[1] 董红敏, 李玉娥, 陶秀萍, 等.  中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273.   doi: 10.3321/j.issn:1002-6819.2008.10.055
Dong H M, Li Y E, Tao X P, et al.  China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273.   doi: 10.3321/j.issn:1002-6819.2008.10.055
[2] Schmidt M W I, Skjemstad J O, Gehrt E, et al.  Charred organic carbon in German chernozemic soils[J]. European Journal of Soil Science, 1999, 50(2): 351-365.   doi: 10.1046/j.1365-2389.1999.00236.x
[3] Skjemstad J O, Reicosky D C, Wilts A R, et al.  Charcoal carbon in U. S. agricultural soils[J]. Soil Science Society of America Journal, 2002, 66: 1249-1255.   doi: 10.2136/sssaj2002.1249
[4]

Lehmann J, Czimczik C, Laird D, et al. Stability of biochar in soil[A]. Lehmann J, Joseph S. Biochar for Environmental Management Science and Technology[C]. London: Earthscan, 2009. 183-206.

[5] Fang Y Y, Singh W, Singh B P.  Effect of temperature on biochar priming effects and its stability in soils[J]. Soil Biology & Biochemistry, 2015, 80: 136-145.
[6] Lehmann J, Gaunt J, Rondon M.  Biochar sequestration in terrestrial ecosystems: a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[7] Mukherjee A, Lal R, Zimmerman A R.  Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil[J]. Science of the Total Environment, 2014, 487: 26-36.   doi: 10.1016/j.scitotenv.2014.03.141
[8] Wang J Y, Xiong Z Q, Kuzyakov Y.  Biochar stability in soil: meta-analysis of decomposition and priming effects[J]. GCB Bioenergy, 2016, 8: 512-523.   doi: 10.1111/gcbb.2016.8.issue-3
[9] Spokas K A, Reicosky D C.  Impacts of sixteen different biochars on soil greenhouse gas production[J]. Annals of Environmental Science, 2009, 3: 179-193.
[10] Lu W W, Ding W X, Zhang J H, et al.  Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect J][J]. Soil Biology & Biochemistry, 2014, 76: 12-21.
[11] Zhang A F, Liu Y M, Pan G X, et al.  Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351: 263-275.   doi: 10.1007/s11104-011-0957-x
[12]

Rogovska N, Fleming P, Laird D, et al. Greenhouse gas emissions from soils as affected by addition of biochar[A]. Houston, USA: Joint Annual Meeting of ASA, CSSA and SSSA, 2008.

[13]

刘玉学. 生物质炭输入对土壤氮素流失及温室气体排放特性的影响[D]. 杭州: 浙江大学硕士学位论文, 2011.

Liu Y X. Effect of biochar on the characteristic of nitrogen loss and greenhouse gas emission[D]. Hangzhou: MS Thesis of Zhejiang University, 2011.

[14] Feng Y, Xu Y, Yu Y, et al.  Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology & Biochemistry, 2012, 46: 80-88.
[15] 郝小雨, 周宝库, 马星竹, 等.  氮肥管理措施对黑土玉米田温室气体排放的影响[J]. 中国环境科学, 2015, 35(11): 3227-3238.   doi: 10.3969/j.issn.1000-6923.2015.11.004
Hao X Y, Zhou B K, Ma X Z, et al.  Effects of nitrogen fertilizer management on greenhouse gas emissions from maize field in black soil[J]. China Environmental Science, 2015, 35(11): 3227-3238.   doi: 10.3969/j.issn.1000-6923.2015.11.004
[16] 王斌, 李玉娥, 万运帆, 等.  控释肥和添加剂对双季稻温室气体排放影响和减排评价[J]. 中国农业科学, 2014, 47(2): 314-323.
Wang B, Li Y E, Wan Y F, et al.  Effect and assessment of controlled release fertilizer and additive treatments on greenhouse gases emission from a double rice field[J]. Scientia Agricultura Sinica, 2014, 47(2): 314-323.
[17] 丁维军, 陶林海, 吴林, 等.  新型缓释尿素对削减温室气体、NH3排放和淋溶作用的研究[J]. 环境科学学报, 2013, 33(10): 2840-2847.
Ding W J, Tao L H, Wu L, et al.  Effects of controlled release urea on greenhouse gases, NH3 emissions and eluviation[J]. Acta Scientiae Circumstantiae, 2013, 33(10): 2840-2847.
[18] 翟振, 王立刚, 李虎, 等.  有机无机肥料配施对春玉米农田N2O排放及净温室气体的影响[J]. 农业环境科学学报, 2013, 32(12): 2502-2510.
Zhai Z, Wang L G, Li H, et al.  Nitrous oxide emissions and net greenhouse effect from spring-maize field as influenced by combined application of manure and inorganic fertilizer[J]. Journal of Agro-Environment Science, 2013, 32(12): 2502-2510.
[19] 高洪军, 张卫建, 彭畅, 等.  长期施肥下黑土玉米田土壤温室气体的排放特征[J]. 农业资源与环境学报, 2017, 34(5): 422-430.
Gao H J, Zhang W J, Peng C, et al.  Emission characteristics of greenhouse gas from maize field of black soil region under long-term fertilization[J]. Journal of Agricultural Resources and Environment, 2017, 34(5): 422-430.
[20] 董玉红, 欧阳竹.  有机肥对农田土壤二氧化碳和甲烷通量的影响[J]. 应用生态学报, 2005, 16(7): 1303-1307.   doi: 10.3321/j.issn:1001-9332.2005.07.024
Dong Y H, Ouyang Z.  Effects of organic manures on CO2 and CH4 fluxes of farmland[J]. Chinese Journal of Applied Ecology, 2005, 16(7): 1303-1307.   doi: 10.3321/j.issn:1001-9332.2005.07.024
[21]

鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.

