[1] |
Munns R, Tester M.
Mechanisms of salinity tolerance[J]. Annual Review of Plant BiologyAnnual Review of Plant Biology, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911
|
[2] |
Zhu Y X, Gong H J.
Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable DevelopmentAgronomy for Sustainable Development, 2014, 34(2): 455-472.
doi: 10.1007/s13593-013-0194-1
|
[3] |
Munns R, Gilliham M.
Salinity tolerance of crops – what is the cost?[J]. New PhytologistNew Phytologist, 2015, 208(3): 668-673.
doi: 10.1111/nph.13519
|
[4] |
Liang Y C, Sun W C, Zhu Y G, et al.
Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review[J]. Environmental PollutionEnvironmental Pollution, 2007, 147(2): 422-428.
doi: 10.1016/j.envpol.2006.06.008
|
[5] |
Shi Y, Wang Y C, Flowers T J, et al.
Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions[J]. Journal of Plant PhysiologyJournal of Plant Physiology, 2013, 170(9): 847-853.
doi: 10.1016/j.jplph.2013.01.018
|
[6] |
Gong H J, Randall D P, Flowers T J.
Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow[J]. Plant, Cell & EnvironmentPlant, Cell & Environment, 2006, 29(10): 1970-1979.
|
[7] |
Bosnic P, Bosnic D, Jasnic J, et al.
Silicon mediates sodium transport and partitioning in maize under moderate salt stress[J]. Environmental and Experimental BotanyEnvironmental and Experimental Botany, 2018, 155: 681-687.
doi: 10.1016/j.envexpbot.2018.08.018
|
[8] |
Liang Y C.
Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress[J]. Plant and SoilPlant and Soil, 1999, 209(2): 217-224.
doi: 10.1023/A:1004526604913
|
[9] |
Liang Y C, Zhang W H, Chen Q, et al.
Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.)[J]. Environmental and Experimental BotanyEnvironmental and Experimental Botany, 2005, 53(1): 29-37.
doi: 10.1016/j.envexpbot.2004.02.010
|
[10] |
Tuna A L, Kaya C, Higgs D, et al.
Silicon improves salinity tolerance in wheat plants[J]. Environmental and Experimental BotanyEnvironmental and Experimental Botany, 2008, 62(1): 10-16.
doi: 10.1016/j.envexpbot.2007.06.006
|
[11] |
Saqib M, Zorb C, Schubert S.
Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress[J]. Functional Plant BiologyFunctional Plant Biology, 2008, 35(7): 633-639.
doi: 10.1071/FP08100
|
[12] |
Liang Y C, Hua H X, Zhu Y G, et al.
Importance of plant species and external silicon concentration to active silicon uptake and transport[J]. New PhytologistNew Phytologist, 2006, 172(1): 63-72.
doi: 10.1111/j.1469-8137.2006.01797.x
|
[13] |
Liu P, Yin L N, Deng X P, et al.
Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.[J]. Journal of Experimental BotanyJournal of Experimental Botany, 2014, 65(17): 4747-4756.
doi: 10.1093/jxb/eru220
|
[14] |
Ma J F, Tamai K, Yamaji N, et al.
A silicon transporter in rice[J]. NatureNature, 2006, 440(7084): 688-691.
doi: 10.1038/nature04590
|
[15] |
Wang H S, Yu C, Fan P P, et al.
Identification of two cucumber putative silicon transporter genes in Cucumis sativus[J]. Journal of Plant Growth RegulationJournal of Plant Growth Regulation, 2015, 34(2): 332-338.
doi: 10.1007/s00344-014-9466-5
|
[16] |
Wu J W, Guo J, Hu Y H, et al.
Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress[J]. Frontiers in Plant ScienceFrontiers in Plant Science, 2015, 6: 453-.
|
[17] |
Wu X Y, Yu Y G, Baerson S R, et al.
Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens[J]. Frontiers in Plant ScienceFrontiers in Plant Science, 2017, 8: 28-.
|
[18] |
Porra R J, Thompson W A, Kriedemann P E.
Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents-verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy[J]. Biochimica Et Biophysica ActaBiochimica Et Biophysica Acta, 1989, 975(3): 384-394.
doi: 10.1016/S0005-2728(89)80347-0
|
[19] |
Heath R L, Packer L.
Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and BiophysicsArchives of Biochemistry and Biophysics, 1968, 125(1): 189-198.
doi: 10.1016/0003-9861(68)90654-1
|
[20] |
Giannopolitis C N, Ries S K.
