[1] Turrión M B, Bueis T, Lafuente F, et al.  Effects on soil phosphorus dynamics of municipal solid waste compost addition to a burnt and unburnt forest soil[J]. Science of Total Environment, 2018, 642: 374-382.   doi: 10.1016/j.scitotenv.2018.06.051
[2] He H H, Peng Q, Wang X, et al.  Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils[J]. Plant and Soil, 2017, 416: 565-584.   doi: 10.1007/s11104-017-3242-9
[3] Parihar M, Meena V S, Mishra P K, et al.  Arbuscular mycorrhiza: A viable strategy for soil nutrient loss reduction[J]. Archives of Microbiology, 2019, 201: 723-735.   doi: 10.1007/s00203-019-01653-9
[4] Nobile C M, Bravin M N, Becquer T, et al.  Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation[J]. Chemosphere, 2020, 239: 124709-.   doi: 10.1016/j.chemosphere.2019.124709
[5] Cordell D, White S.  Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system[J]. Food Security, 2015, 7: 337-350.   doi: 10.1007/s12571-015-0442-0
[6] Pang J, Ryan M H, Lambers H, et al.  Phosphorus acquisition and utilisation in crop legumes underglobal change[J]. Current Opinion in Plant Biology, 2018, 45: 248-254.   doi: 10.1016/j.pbi.2018.05.012
[7] Cordell D, Rosemarin A, Schroder J J, et al.  Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options[J]. Chemosphere, 2011, 84(6): 747-758.   doi: 10.1016/j.chemosphere.2011.02.032
[8] Ryan M H, Tibbett M, Edmonds-Tibbett T, et al.  Carbon trading for phosphorus gain: The balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition[J]. Plant Cell & Environment, 2012, 35: 2170-2180.
[9] Friesen M L, Porter S S, Stark S C, et al.  Microbially mediated plant functional traits[J]. Annual Review of Ecology, 2011, 42: 23-46.   doi: 10.1146/annurev-ecolsys-102710-145039
[10] He S, Long M, He X, et al.  Arbuscular mycorrhizal fungi and water availability affect biomass and C∶N∶P ecological stoichiometry in alfalfa (Medicago sativa L.) during regrowth[J]. Acta Physiologiae Plantarum, 2017, 39(9): 199-.   doi: 10.1007/s11738-017-2493-7
[11]

Smith S E, Read D J. Mycorrhizal symbiosis[M]. London: Academic Press, 1997.

[12] Langer I, Syafruddin S, Steinkellner S, et al.  Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization[J]. Plant and Soil, 2010, 332: 339-355.   doi: 10.1007/s11104-010-0300-y
[13] Peng Q, Wu M M, Zhang Z K, et al.  The interaction of arbuscular mycorrhizal fungi and phosphorus inputs on selenium uptake by alfalfa (Medicago sativa L.) and selenium fraction transformation in soil[J]. Frontiers in Plant Science, 2020, : 11-.   doi: 10.3389/fpls.2020.00966
[14] Wen Z H, Pang J Y, Tueux G, et al.  Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates[J]. Functional Ecology, 2020, 34: 1311-1324.   doi: 10.1111/1365-2435.13562
[15] Shen J, Yuan L, Zhang J, et al.  Phosphorus dynamics: From soil to plant[J]. Plant Physiology, 2011, 156: 997-1005.   doi: 10.1104/pp.111.175232
[16] 孙洪仁, 曹影, 刘琳, 等.  中国北方紫花苜蓿土壤有效磷丰缺指标与适宜施磷量初步研究[J]. 中国土壤与肥料, 2016, (3): 30-36.   doi: 10.11838/sfsc.20160305
[17] Fan J W, Du Y L, Turner N C, et al.  Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil[J]. Plant and Soil, 2015, 392: 215-226.   doi: 10.1007/s11104-015-2454-0
[18] Pang J Y, Ryan M H, Tibbett M, et al.  Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply[J]. Plant and Soil, 2010, 331: 241-255.   doi: 10.1007/s11104-009-0249-x
[19] Phillips J M, Hayman D S.  Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55: 158-160.   doi: 10.1016/S0007-1536(70)80110-3
[20] Giovannetti M, Mosse B.  An evaluation of techniques for measuring ve-sicular arbuscular mycorrhizal infection in roots[J]. New Phytologist, 1980, 84: 489-500.   doi: 10.1111/j.1469-8137.1980.tb04556.x
[21]

鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

Bao S D. Analytical methods of soil and agricultural chemistry[M]. Beijing: China Agriculture Press, 2000.

