[1] 刘建涛, 许靖, 孙志梅, 等.  氮素调控剂对不同类型土壤氮素转化的影响[J]. 应用生态学报, 2014, 25(10): 2901-2906.
Liu J T, Xu J, Sun Z M, et al.  Effects of different nitrogen regulators on nitrogen transformation in different soil types[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2901-2906.
[2] 许超, 陈旭磊, 陈倩婷, 等.  水稻根际酶活性对土壤重金属污染的响应[J]. 中国农学通报, 2014, 30(30): 28-33.
Xu C, Chen X L, Chen Q T, et al.  Response of enzymatic activities in the rhizosphere of rice (Oryza sativa L.) to heavy metal contamination[J]. Chinese Agricultural Science Bulletin, 2014, 30(30): 28-33.
[3] 闫钟清, 齐玉春, 彭琴, 等.  降水和氮沉降增加对草地土壤酶活性的影响[J]. 生态学报, 2017, 37(9): 3019-3027.
Yan Z Q, Qi Y C, Peng Q, et al.  Effects of increased precipitation and nitrogen deposition on soil enzyme activities[J]. Acta Ecologica Sinica, 2017, 37(9): 3019-3027.
[4] 雍太文, 杨文钰, 向达兵, 陈小容.  不同种植模式对土壤氮素转化及酶活性的影响[J]. 应用生态学报, 2011, 22(12): 3227-3235.
Yong T W, Yang W Y, Xiang D B, Chen X R.  Effects of different planting modes on soil nitrogen transformation and related enzyme activities[J]. Chinese Journal of Applied Ecology, 2011, 22(12): 3227-3235.
[5] 梁国鹏, Albert H A, 吴会军, 等.  施氮量对夏玉米根际和非根际土壤酶活性及氮含量的影响[J]. 应用生态学报, 2016, 27(6): 1917-1924.
Liang G P, Albert H A, Wu H J, et al.  Soil nitrogen content and enzyme activities in rhizosphere and non-rhizosphere of summer maize under different nitrogen application rates[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1917-1924.
[6] Hester E R, Harpenslager S F, van Diggelen J M H.  Linking nitrogen load to the structure and function of wetland soil and rhizosphere microbial communities[J]. mSystems, 2018, 3(1): 1-14.
[7] 张青青, 陈志强, 陈志彪, 马秀丽.  南方稀土矿区植物根际与非根际土壤碳氮含量与pH值变化[J]. 水土保持通报, 2017, 37(3): 102-106.
Zhang Q Q, Chen Z Q, Chen Z B, Ma X L.  Variations of carbon, nitrogen and pH value in rhizosphere and non- rhizosphere soil in rare earth mining area in southern China[J]. Bulletin of Soil and Water Conservation, 2017, 37(3): 102-106.
[8] 詹媛媛, 薛梓瑜, 任伟, 周志宇.  干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J]. 生态学报, 2009, 29(1): 59-66.   doi: 10.3321/j.issn:1000-0933.2009.01.008
Zhan Y Y, Xue Z Y, Ren W, Zhou Z Y.  Characteristics of nitrogen content between rhizosphere and bulk soil under seven shrubs in arid desert area of China[J]. Acta Ecologica Sinica, 2009, 29(1): 59-66.   doi: 10.3321/j.issn:1000-0933.2009.01.008
[9] Chen Z, Ti J S, Chen F.  Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China[J]. Nutrient Cycling in Agroecosystems, 2017, 109(2): 103-114.   doi: 10.1007/s10705-017-9864-8
[10] 黄国勤, 熊云明, 钱海燕, 等.  稻田轮作系统的生态学分析[J]. 土壤学报, 2006, 26(4): 1159-1164.
Huang G Q, Xiong Y M, Qian H Y, et al.  Ecological analysis of crop rotation systems in paddy field[J]. Acta Pedologica Sinica, 2006, 26(4): 1159-1164.
[11] Yao H, Lehndorff E, Amelung W, et al.  Drainage and leaching losses of nitrogen and dissolved organic carbon after introducing maize into a continuous paddy-rice crop rotation[J]. Agriculture Ecosystems & Environment, 2017, 249: 91-100.
[12] 胡安永, 刘勤, 孙星, 张亚楠.  太湖地区不同轮作模式下的稻田氮素平衡研究[J]. 中国生态农业学报, 2014, 22(5): 509-515.
Hu A Y, Liu Q, Sun X, Zhang Y N.  Nitrogen balance in paddy fields under different rotation systems in the Taihu Lake Region[J]. Chinese Journal of Eco-Agriculture, 2014, 22(5): 509-515.
