[1] Sun C L, Liu G B, Xue S.  Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil paticle-size distribution and soil nutrients[J]. Ecological Research, 2016, 31(6): 891-902.   doi: 10.1007/s11284-016-1399-y
[2] Tyler S W, Wheatcraft S W.  Fractal scaling of soil particle size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.   doi: 10.2136/sssaj1992.03615995005600020005x
[3] 杨培岭, 罗远培, 石元春.  用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899.   doi: 10.3321/j.issn:0023-074X.1993.20.010
Yang P L, Luo Y P, Shi Y C.  Fractal features of soils characterized by particle weight distribution[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899.   doi: 10.3321/j.issn:0023-074X.1993.20.010
[4] 孙国峰, 陈阜, 肖小平.  轮耕对土壤物理性状及水稻产量影响的初步研究[J]. 农业工程学报, 2007, 23(12): 109-113.   doi: 10.3321/j.issn:1002-6819.2007.12.021
Sun G F, Chen F, Xiao X P.  Preliminary study on effects of rotational tillage on soil physical properties and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(12): 109-113.   doi: 10.3321/j.issn:1002-6819.2007.12.021
[5] Herrick J E, Brown J R, Tugel A J.  Management Paradigms from rangeland application of soil quality to monitoring and ecology[J]. Agronomy Journal, 2002, 94(1): 3-11.   doi: 10.2134/agronj2002.0003
[6] Gunther S, Holger K.  Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils[J]. Soil Biology and Biochemistry, 2003, 35: 629-632.   doi: 10.1016/S0038-0717(03)00052-X
[7]

张晓艳. 保护性耕作条件下土壤物理性状及其土壤侵蚀的研究[D]. 兰州: 甘肃农业大学硕士学位论文, 2008. 2-9.

Zhang X Y. Study on soil physical characters and soil erosion under conservation tillage[D]. Lanzhou: MS Thesis of Gansu Agricultural University, 2008. 2-9.

[8] 刘鹏涛, 冯佰利, 慕芳.  保护性耕作对黄土高原春玉米田土壤理化特性的影响[J]. 干旱地区农业研究, 2009, 27(4): 171-175.
Liu P T, Feng B L, Mu F.  Effects of conservation tillage on soil physicochemical properties in the spring maize area of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2009, 27(4): 171-175.
[9] 周虎, 李保国, 吕贻忠.  不同耕作措施下土壤孔隙的多重分形特征[J]. 土壤学报, 2010, 47(6): 1094-1099.
Zhou H, Li B G, Lü Y Z.  Multifractal characteristics of soil pore structure under different tillage systems[J]. Acta Pedologica Sinca, 2010, 47(6): 1094-1099.
[10] 程科, 李军, 毛红玲.  不同轮耕模式对黄土高原旱作麦田土壤物理性状的影响[J]. 中国农业科学, 2013, 46(18): 3800-3808.   doi: 10.3864/j.issn.0578-1752.2013.18.008
Cheng K, Li J, Mao H L.  Effects of different rotational tillage patterns on soil physical properties in rained wheat fields of the Loess Plateau[J]. Scientia Agricultura Sinica, 2013, 46(18): 3800-3808.   doi: 10.3864/j.issn.0578-1752.2013.18.008
[11] 杨永辉, 武继承, 丁晋利, 等.  长期免耕对不同土层土壤结构与有机碳分布的影响[J]. 农业机械学报, 2017, 48(9): 173-182.
Yang Y H, Wu J C, Ding J L, et al.  Effects of long-term no-tillage on soil structure and organic carbon distribution in different soil layers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 173-182.
[12] 王德, 傅伯杰, 陈利顶, 等.  不同土地利用类型下土壤粒径分形分析—以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7): 3081-3089.   doi: 10.3321/j.issn:1000-0933.2007.07.050
Wang D, Fu B J, Chen L X, et al.  Fractal analysis of soil grain size under different land use types-taking loess hilly and gully region as an example[J]. Acta Ecologica Sinica, 2007, 27(7): 3081-3089.   doi: 10.3321/j.issn:1000-0933.2007.07.050
[13] 郑庆福, 赵兰坡.  农业利用对东北黑土粘粒矿物组成及养分的影响[J]. 吉林农业科学, 2011, 36(5): 29-32.   doi: 10.3969/j.issn.1003-8701.2011.05.010
Zheng Q F, Zhao L P.  Effect of agricultural use on clay minerals and nutrient of black soil in northeast of China[J]. Scientia Agricultura Jinlin, 2011, 36(5): 29-32.   doi: 10.3969/j.issn.1003-8701.2011.05.010
[14] 孙梅, 孙楠, 徐明岗, 等.  长期不同施肥红壤粒径分布的多重分形特征[J]. 中国农业科学, 2014, 47(11): 2173-2181.   doi: 10.3864/j.issn.0578-1752.2014.11.011
Sun M, Sun N, Xu M G, et al.  Multifractal characterization of soil particle size distribution under long-term different fertilizations in upland red soil[J]. Scientia Agricultura Sinica, 2014, 47(11): 2173-2181.   doi: 10.3864/j.issn.0578-1752.2014.11.011
[15] 王金满, 张萌, 白中科.  黄土区露天煤矿排土场重构土壤颗粒组成的多重分形特征[J]. 农业工程学报, 2014, 30(4): 230-238.   doi: 10.3969/j.issn.1002-6819.2014.04.028
Wang J M, Zhang M, Bai Z K.  Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4): 230-238.   doi: 10.3969/j.issn.1002-6819.2014.04.028
[16] Grout H, Tarquis A M, Wiesner M R.  Multifractal analysis of particle size distributions in soil[J]. Environmental Science & Technology, 1998, 32(9): 1176-1182.
[17]

