[1]

国家统计局. 中国国民经济和社会发展统计公报[DB/OL]. 2018, http://www.stats.gov.cn/tjsj/zxfb/201902/t20190228_1651265.html.

National Bureau of Statistics. China's statistical bulletin on national economic and social development[DB/OL]. 2018, http://www.stats.gov.cn/tjsj/zxfb/201902/t20190228_1651265.html.

[2] Guo J H, Liu X J, Zhang Y, et al.  Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008-1010.   doi: 10.1126/science.1182570
[3] Chen X P, Cui Z L, Fan M S, et al.  Producing more grain with lower environmental costs[J]. Nature, 2014, 514: 486-489.   doi: 10.1038/nature13609
[4] Cao Y S, Tian Y H, Yin B, et al.  Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency[J]. Field Crops Research, 2013, 147: 23-31.   doi: 10.1016/j.fcr.2013.03.015
[5] Ju X T, Xing G X, Chen X P, et al.  Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences, 2009, 106: 3041-3046.   doi: 10.1073/pnas.0813417106
[6] Zhang X X, Yin S, Li Y S, et al.  Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China[J]. Science of the Total Environment, 2014, 472: 381-388.   doi: 10.1016/j.scitotenv.2013.11.014
[7] Qiao J, Yang L Z, Yan T M, et al.  Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area[J]. Agriculture, Ecosystems and Environment, 2012, 146: 103-112.   doi: 10.1016/j.agee.2011.10.014
[8] Qiao J, Yang L Z, Yan T M, et al.  Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer[J]. European Journal of Agronomy, 2013, 49: 93-103.   doi: 10.1016/j.eja.2013.03.008
[9] Yan X Y, Ti C P, Vitousek P, et al.  Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen[J]. Environmental Research Letters, 2014, 9: 095002-.   doi: 10.1088/1748-9326/9/9/095002
[10] 彭少兵, 黄见良, 钟旭华, 等.  提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095-1103.   doi: 10.3321/j.issn:0578-1752.2002.09.012
[11] 刘立军, 徐伟, 唐成, 等.  土壤背景氮供应对水稻产量和氮肥利用率的影响[J]. 中国水稻科学, 2005, 19(4): 343-349.   doi: 10.3321/j.issn:1001-7216.2005.04.011
[12] Zhang Q W, Yang Z L, Zhang H, et al.  Recovery efficiency and loss of 15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River basin[J]. Agriculture Ecosystems and Environment, 2012, 158: 118-126.   doi: 10.1016/j.agee.2012.06.003
[13] Shang Q Y, Gao C M, Yang X X, et al.  Ammonia volatilization in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments[J]. Biology and Fertility of Soils, 2014, 50: 715-725.   doi: 10.1007/s00374-013-0891-6
[14] Yao Y L, Zhang M, Tian Y H, et al.  Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 28: 254-266.
[15]

De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia[A] De Datta S K, Patrick Jr W H. Nitrogen economy of flooded rice soils[M]. Springer Netherlands, 1986. 171−186.

[16] Liu X W, Wang H Y, Zhou J M, et al.  Effect of nitrogen root zone fertilization on rice yield, uptake and utilization of macronutrient in lower reaches of Yangtze River, China[J]. Paddy and Water Environment, 2017, 15: 625-638.   doi: 10.1007/s10333-017-0581-3
[17] Riley D, Barber S A.  Bicarbonate accumulation and pH changes at the soybean (Glycine max L. Merr) root-soil interface[J]. Soil Science Society of America Journal, 1969, 33: 905-908.   doi: 10.2136/sssaj1969.03615995003300060031x
[18]

鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

Lu R K. Analytical method of soil and agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.

[19] 武际, 郭熙盛, 张祥明, 等.  免耕条件下水稻产量及稻田无机氮供应特征[J]. 中国农业科学, 2013, 46(6): 1172-1181.   doi: 10.3864/j.issn.0578-1752.2013.06.010
[20] 谭亦杭, 沈健林, 蒋炳坤, 等.  秸秆还田与水分管理对双季水稻氮素吸收及氮肥利用率的影响[J]. 农业现代化研究, 2018, 39(3): 511-519.
[21] 苗艳芳, 吕静霞, 李生秀, 等.  铵态氮肥和硝态氮肥施入时期对小麦增产的影响[J]. 水土保持学报, 2014, 28(4): 91-96.
[22] 刘晓伟, 陈小琴, 王火焰, 等.  根区一次施氮提高水稻氮肥利用效率的效果和原理[J]. 土壤, 2017, 49(5): 13-20.
[23] 巨晓棠.  理论施氮量的改进及验证—兼论确定作物氮肥推荐量的方法[J]. 土壤学报, 2015, 52(2): 249-261.
[24] 巨晓棠, 谷保静.  氮素管理的指标[J]. 土壤学报, 2017, 54(2): 281-296.
[25]

商庆银. 长期不同施肥制度下双季稻田土壤肥力与温室气体排放规律的研究[D]. 南京: 南京农业大学博士学位论文, 2012.

Shang Q Y. Studies on soil fertility and carbon sequestration and mitigation under long-term fertilization in Chinese double rice cropping systems[D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2012.

[26] 彭术, 张文钊, 侯海军, 等.  氮肥减量深施对双季稻产量和氧化亚氮排放的影响[J]. 生态学杂志, 2019, 38(1): 153-160.
[27] 朱坚, 纪雄辉, 田发祥, 等.  秸秆还田对双季稻产量及氮磷径流损失的影响[J]. 环境科学研究, 2016, 29(11): 1626-1634.
[28] 纪雄辉, 郑圣先, 石丽红, 等.  洞庭湖区不同稻田土壤及施肥对养分淋溶损失的影响[J]. 土壤学报, 2008, 45(4): 663-671.