[1] Zhu Y X, Gong H J.  Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable Development, 2014, 34(2): 455-472.   doi: 10.1007/s13593-013-0194-1
[2] Coskun D, Britto D T, Huynh W Q, et al.  The role of silicon in higher plants under salinity and drought stress[J]. Frontiers in Plant Science, 2016, 7: 1072-.
[3] Imtiaz M, Rizwan M S, Mushtaq M A, et al.  Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review[J]. Journal of Environmental Management, 2016, 183: 521-529.   doi: 10.1016/j.jenvman.2016.09.009
[4] Liu P, Yin L, Wang S, et al.  Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L.[J]. Environmental and Experimental Botany, 2015, 111: 42-51.   doi: 10.1016/j.envexpbot.2014.10.006
[5] Zhu Y X, Xu X B, Hu Y H, et al.  Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.[J]. Plant Cell Reports, 2015, 34: 1629-1646.   doi: 10.1007/s00299-015-1814-9
[6] Liang Y, Zhang W, Chen Q, et al.  Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.)[J]. Environmental and Experimental Botany, 2005, 53(1): 29-37.   doi: 10.1016/j.envexpbot.2004.02.010
[7] Liang Y, Zhang W, Chen Q, et al.  Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt–stressed barley (Hordeum vulgare L.)[J]. Environmental and Experimental Botany, 2006, 57(3): 212-219.   doi: 10.1016/j.envexpbot.2005.05.012
[8] Zhu Y, Guo J, Feng R, et al.  The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress[J]. Plant & Soil, 2016, 406(1/2): 231-249.
[9] Gong H J, Randall D P, Flowers T J.  Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow[J]. Plant Cell and Environment, 2006, 29: 1970-1979.   doi: 10.1111/j.1365-3040.2006.01572.x
[10] Shi Y, Wang Y, Flowers T J, Gong H.  Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions[J]. Journal of Plant Physiology, 2013, 170(9): 847-853.   doi: 10.1016/j.jplph.2013.01.018
[11] Fleck A T, Schulze S, Hinrichs M, et al.  Silicon promotes exodermal casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes[J]. PLoS ONE, 2015, 10(9): e0138555-.   doi: 10.1371/journal.pone.0138555
[12] Cooke J, Leishman M R.  Is plant ecology more siliceous than we realise?[J]. Trends in Plant Science, 2011, 16(2): 61-68.   doi: 10.1016/j.tplants.2010.10.003
[13] Wang Y, Shen W, Chan Z, et al.  Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2015, 6: 1004-.
[14] Yin L, Wang S, Tanaka K, et al.  Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.[J]. Plant Cell and Environment, 2016, 39(2): 245-258.   doi: 10.1111/pce.12521
[15] Bosnic P, Bosnic D, Jasnic J, et al.  Silicon mediates sodium transport and partitioning in maize under moderate salt stress[J]. Environmental and Experimental Botany, 2018, 155: 681-687.   doi: 10.1016/j.envexpbot.2018.08.018
[16] Zhu J K.  Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6(5): 441-445.   doi: 10.1016/S1369-5266(03)00085-2
[17] Rus A, Lee B H, Munoz-Mayor A, et al.  AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta[J]. Plant Physiology, 2004, 136(1): 2500-2511.   doi: 10.1104/pp.104.042234
[18] Fukuda A, Nakamura A, Hara N, et al.  Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188.   doi: 10.1007/s00425-010-1289-4
[19] Lee S K, Sohn E Y, Hamayun M, et al.  Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system[J]. Agroforestry Systems, 2010, 80(3): 333-340.   doi: 10.1007/s10457-010-9299-6
[20] Kim Y H, Khan A L, Waqasm S J K, et al.  Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress[J]. Journal of Plant Growth Regulation, 2014, 33(2): 137-149.   doi: 10.1007/s00344-013-9356-2
[21] Liang X, Wang H, Hu Y, et al.  Silicon does not mitigate cell death in cultured tobacco by-2 cells subjected to salinity without ethylene emission[J]. Plant Cell Reports, 2015, 34(2): 331-343.   doi: 10.1007/s00299-014-1712-6
[22] Yin J, Jia J, Lian Z, et al.  Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage[J]. Ecotoxicology and Environmental Safety, 2019, 169: 8-17.   doi: 10.1016/j.ecoenv.2018.10.105
[23] Hoagland D R, Arnon D I.  The water-culture method for growing plants without soil[J]. California Agricultural Experiment Station Circular, 1950, 347: 3-32.
[24] Pei Z F, Ming D F, Liu D, et al.  Silicon improves the tolerance to water deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings[J]. Journal of Plant Growth Regulation, 2010, 29(1): 106-115.   doi: 10.1007/s00344-009-9120-9
[25] Shi Y, Zhang Y, Han W H, et al.  Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L.[J]. Frontiers in Plant Science, 2016, 7: 196-.
[26] Bradford M M.  A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[27] Gong H, Zhu X, Chen K, et al.  Silicon alleviates oxidative damage of wheat plants in pots under drought[J]. Plant Science, 2005, 169(2): 313-321.   doi: 10.1016/j.plantsci.2005.02.023
[28]