[13] Korai P K, Xia X, Liu X, et al.  Extractable pool of biochar controls on crop productivity rather than greenhouse gas emission from a rice paddy under rice-wheat rotation[J]. Scientific Reports, 2018, 8: 1-9.   doi: 10.1038/s41598-017-17765-5
[14] Zhou W, Lin S, Wu L, et al.  Substantial N2O emission during the initial period of the wheat season due to the conversion of winter-flooded paddy to rice-wheat rotation[J]. Atmospheric Environment, 2017, 170: 269-278.   doi: 10.1016/j.atmosenv.2017.09.021
[15] 张维乐, 戴志刚, 任涛, 等.  不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响[J]. 中国农业科学, 2016, 49(7): 1254-1266.
Zhang W L, Dai Z G, Ren T, et al.  Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems[J]. Scientia Agricultura Sinica, 2016, 49(7): 1254-1266.
[16] Han S, Luo X, Liao H, et al.  Nitrospira are more sensitive than Nitrobacter to land management in acid, fertilized soils of a rapeseed-rice rotation field trial[J]. Science of the Total Environment, 2017, 599: 135-144.
[17] Breidenbach B, Brenzinger K, Brandt F B, et al.  The effect of crop rotation between wetland rice and upland maize on the microbial communities associated with roots[J]. Plant & Soil, 2017, 419: 435-445.
[18] 张雯, 何绪生, 耿增超, 等.  新型生物炭基氮肥对土壤―冬小麦系统氮素累积及相关生物活性的影响[J]. 农业环境科学学报, 2014, 33(7): 1394-1401.
Zhang W, He X S, Geng Z C, et al.  Effects of different biochar-based nitrogen fertilizers on nitrogen accumulation and biological activities in soil-winter wheat system[J]. Journal of Agro-Environment Science, 2014, 33(7): 1394-1401.
[19] 熊莉, 徐振锋, 吴福忠, 等.  雪被斑块对川西亚高山冷杉林土壤氮转化酶活性的影响[J]. 应用生态学报, 2014, 25(5): 1293-1299.
Xiong L, Xu Z F, Wu F Z, et al.  Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2014, 25(5): 1293-1299.
[20] Wang B, Zhao J, Guo Z, et al.  Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils[J]. Isme Journal, 2015, 9(5): 1062-1075.   doi: 10.1038/ismej.2014.194
[21] Cao Y, Tian Y, Yin B, Zhu Z.  Improving agronomic practices to reduce nitrate leaching from the rice-wheat rotation system[J]. Agriculture Ecosystems & Environment, 2014, 195: 61-67.
[22] Schmidt-Rohr K, Mao J D, Olk D C.  Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17): 6351-6354.   doi: 10.1073/pnas.0401349101
[23] Takakai F, Takeda M, Kon K, et al.  Effects of preceding compost application on the nitrogen budget in an upland soybean field converted from a rice paddy field on gray lowland soil in Akita, Japan[J]. Soil Science & Plant Nutrition, 2010, 56(5): 760-772.
[24] 马欣, 周连仁, 王晓巍, 等.  秸秆对根区土壤酶活性、无机氮及呼吸量的影响[J]. 中国土壤与肥料, 2012, (4): 27-33.   doi: 10.3969/j.issn.1673-6257.2012.04.006
Ma X, Zhou L R, Wang X W, et al.  Effect of straw on enzyme activity, inorganic nitrogen and CO2 respiration of root zone soil[J]. Soils and Fertilizers Sciences in China, 2012, (4): 27-33.   doi: 10.3969/j.issn.1673-6257.2012.04.006
[25] Li Y, Niu W, Wang J, et al.  Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato[J]. Soil Science Society of America Journal, 2016, 80(5): 1208-1221.   doi: 10.2136/sssaj2016.06.0164
[26] Lei T, Gu Q Q, Guo X H, et al.  Urease activity and urea hydrolysis rate under coupling effects of moisture content, temperature, and nitrogen application rate[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 132-138.   doi: 10.25165/j.ijabe.20181102.3784
[27] 邢肖毅, 黄懿梅, 黄海波, 等.  黄土丘陵区子午岭不同植物群落下土壤氮素及相关酶活性的特征[J]. 生态学报, 2012, 32(5): 1403-1411.
Xing X Y, Huang Y M, Huang H B, et al.  Soil nitrogen and enzymes involved in nitrogen metabolism under different vegetation in Ziwuling mountain in the Loess Plateau, China[J]. Acta Ecologica Sinica, 2012, 32(5): 1403-1411.