Evertsz C J G, Mandelbrot B B. Multifractal measures[M]. New York: Springler Verlag, 1992.

[18] 茹豪, 张建军, 李玉婷, 等.  黄土高原土壤粒径分形特征及其对土壤侵蚀的影响[J]. 农业机械学报, 2014, 46(4): 176-182.
Ru H, Zhang J J, Li Y T, et al.  Fractal features of soil particle size distributions and its effect on soil erosion of Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 46(4): 176-182.
[19] 赵明月, 赵文武, 刘源鑫.  不同尺度下土壤粒径分布特征及其影响因子—以黄土丘陵沟壑区为例[J]. 生态学报, 2015, 35(14): 4625-4632.
Zhao M Y, Zhao W W, Liu Y X.  Comparative analysis of soil particle size distribution and its influence factors in different scales: a case study in the Loess Hilly-gully area[J]. Acta Ecologica Sinica, 2015, 35(14): 4625-4632.
[20] 孙哲, 王一博, 刘国华.  基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析[J]. 冰川冻土, 2015, 37(4): 980-990.
Sun Z, Wang Y B, Liu G H.  Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 980-990.
[21] 管孝艳, 杨培岭, 吕烨.  基于多重分形的土壤粒径分布与土壤物理特性关系[J]. 农业机械学报, 2011, 42(3): 44-50.
Guan X Y, Yang P L, Lü Y.  Relationships between soil particle size distribution and soil physical properties based on multifractal[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3): 44-50.
[22] Pieri L, Bittelli M, Pisa P R.  Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils[J]. Geoderma, 2006, 135(3): 118-132.
[23] 苏永中, 赵哈林.  科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J]. 生态学报, 2004, 24(1): 71-74.   doi: 10.3321/j.issn:1000-0933.2004.01.011
Su Y Z, Zhao H L.  Fractal characteristics of soil particles in farmland desertification evolution in Horqin Sandy land[J]. Acta Ecologica Sinica, 2004, 24(1): 71-74.   doi: 10.3321/j.issn:1000-0933.2004.01.011
[24] 陈强, Keravchenko Y S, 陈渊, 等.  少免耕土壤结构和导水能力的季节变化及其水保效果[J]. 土壤学报, 2014, 51(1): 11-21.
Chen Q, Keravchenko Y S, Chen Y, et al.  Seasonal variation of soil structure and water conduction capacity and its water conservation effect in less-tillage[J]. Acta Pedologica Sinica, 2014, 51(1): 11-21.
[25] 于爱忠, 黄高宝.  保护性耕作对内陆河灌区春季麦田不可蚀性颗粒的影响[J]. 水土保持学报, 2006, 20(2): 6-9.
Yu A Z, Huang G B.  Effects of different tillage treatments on unerodible soil particles of wheat- field in spring in inland irrigation region[J]. Journal of Soil and Water Conservation, 2006, 20(2): 6-9.
[26] 温善菊, 吴景贵.  土壤颗粒和肥力关系的研究进展[J]. 延边大学农学报, 2005, 15(1): 65-71.
Wen S J, Wu J G.  Relation of soil-particle and fertility[J]. Journal of Agricultural Science Yanbian University, 2005, 15(1): 65-71.
[27] 管孝艳, 杨培岭, 任树梅, 等.  基于多重分形理论的土壤粒径分布非均匀性分析[J]. 应用基础与工程科学学报, 2009, 17(2): 196-205.   doi: 10.3969/j.issn.1005-0930.2009.02.005