Hanlon E A. Determination of potassium, calcium, and magnesium in plants by atomic absorption techniques[A]. Plank C O. Plant analysis reference procedures for the southern region of the United States[M]. Southern Cooperative Series Bulletin, 1992, 368: 30–33.

[29] Migocka M, Papierniak A.  Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators[J]. Molecular Breeding, 2011, 28(3): 343-357.   doi: 10.1007/s11032-010-9487-0
[30]

武玥. 外源 5-氨基乙酰丙酸 (ALA) 缓解黄瓜幼苗盐胁迫的效果及机理研究[D]. 兰州: 甘肃农业大学博士学位论文, 2018.

Wu Y. Mechanisms of exogenous 5-aminolevulinic acid (ALA) on alleviating salt stress in cucumber seedlings[D]. Lanzhou: PhD Dissertation of Gansu Agricultural University, 2018.

[31] Li J, Liu J, Wang G, et al.  A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis[J]. Plant Cell, 2015, 27(3): 908-925.   doi: 10.1105/tpc.114.135095
[32] Calero H A, Aparecida C D, de Mello P R, et al.  Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants[J]. Plant Physiology and Biochemistry, 2019, 142: 224-233.   doi: 10.1016/j.plaphy.2019.07.010
[33] Al-Huqail A A, Alqarawi A A, Hashem A, et al.  Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth[J]. Saudi Journal of Biological Sciences, 2019, 26(7): 1856-1864.   doi: 10.1016/j.sjbs.2017.11.049
[34] Flam-Shepherd R, Huynh W Q, Coskun D, et al.  Membrane fluxes, bypass flows, and sodium stress in rice: The influence of silicon[J]. Journal of Experimental Botany, 2018, 69: 1679-1692.   doi: 10.1093/jxb/erx460
[35] Ming D F, Pei Z F, Naeem M S, et al.  Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment[J]. Journal of Agronomy and Crop Science, 2012, 198(1): 14-26.   doi: 10.1111/j.1439-037X.2011.00486.x
[36] Gong H J, Chen K M, Chen G C, et al.  Effects of silicon on the growth of wheat under drought[J]. Journal of Plant Nutrition and Soil Science, 2003, 26: 1055-1063.
[37] Foyer C H, Descourvoeres P, Kunert K J.  Protect ion against oxygen radicals: An important defense mechanism studied in transgenic plants[J]. Plant Cell and Environment, 1994, 17(5): 507-523.   doi: 10.1111/j.1365-3040.1994.tb00146.x
[38] Al-aghabary K, Zhu Z J, Shi Q H.  Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress[J]. Journal of Plant Nutrition, 2004, 27: 2101-2115.   doi: 10.1081/PLN-200034641
[39] Sivanesan I, Jeong B R.  Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of ajuga multiflora bunge by altering activity of antioxidant enzyme[J]. The Scientific World Journal, 2014, : 521703-.
[40] Farhangi-Abriz S, Torabian S.  Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity[J]. Protoplasma, 2018, 255: 953-962.   doi: 10.1007/s00709-017-1202-0
[41] Das K, Roychoudhury A.  Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Frontiers in Environmental Science, 2014, 5(7): 104-115.
[42] Munns R, Tester M.  Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681.   doi: 10.1146/annurev.arplant.59.032607.092911
[43] Tuna A L, Kaya C, Higgs D, et al.  Silicon improves salinity tolerance in wheat plants[J]. Environmental and Experimental Botany, 2008, 62(1): 10-16.   doi: 10.1016/j.envexpbot.2007.06.006
[44] Zhu J K.  Plant salt tolerance[J]. Trends Plant Science, 2001, 6(2): 66-71.   doi: 10.1016/S1360-1385(00)01838-0
[45] Zhang X, Zhang W, Lang D, et al.  Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance[J]. Environmental Science and Pollution Research, 2018, 25(26): 25916-25932.   doi: 10.1007/s11356-018-2595-9
[46] Kim Y H, Khan A L, Kim D H, et al.  Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones[J]. BMC Plant Biology, 2014, 14(1): 1-13.   doi: 10.1186/1471-2229-14-1
[47] Ross J J, Murfet I C, Reid J B.  Gibberell in mutants[J]. Physiologia Plantarum, 1997, 100(3): 550-560.   doi: 10.1111/j.1399-3054.1997.tb03060.x
