[1] Cai H, Ma W, Zhang X, et al.  Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize[J]. The Crop Journal, 2014, 2(5): 297-307.   doi: 10.1016/j.cj.2014.04.006
[2] Wang H, Guo Z, Shi Y, et al.  Impact of tillage practices on nitrogen accumulation and translocation in wheat and soil nitrate–nitrogen leaching in drylands[J]. Soil & Tillage Research, 2015, 153: 20-27.
[3] Zhai L, Xu P, Zhang Z, et al.  Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate[J]. Agronomy Journal, 2019, 111(2): 666-676.   doi: 10.2134/agronj2018.05.0347
[4] Shahzad M, Farooq M, Jabran K, et al.  Influence of various tillage practices on soil physical properties and wheat performance in different wheat-based cropping systems[J]. International Journal of Agriculture & Biology, 2016, 18(4): 821-829.
[5] Wasaya A, Tahir M, Manaf A, et al.  Improving maize productivity through tillage and nitrogen management[J]. African Journal of Biotechnology, 2011, 10(82): 19025-19034.
[6] Shukla S K, Yadav R L, Gupta R, et al.  Deep tillage, soil moisture regime, and optimizing N nutrition for sustaining soil health and sugarcane yield in subtropical India[J]. Communications in Soil Science & Plant Analysis, 2018, 49(4): 444-462.
[7] 韦本辉.  旱地作物粉垄栽培技术研究简报[J]. 中国农业科学, 2010, 43(20): 4330-.
[8] Wei B H.  Discussion on the construction of green agriculture “3+1” industry system using Fenlong activated resources[J]. Agriculture Science and Technology, 2017, 18(2): 380-384.
[9] Wei B H.  Discussion on green development of Fenlong for yield increase, quality enhancing, water retaining and multiple use of natural resources[J]. Agriculture Science and Technology, 2017, 18(9): 1631-1637.
[10] Wei B H.  Fenlong cultivation—the fourth set of farming methods invented in China[J]. Agriculture Science and Technology, 2017, 18(11): 2045-2048.
[11] 韦本辉, 甘秀芹, 刘斌, 申章佑.  粉垄具“耕地水库”可破广西甘蔗单产偏低困局[J]. 广西农学报, 2012, 27(3): 48-50.   doi: 10.3969/j.issn.1003-4374.2012.03.014
[12] 王奇, 陈培赛, 周佳, 等.  粉垄耕作对甘蔗农艺性状及产量的影响[J]. 江苏农业科学, 2019, 47(4): 65-68.
[13] 王世佳, 蒋代华, 朱文国, 等.  粉垄耕作对农田赤红壤团聚体结构的影响[J]. 土壤学报, 2020, 57(2): 326-335.
[14] 韦本辉, 刘斌, 甘秀芹, 等.  粉垄栽培对水稻产量和品质的影响[J]. 中国农业科学, 2012, 45(19): 3946-3954.
[15] 李轶冰, 逄焕成, 李华, 等.  粉垄耕作对黄淮海北部春玉米籽粒灌浆及产量的影响[J]. 中国农业科学., 2013, 46(14): 3055-3064.
[16] 聂胜委, 张玉亭, 张巧萍, 等.  粉垄耕作对小麦玉米产量及耕层土壤养分的影响[J]. 土壤通报, 2017, 48(4): 930-936.
[17] 韦本辉, 甘秀芹, 申章佑, 等.  粉垄栽培甘蔗试验增产效果[J]. 中国农业科学, 2011, 44(21): 4544-4550.
[18] 韦增林, 张亮曼, 卢国培, 等.  粉垄栽培对甘蔗产量及糖分影响初报[J]. 甘蔗糖业, 2018, (6): 37-40.   doi: 10.3969/j.issn.1005-9695.2018.06.008
[19] Almaliotis D, Therios I, Karatassiou M.  Effects of nitrogen fertilization on growth, leaf nutrient concentration and photosynthesis in three peach cultivars[J]. Acta Horticulturae, 1997, 449: 529-534.
[20] Ványiné A S.  Effect of nitrogen doses on the chlorophyll concentration, yield and protein content of different genotype maize hybrids in Hungary[J]. African Journal of Agricultural Research, 2012, 7(16): 2546-2552.
[21] Halvorson A D, Mosier A R, Reule C A, Bausch W C.  Nitrogen and tillage effects on irrigated continuous corn yields[J]. Agronomy Journal, 2006, 98(1): 63-71.   doi: 10.2134/agronj2005.0174
[22] López-Bellido R J, López-Bellido L.  Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and N fertilization[J]. Field Crops Research, 2001, 71(1): 31-46.   doi: 10.1016/S0378-4290(01)00146-0
[23] Otto R, Silva A P, Franco H C J, et al.  High soil penetration resistance reduces sugarcane root system development[J]. Soil & Tillage Research, 2011, 117: 201-210.
[24]

鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000.

Bao S D. Soil agrochemical analysis (3rd edition)[M]. Beijing: China Agriculture Press, 2000.

[25]

高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.

Gao J F. Plant physiology experiment guide[M]. Beijing: Higher Education Press, 2006.

[26]

叶尚红. 植物生理生化实验教程(第二版)[M]. 昆明: 云南科技出版社, 2007: 212.

Ye S H. Plant physiology and biochemistry experiment course (2nd edition)[M]. Kunming, Yunnan: Yunnan Science and Technology Press, 2007, 212.

[27]

侯雪坤. 不同耕作方式下土壤耕层理化性状和生物学特性时空分布研究[D]. 黑龙江齐齐哈尔: 黑龙江八一农垦大学博士学位论文, 2011.