Guan X Y, Yang P L, Ren S M, et al.  Heterogeneity analysis of particle size distribution for loamy soil based on multifractal theory[J]. Journal of Basic Science and Engineering, 2009, 17(2): 196-205.   doi: 10.3969/j.issn.1005-0930.2009.02.005
[28] 李勇, 张建辉, 罗大伟.  耕作侵蚀及其农业环境意义[J]. 山地学报, 2000, 18(6): 514-519.   doi: 10.3969/j.issn.1008-2786.2000.06.006
Li Y, Zhang J H, Luo D A.  Tillage translocation and tillage erosion processes and their templcations for agro-ecosystems[J]. Journal of Mountain Science, 2000, 18(6): 514-519.   doi: 10.3969/j.issn.1008-2786.2000.06.006
[29] Su Y Z, Zhao H L, Zhang T H, Zhao X Y.  Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China[J]. Soil and Tillage Research, 2004, 75(1): 27-36.
[30] 夏青, 何丙辉.  土壤物理特性对水力侵蚀的影响[J]. 水土保持应用技术, 2006, (5): 12-15.   doi: 10.3969/j.issn.1673-5366.2006.05.005
Xia Q, He B H.  Effects of soil physical characteristics on hydraulic erosion[J]. Application Technology of Soil and Water Conservation, 2006, (5): 12-15.   doi: 10.3969/j.issn.1673-5366.2006.05.005
[31] 王建林, 钟志明, 王忠红, 等.  青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 2014, 34(22): 6678-6691.
Wang J L, Zhong Z M, Wang Z H.  Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22): 6678-6691.
[32] Adl S M, Coleman D C, Read F.  Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no tillage management[J]. Agriculture Ecosystems & Environment, 2006, (2-4): 323-334.
[33] 田慎重, 王瑜, 宁堂原, 等.  转变耕作方式对长期旋免耕农田土壤有机碳库的影响[J]. 农业工程学报, 2016, 32(17): 98-105.   doi: 10.11975/j.issn.1002-6819.2016.17.014
Tian S Z, Wang Y, Ning T Y.  Effect of tillage method changes on soil organic carbon pool in farmland under long-term rotary tillage and no tillage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 98-105.   doi: 10.11975/j.issn.1002-6819.2016.17.014
[34] 赵亚丽, 于淑婷, 穆心愿, 等.  深耕加秸秆还田下施氮量对土壤碳氮比、玉米产量及氮效率的影响[J]. 河南农业科学, 2016, 45(10): 50-54.
Zhao Y L, Yu S T, Mu X Y, et al.  Effects of nitrogen application rate on soil C/N, maize yield and nitrogen efficiency under condition of deep tillage and straw returning[J]. Journal of Henan Agricultural Sciences, 2016, 45(10): 50-54.
[35] 代豫杰, 李锦荣, 郭建英.  乌兰布和沙漠不同灌丛土壤颗粒多重分形特征及其与有机碳分布的关系[J]. 环境科学研究, 2017, 30(7): 1069-1078.
Dai Y J, Li J R, Guo J Y.  Soil particle multifractals and soil organic carbon distributions and correlations under different shrubs in Ulan Buh Desert[J]. Research of Environmental Sciences, 2017, 30(7): 1069-1078.