
[18] 林心雄, 文启孝, 徐宁.  广州地区土壤中植物残体的分解速率[J]. 土壤学报, 1985, 22(1): 47-56.
Lin X X, Wen Q X, Xu N.  Study on decomposition of plant residual in soils of Guangzhou and Wuxi[J]. Acta Pedologica Sinica, 1985, 22(1): 47-56.
[19]

鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. 128–129.

Lu R K. Analysis methods of soil and agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press. 2000. 128–129.

[20] Jenkinson D S, Powlson D S.  The effects of biocidal treatments on metabolism in soil—V: A method for measuring soil biomass[J]. Soil Biology and Biochemistry, 1976, 8(3): 167-177.   doi: 10.1016/0038-0717(76)90001-8
[21] Vance E D, Brookes P C, Jenkinson D C.  An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707.   doi: 10.1016/0038-0717(87)90052-6
[22] Brookes P C, Landman A, Pruden G, et al.  Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837-842.   doi: 10.1016/0038-0717(85)90144-0
[23] 李世清, 李生秀.  有机物料和氮肥相互作用对微生物体氮的影响[J]. 微生物学通报, 2000, 27(3): 157-163.   doi: 10.3969/j.issn.0253-2654.2000.03.001
Li S Q, Li S X.  Interaction between organic material and nitrogen fertilizer on microbial biomass nitrogen[J]. Microbiology China, 2000, 27(3): 157-163.   doi: 10.3969/j.issn.0253-2654.2000.03.001
[24] AndeCKon J P E, Domsch K H.  Quantities of plant nutrients in the microbial biomass of selected soils[J]. Soil Science, 2006, 130(4): 211-216.
[25] 杨滨娟, 黄国勤, 钱海燕.  秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响[J]. 土壤学报, 2014, 51(1): 150-157.
Yang B J, Huang G Q, Qian H Y.  Effect of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities[J]. Acta Pedologica Sinica, 2014, 51(1): 150-157.
[26] 臧逸飞, 郝明德, 张丽琼, 等.  26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响[J]. 生态学报, 2015, 35(5): 1445-1451.
Zang Y F, Hao M D, Zhang L Q, et al.  Effect of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years[J]. Acta Ecologica Sinica, 2015, 35(5): 1445-1451.
[27] 李君, 刘涛, 褚贵新.  脲酶抑制剂对石灰性土壤尿素转化及N2O排放的影响[J]. 农业环境科学学报, 2014, 33(9): 1866-1872.
Li J, Liu T, Chu G X.  Response of urea transformation dynamics and nitrous oxide to three urea inhibitors in calcareous soil[J]. Journal of Agro-Environment Science, 2014, 33(9): 1866-1872.
[28] Dilly O, Bloem J, Vos A, et al.  Bacterial diversity in agricultural soils during litter decomposition[J]. Applied and Environmental Microbiology, 2004, 70: 468-474.   doi: 10.1128/AEM.70.1.468-474.2004
[29] 张伟东, 汪思龙, 颜绍馗, 等.  杉木根系和凋落物对土壤微生物学性质的影响[J]. 应用生态学报, 2009, (10): 2345-2350.
Zhang W D, Wang S L, Yan S K, et al.  Effects of root system and litter of Chinese fir on soil microbial properties[J]. Chinese Journal of Applied Ecology, 2009, (10): 2345-2350.
[30] Sparing G P.  Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Australian Journal of Soil Research, 1992, 30(2): 195-207.   doi: 10.1071/SR9920195
[31] 蔡晓布, 钱成, 张元, 等.  西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J]. 应用生态学报, 2004, (3): 463-468.   doi: 10.3321/j.issn:1001-9332.2004.03.021
Cai X B, Qian C, Zhang Y, et al.  Microbial characteristics of straw amended degraded soils in central Tibet and its effect on soil fertility[J]. Chinese Journal of Applied Ecology, 2004, (3): 463-468.   doi: 10.3321/j.issn:1001-9332.2004.03.021
[32] Vries F T D, Hoffland E, Eekeren N V, et al.  Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biology and Biochemistry, 2006, 38(8): 2092-2103.   doi: 10.1016/j.soilbio.2006.01.008
[33] 王慧颖, 徐明岗, 周宝库, 等.  黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素[J]. 中国农业科学, 2018, 51(5): 914-925.
Wang H Y, Xu M G, Zhou B K, et al.  Response and driving factors of bacterial and fungal community to long-term fertilization in black soil[J]. Scientia Agricultura Sinica, 2018, 51(5): 914-925.