[48] Hedden P, Phillips A L.  Gibberell in metabolism: New insights revealed by the genes[J]. Trends in Plant Science, 2000, 5(12): 523-530.   doi: 10.1016/S1360-1385(00)01790-8
[49] Hamayun M, Sohn E Y, Khan S A, et al.  Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.)[J]. Pakistan Journal of Botany, 2010, 42(3): 1713-1722.
[50] Zürcher E, Müller B.  Cytokinin synthesis, signaling, and function-advances and new insights[J]. International Review of Cell and Molecular Biology, 2016, 324: 1-38.   doi: 10.1016/bs.ircmb.2016.01.001
[51] 黎家, 李传友.  新中国成立 70 年来植物激素研究进展[J]. 中国科学(生命科学), 2019, 49(10): 1227-1281.
[52] Emenecker R J, Strader L C.  Auxin-abscisic acid interactions in plant growth and development[J]. Biomolecules, 2020, 10(2): 281-.   doi: 10.3390/biom10020281
[53] Fahad S, Hussain S, Matloob A. et al.  Phytohormones and plant responses to salinity stress: A review[J]. Plant Growth Regulation., 2015, 75: 391-404.   doi: 10.1007/s10725-014-0013-y
[54] Behl R, Jeschke W D.  Influence of abscisic acid on unidirectional fluxes and intracellular compartmentation of K+ and Na+ in excised barley root segments[J]. Physiologia Plantarum, 1981, 53(2): 95-100.   doi: 10.1111/j.1399-3054.1981.tb04116.x
[55] Shi H, Zhu J K.  Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid[J]. Plant Molecular Biology, 2002, 50(3): 543-550.   doi: 10.1023/A:1019859319617
[56] Shu K, Qi Y, Chen F, et al.  Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis[J]. Frontiers in Plant Science, 2017, 8: 1372-.   doi: 10.3389/fpls.2017.01372
[57] Khan M N, Siddiqui M H, Mohammad F, et al.  Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defense system and osmoprotectant accumulation[J]. Acta Physiologiae Plantarum, 2010, 32(1): 121-132.   doi: 10.1007/s11738-009-0387-z
[58] Iqbal N, Umar S, Khan N A, et al.  A new perspective of phytohormones in salinity tolerance, regulation of proline metabolism[J]. Environmental and Experimental Botany, 2014, 100: 34-42.   doi: 10.1016/j.envexpbot.2013.12.006
[59] Ryu H, Cho Y G.  Plant hormones in salt stress tolerance[J]. Journal of Plant Biology, 2015, 58(3): 147-155.   doi: 10.1007/s12374-015-0103-z
[60] Pavlović I, Pěnčík A, Novák O, et al.  Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism[J]. Plant Physiology and Biochemistry, 2018, 125: 74-84.   doi: 10.1016/j.plaphy.2018.01.026
[61] Gujjar R S, Supaibulwatana K.  The mode of cytokinin functions assisting plant adaptations to osmotic stresses[J]. Plants, 2019, 8(12): 542-.   doi: 10.3390/plants8120542
[62] Nishiyama R, Watanabe, Y, Fujita Y, et al.  Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis[J]. Plant Cell, 2011, 23: 2169-2183.   doi: 10.1105/tpc.111.087395
[63] Helaly M N, El-Hoseiny H, El-Sheery N I, et al.  Regulation and physiological role of silicon in alleviating drought stress of mango[J]. Plant Physiology and Biochemistry, 2017, 118: 31-44.   doi: 10.1016/j.plaphy.2017.05.021
[64] Hosseini S A, Rad S N, Ali N, et al.  The ameliorative effect of silicon on maize plants grown in Mg-deficient conditions[J]. International Journal of Molecular Sciences, 2019, 20(4): 969-990.   doi: 10.3390/ijms20040969
[65] Ellouzi H, Hamed K B, Cela J, et al.  Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system[J]. Plant Signaling and Behavior, 2013, 8(2): e23136-.   doi: 10.4161/psb.23136
[66] De Domenico S, Taurino M, Gallo A, et al.  Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses[J]. Physiologia Plantarum, 2019, 165(2): 198-208.   doi: 10.1111/ppl.12810
[67] Liang Y, Sun W, Zhu Y, et al.  Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review[J]. Environmental Pollution, 2007, 147(2): 422-428.   doi: 10.1016/j.envpol.2006.06.008
[68] Zhao D, Hao Z, Tao J, et al.  Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall)[J]. Scientia Horticulturae, 2013, 151: 165-172.   doi: 10.1016/j.scienta.2012.12.013