Hou X K. Spatial-temporal distribution of soil physiochemical and biological properties in the cultivated layer under different tillage systems[D]. Qiqihar, Heilongjiang: PhD Dissertation of Heilongjiang Bayi Agricultural University, 2011.

[28]

郑洪兵. 耕作方式对土壤环境及玉米生长发育的影响[D]. 沈阳: 沈阳农业大学博士学位论文, 2018.

Zheng H B. Effects of tillage methods on the soil properties and maize growth[D]. Shenyang: PhD Dissertation of Shenyang Agricultural University, 2018.

[29] 曾可, 徐世宏, 韦善清, 江立庚.  土壤耕作和水分管理对水稻土壤肥力性状的影响[J]. 中国农学通报, 2010, 26(23): 234-237.
[30] 韦本辉, 甘秀芹, 陈保善, 等.  农耕新方法粉垄整地土壤速效养分研究[J]. 广东农业科学, 2011, 38(17): 42-45.   doi: 10.3969/j.issn.1004-874X.2011.17.016
[31] 王世佳, 韦本辉, 申章佑, 等.  粉垄耕作对农田砂姜黑土土壤结构的影响[J]. 安徽农业科学, 2019, 47(20): 76-79.   doi: 10.3969/j.issn.0517-6611.2019.20.020
[32] 陈晓冰, 严磊, 陈廷速, 等.  西南岩溶区粉垄耕作和免耕方式下甘蔗地土壤优先流特征[J]. 水土保持学报., 2018, 32(4): 58-66.
[33] 徐正进, 陈温福, 张龙步, 等.  水稻穗颈维管束性状的类型间差异及其遗传的研究[J]. 作物学报, 1996, 22(2): 167-172.   doi: 10.3321/j.issn:0496-3490.1996.02.008
[34] Li Y L, Zhang Y L, Hu J, Shen Q R.  Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition[J]. Biology & Fertility of Soils, 2007, 43(4): 417-425.
[35] Briones A M, Okabe S, Umemiya Y, et al.  Ammonia-oxidizing bacteria on root bio-films and their possible contribution to N use efficiency of different rice cultivars[J]. Plant and Soil, 2003, 250(2): 335-348.   doi: 10.1023/A:1022897621223
[36] 潘春香, 肖艳辉, 何金明, 王玉珍.  施氮水平对枇杷幼苗生长及根初生维管组织的影响[J]. 广东农业科学, 2011, 38(13): 6-8.   doi: 10.3969/j.issn.1004-874X.2011.13.002
[37] 朱天琦, 刘晓静, 张晓玲.  氮营养调控对紫花苜蓿根系形态及其解剖结构的影响[J]. 草地学报, 2016, 24(6): 1290-1295.   doi: 10.11733/j.issn.1007-0435.2016.06.020
[38] 陈阳, 孙华山, 金一锋, 等.  氮素调控对草地早熟禾解剖结构及组织碳氮含量的影响[J]. 草原与草坪, 2018, 38(4): 35-40.   doi: 10.3969/j.issn.1009-5500.2018.04.005
[39] Guan D, Al-Kaisi M M, Zhang Y, et al.  Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize[J]. Field Crops Research, 2014, 157: 89-97.   doi: 10.1016/j.fcr.2013.12.015
[40] 谭秦亮, 朱鹏锦, 程琴, 等.  不同甘蔗品种(系)的产量构成因素及品质比较[J]. 作物杂志, 2019, (3): 49-54.
[41] 金容, 郭萍, 周芳, 等.  控释氮肥比例对玉米氮代谢关键酶活性及干物质积累的影响[J]. 四川农业大学学报, 2018, 36(6): 729-736.
[42] Lawlor D W.  Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems[J]. Journal of Experimental Botany, 2002, 53(370): 773-787.   doi: 10.1093/jexbot/53.370.773
[43] 孙永健, 孙园园, 李旭毅, 等.  水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J]. 作物学报, 2009, 35(11): 2055-2063.
[44]

胡霭堂, 陆景陵. 植物营养学(第二版)[M]. 北京: 中国农业大学出版社, 2003.

Hu A T, Lu J L. Plant nutrition (2nd edition)[M]. Beijing: China Agricultural University Press, 2003.

[45] Lam H M, Coschigano K T, Oliveira I C, et al.  The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1996, 47(4): 569-593.
[46] 刘淑云, 董树亭, 赵秉强, 等.  长期施肥对夏玉米叶片氮代谢关键酶活性的影响[J]. 作物学报, 2007, 33(2): 278-283.   doi: 10.3321/j.issn:0496-3490.2007.02.016
[47] 汪和廷, 董慧, 齐龙昌, 等.  种植方式及施氮量对水稻灌浆初期氮代谢关键酶活性和产量性状的影响[J]. 中国生态农业学报, 2015, 23(9): 1201-1214.
[48] 从夕汉, 施伏芝, 阮新民, 等.  施氮量对不同品种水稻氮素利用及碳氮代谢关键酶的影响[J]. 河南农业大学学报, 2019, 53(3): 325-330.
[49] 高青海, 王亚坤, 陆晓民, 苗永美.  作物秸秆对黄瓜衰老中根系活力和叶片氮代谢的影响[J]. 干旱地区农业研究, 2014, 23(6): 87-91.   doi: 10.7606/j.issn.1000-7601.2014.06.015
[50] Jordi W, Schapendonk A, Davelaar E, et al.  Increased cytokinin levels in transgenic P-SAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning[J]. Plant Cell Environ, 2000, : 279-289.
[51] 刘连涛, 李存东, 孙红春, 等.  氮素营养水平对棉花不同部位叶片衰老的生理效应[J]. 植物营养与肥料学报, 2007, 13(5): 910-914.   doi: 10.3321/j.issn:1008-505x.2007.05.023