[22] 孙宝利, 黄金丽, 贺小蔚, 等.  高效液相色谱法测定土壤中有机酸[J]. 分析试验室, 2010, 29: 51-54.   doi: 10.3969/j.issn.1000-0720.2010.05.014
[23] Cawthray G R.  An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates[J]. Journal of Chromatography A, 2003, 1011(1-2): 233-240.   doi: 10.1016/S0021-9673(03)01129-4
[24]

关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.

Guan S Y. Soil enzyme and its research methods[M]. Beijing: China Agriculture Press, 1986.

[25]

Smith S E, Read D J. Mycorrhizal symbiosis[M]. London: Academic Press, 2008.

[26] Urcoviche R C, Gazim Z C, Dragunski D C, et al.  Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus[J]. Industrial Crops & Products, 2015, 67: 103-107.
[27] Clark R B, Zeto S K.  Mineral acquisition by arbuscular mycorrhizal plants[J]. Journal of Plant Nutrition, 2000, 23(7): 867-902.   doi: 10.1080/01904160009382068
[28] 李芳, 徐丽娇, 谢伟, 等.  菌根化育苗对玉米生长和养分吸收的影响[J]. 植物营养与肥料学报, 2020, 26(1): 42-50.   doi: 10.11674/zwyf.19084
[29] 吴强盛, 夏仁学, 邹英宁.  柑橘丛枝菌根真菌生长与根际有效磷和磷酸酶活性的相关性[J]. 应用生态学报, 2006, 17(4): 685-689.   doi: 10.3321/j.issn:1001-9332.2006.04.025
[30] Sawers R J H, Svane S F, Quan C, et al.  Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters[J]. New Phytologist, 2017, 214(2): 632-.   doi: 10.1111/nph.14403
[31] Bender S F, van der Heijden M G A.  Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses[J]. Journal of Applied Ecology, 2015, 52: 228-239.   doi: 10.1111/1365-2664.12351
[32] Gerke J.  The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(3): 351-364.   doi: 10.1002/jpln.201400590
[33] Corkidi L, Merhaut D J, Allen E B, et al.  Effects of mycorrhizal colonization on nitrogen and phosphorus leaching from nursery containers[J]. Hortscience, 2011, 46(11): 1472-1479.   doi: 10.21273/HORTSCI.46.11.1472
[34] Minemba D, Gleeson D B, Veneklaas E, et al.  Variation in morphological and physiological root traits and organic acid exudation of three sweet potato (Ipomoea batatas) cultivars under seven phosphorus levels[J]. Scientia Horticulturae, 2019, 256: 108572-.   doi: 10.1016/j.scienta.2019.108572
[35] Lambers H, Martinoia E, Renton M.  Plant adaptations to severely phosphorus-impoverished soils[J]. Current Opinion in Plant Biology, 2015, 25: 23-31.   doi: 10.1016/j.pbi.2015.04.002
[36] Kandeler E, Marschner P, Tscherko D, et al.  Microbial community composition and functional diversity in the rhizosphere of maize[J]. Plant and Soil, 2002, 238: 301-312.   doi: 10.1023/A:1014479220689
[37] Miransari M.  Interactions between arbuscular mycorrhizal fungi and soil bacteria[J]. Applied Microbiology & Biotechnology, 2011, 89: 917-930.
[38] Ventura M, Zhang C, Baldi E, et al.  Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard[J]. European Journal of Soil Science, 2014, 65(1): 186-195.   doi: 10.1111/ejss.12095
[39] Li S, Liang C, Shangguan Z.  Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N[J]. Science of the Total Environment, 2017, 607: 109-.
[40] He H H, Wu M M, Guo L, et al.  Release of tartrate as a major carboxylate by alfalfa (Medicago sativa L.) under phosphorus deficiency and the effect of soil nitrogen supply[J]. Plant and Soil, 2020, 449: 169-178.   doi: 10.1007/s11104-020-04481-9