[28] Lei T, Guo X, Sun X, et al.  Prediction of soil urea conversion and quantification of the importance degrees of influencing factors through a new combinatorial model based on cluster method and artificial neural network[J]. Chemosphere, 2018, 199: 676-683.   doi: 10.1016/j.chemosphere.2018.01.151
[29] 谢泽宇, 罗珠珠, 李玲玲, 等.  黄土高原不同粮草种植模式土壤碳氮及土壤酶活性[J]. 草业科学, 2017, 34(11): 2191-2199.   doi: 10.11829/j.issn.1001-0629.2016-0572
Xie Z Y, Luo Z Z, Li L L, et al.  Soil carbon and nitrogen and soil enzyme activities of different forage planting models on the Loess Plateau[J]. Pratacultural Science, 2017, 34(11): 2191-2199.   doi: 10.11829/j.issn.1001-0629.2016-0572
[30]

王少先. 施肥对稻田湿地土壤碳氮磷库及其相关酶活变化的影响研究[D]. 杭州: 浙江大学博士学位论文, 2011.

Wang S X. Effects of fertilization on soil C, N & P pools and its involved enzyme activity in paddy wetland ecosystems[D]. Hangzhou: PhD Dissertation of Zhejiang University, 2011.

[31] 赵鹏, 陈阜, 李莉.  秸秆还田对冬小麦农田土壤无机氮和土壤脲酶的影响[J]. 华北农学报, 2010, 25(3): 165-169.
Zhao P, Chen F, Li L.  Effects of straw mulching on inorganic nitrogen and soil urease in winter wheat field[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(3): 165-169.
[32] Fu M H, Tabatabai M A.  Nitrate reductase activity in soils: effects of trace elements[J]. Soil Biology & Biochemistry, 1989, 21(7): 943-946.
[33] Yang Y, Meng T, Qian X, et al.  Evidence for nitrification ability controlling nitrogen use efficiency and N losses via denitrification in paddy soils[J]. Biology & Fertility of Soils, 2017, 53(3): 349-356.
[34] 董兆佳, 孟磊.  海南蕉园根际与非根际土壤氮素含量特征[J]. 中国农学通报, 2010, 26(6): 309-312.
Dong Z J, Meng L.  Characteristics of nitrogen content between rhizosphere and bulk soil of banana plantation in Hainan province[J]. Chinese Agricultural Science Bulletin, 2010, 26(6): 309-312.
[35] 魏亮, 汤珍珠, 祝贞科, 等.  水稻不同生育期根际与非根际土壤胞外酶对施氮的响应[J]. 环境科学, 2017, 38(8): 3489-3496.
Wei L, Tang Z Z, Zhu Z K, et al.  Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil[J]. Environmental Science, 2017, 38(8): 3489-3496.
[36] Ma W N, Yang J P, Wang H.  Ecological effect of rice rhizosphere microbes under water regimes and nitrogen fertilizer with split application in paddy field[J]. Journal of Zhejiang University, 2007, 33(2): 184-189.
[37] 邱权, 李吉跃, 王军辉, 等.  西宁南山4种灌木根际和非根际土壤微生物、酶活性和养分特征[J]. 生态学报, 2014, 34(24): 7411-7420.
Qiu Q, Li J Y, Wang J H, et al.  Microbes, enzyme activities and nutrient characteristics of rhizosphere and non-rhizosphere soils under four shrubs in Xining Nanshan Prefecture, China[J]. Acta Ecologica Sinica, 2014, 34(24): 7411-7420.
[38] 孟令军, 耿增超, 王海涛, 等.  秦岭太白山区鹿蹄草根际与非根际土壤养分及酶活性研究[J]. 西北农林科技大学学报(自然科学版), 2012, 40(5): 157-165.
Meng L J, Geng Z C, Wang H T, et al.  Soil nutrients and enzyme activities of Pyrola in rhizosphere and non-rhizosphere on Mt. Taibai, Qinling Mountains[J]. Journal of Northwest A&F University (Nat. Sci. Ed.), 2012, 40(5): 157-165.
[39] 张千和, 周立香, 郭荻.  中药材根际和非根际土壤酶和微生物特征[J]. 西北农业学报, 2014, 23(12): 189-196.   doi: 10.7606/j.issn.1004-1389.2014.12.029
Zhang Q H, Zhou L X, Guo D.  Research on soil enzymes and microflora in rhizosphere and non-rhizosphere of traditional Chinese medicinal herbs[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(12): 189-196.   doi: 10.7606/j.issn.1004-1389.2014.12.029
[40] Chen Z J, Tian Y H, Zhang Y, et al.  Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands[J]. Ecological Engineering, 2016, 92: 243-250.   doi: 10.1016/j.ecoleng.2016.04.001
[41] 林江辉, 李辉信, 胡锋, 赵海燕.  干土效应对土壤生物组成及矿化与硝化作用的影响[J]. 土壤学报, 2004, 41(6): 924-930.   doi: 10.3321/j.issn:0564-3929.2004.06.013
Lin J H, Li H X, Hu F, Zhao H Y.  Effects of rewetting on soil biota structure and nitrogen mineralization, nitrification in air-dried red soil[J]. Acta Pedologica Sinica, 2004, 41(6): 924-930.   doi: 10.3321/j.issn:0564-3929.2004.06.013