Superoxide dismutases. 1. Occurrence in higher plants[J]. Plant PhysiologyPlant Physiology, 1977, 59(2): 309-314.
doi: 10.1104/pp.59.2.309
|
[21] |
Cakmak I, Marschner H.
Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant PhysiologyPlant Physiology, 1992, 98(4): 1222-1227.
doi: 10.1104/pp.98.4.1222
|
[22] |
Nakano Y, Asada K.
Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant & Cell PhysiologyPlant & Cell Physiology, 1981, 22(5): 867-880.
|
[23] |
Liang Y C, Chen Q, Liu Q, et al.
Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)[J]. Journal of Plant PhysiologyJournal of Plant Physiology, 2003, 160(10): 1157-1164.
doi: 10.1078/0176-1617-01065
|
[24] |
Okada T, Nakayama H, Shinmyo A, et al.
Expression of OsHAK genes encoding potassium ion transporters in rice[J]. Plant BiotechnologyPlant Biotechnology, 2008, 25(3): 241-245.
doi: 10.5511/plantbiotechnology.25.241
|
[25] |
Porcel R, Aroca R, Azcon R, et al.
Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. MycorrhizaMycorrhiza, 2016, 26(7): 673-684.
doi: 10.1007/s00572-016-0704-5
|
[26] |
Yang T, Zhang S, Hu Y, et al.
The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant PhysiologyPlant Physiology, 2014, 166(2): 945-959.
doi: 10.1104/pp.114.246520
|
[27] |
Yan G C, Nikolic M, Ye M J, et al.
Silicon acquisition and accumulation in plant and its significance for agriculture[J]. Journal of Integrative AgricultureJournal of Integrative Agriculture, 2018, 17(10): 2138-2150.
doi: 10.1016/S2095-3119(18)62037-4
|
[28] |
Byrt C S, Munns R.
Living with salinity[J]. New PhytologistNew Phytologist, 2008, 179(4): 903-905.
doi: 10.1111/j.1469-8137.2008.02596.x
|
[29] |
Munns R.
Comparative physiology of salt and water stress[J]. Plant, Cell & EnvironmentPlant, Cell & Environment, 2002, 25(2): 239-250.
|
[30] |
Ma J F.
Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Science and Plant NutritionSoil Science and Plant Nutrition, 2004, 50(1): 11-18.
doi: 10.1080/00380768.2004.10408447
|
[31] |
Zhu Y X, Gong H J, Yin J L.
Role of silicon in mediating salt tolerance in plants: A review[J]. PlantsPlants, 2019, 8: 147-.
doi: 10.3390/plants8060147
|
[32] |
Yan G, Fan X, Peng M, et al.
Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern[J]. Frontiers in Plant ScienceFrontiers in Plant Science, 2020, 11: 260-.
doi: 10.3389/fpls.2020.00260
|
[33] |
Zhu Z J, Wei G Q, Li J, et al.
Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.)[J]. Plant SciencePlant Science, 2004, 167(3): 527-533.
doi: 10.1016/j.plantsci.2004.04.020
|
[34] |
Zhu J K.
Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant BiologyCurrent Opinion in Plant Biology, 2003, 6(5): 441-445.
doi: 10.1016/S1369-5266(03)00085-2
|
[35] |
Zhu J K.
Plant salt tolerance[J]. Trends in Plant ScienceTrends in Plant Science, 2001, 6(2): 66-71.
doi: 10.1016/S1360-1385(00)01838-0
|
[36] |
Kronzucker H J, Britto D T.
Sodium transport in plants: A critical review[J]. New PhytologistNew Phytologist, 2011, 189(1): 54-81.
doi: 10.1111/j.1469-8137.2010.03540.x
|
[37] |
Chen G, Hu Q D, Luo L, et al.
Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant, Cell & EnvironmentPlant, Cell & Environment, 2015, 38(12): 2747-2765.
|
[38] |
Banuelos M A, Garciadeblas B, Cubero B, et al.
Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant PhysiologyPlant Physiology, 2002, 130(2): 784-795.
doi: 10.1104/pp.007781
|
[39] |
Obata T, Kitamoto H K, Nakamura A, et al.
Rice Shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells[J]. Plant PhysiologyPlant Physiology, 2007, 144(4): 1978-1985.
doi: 10.1104/pp.107.101154
|
[40] |
Shen Y, Shen L, Shen Z, et al.
The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice[J]. Plant Cell and EnvironmentPlant Cell and Environment, 2015, 38(12): 2766-2779.
doi: 10.1111/pce.12586
|