Lu R K. Soil and agricultural chemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 1999.

[22] Zhang X Y, Fan C H, Ma Y C, et al.  Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice-wheat rotation system in China[J]. Nutrient Cycling in Agroecosystems, 2014, 100: 301-313.   doi: 10.1007/s10705-014-9651-8
[23] 熊正琴, 张晓旭.  氮肥高效施用在低碳农业中的关键作用[J]. 植物营养与肥料学报, 2017, 23(6): 1433-1440.
Xiong Z Q, Zhang X X.  Key role of efficient nutrient application in low carbon agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1433-1440.
[24] 王春雷, 冯晔, 曹霞, 等.  深松和密度互作对北方春玉米生长特性的影响[J]. 东北农业科学, 2016, 41(4): 27-31.
Wang C L, Feng Y, Gao X, et al.  Effect of interaction between deep scarification with density on spring corn growth characteristics in Northern China[J]. Journal of Northeast Agricultural Sciences, 2016, 41(4): 27-31.
[25]

芦思佳. 施肥对黑土有机碳组分及碳收支的影响[D]. 哈尔滨: 东北农业大学硕士学位论文, 2011.

Lu S J. Impact of fertilization on the component and budget of black soil organic carbon[D]. Harerbin: MS Thesis of Northeast Agricultural University, 2011.

[26] 杨兰芳, 蔡祖聪.  玉米生长和施氮水平对土壤有机碳更新的影响[J]. 环境科学学报, 2006, 26(2): 280-286.   doi: 10.3321/j.issn:0253-2468.2006.02.020
Yang L F, Cai Z C.  Effect of growing maize and N application on the renewal of soil organic carbon[J]. Acta Scientia Circumstantiae, 2006, 26(2): 280-286.   doi: 10.3321/j.issn:0253-2468.2006.02.020
[27] Kimura M, Murase J, Lu Y.  Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation organic materials and the fates of their end products (CO2 and CH4)[J]. Soil Biology & Biochemistry, 2004, 36(9): 1399-1416.   doi: 10.1016/j.soilbio.2004.03.006
[28] Lal R.  Carbon emissions from farm operations[J]. Environment International, 2004, 30: 981-990.   doi: 10.1016/j.envint.2004.03.005
[29] West T O, Marland G.  A synthesis of carbon sequestration, carbon emissions and net carbon flux in agriculture: comparing tillage parctices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1): 217-232.
[30] 张恒恒, 严昌荣, 张燕卿, 等.  北方旱区免耕对农田生态系统固碳与碳平衡的影响[J]. 农业工程学报, 2015, 31(4): 240-247.   doi: 10.3969/j.issn.1002-6819.2015.04.034
Zhang H H, Yan C R, Zhang Y Q, et al.  Effect of no tillage on carbon sequestration and carbon balance in farming ecosystem in dryland area of northern China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 240-247.   doi: 10.3969/j.issn.1002-6819.2015.04.034
[31] 成功, 张阿凤, 王旭东, 等.  运用" 碳足迹”方法评估小麦秸秆及其生物炭添加对农田生态系统净碳汇的影响[J]. 农业环境科学学报, 2016, 35(3): 604-612.
Cheng G, Zhang A F, Wang X D, et al.  Assessment of wheat straw and its biochar effects on carbon sink in agricultural ecosystems using" carbon footprint”method[J]. Journal of Agro-Environment Science, 2016, 35(3): 604-612.
[32] 战领, 杨汉波, 雷慧闽.  基于通量观测数据的玉米碳交换量及水分利用效率分析[J]. 农业工程学报, 2016, 37(s1): 88-93.
Zhan L, Yang H B, Lei H M.  Analysis of corn water consumption, carbon assimilation and ecosystem water use efficiency based on flux observations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 37(s1): 88-93.
[33] Zhang Y J, Yu G R, Yang J, et al.  Climate-driven global changes in carbon use efficiency[J]. Global Ecology and Biogeography, 2014, 23: 144-155.   doi: 10.1111/geb.2014.23.issue-2
[34] 姜慧敏, 郭俊娒, 刘晓, 等.  不同来源氮素配合施用提高东北春玉米氮素利用与改善土壤肥力的可持续性研究[J]. 植物营养与肥料学报, 2017, 23(4): 933-941.
Jiang H M, Guo J M, Liu X, et al.  Effects of combined application of nitrogen from different source on nitrogen utilization of spring maize and sustainability of soil fertility in Northeast Chin[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 933-941.
[35] 查燕, 武雪萍, 张会民, 等.  长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响[J]. 中国农业科学, 2015, 48(23): 4649-4659.   doi: 10.3864/j.issn.0578-1752.2015.23.006
Zha Y, Wu X P, Zhang H M, et al.  Effects of long-term organic and inorganic fertilization on enhancing soil organic carbon and basic soil productivity in black soil J][J]. Scientia Agricultura Sinica, 2015, 48(23): 4649-4659.   doi: 10.3864/j.issn.0578-1752.2015.23.006
[36] Kirkby C A, Richardson A E, Wade J L, et al.  Inorganic nutrients increase humification efficiency and C-sequestration in an annually cropped soil[J]. PLoS ONE, 2016, 11(5): e0153698-.   doi: 10.1371/journal.pone.0153698
[37] Jones D L, Rousk J, Edwards-Jones G, et al.  Biochar-mediated changes in soil quality and plant growth in a three-year field trial[J]. Soil Biology & Biochemistry, 2012, 45: 113-124.
[38] Zimmerman A R, Gao B, Ahn M Y.  Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology & Biochemistry, 2011, 43: 1169-1179.
[39] Bossio D A, Horwath W R, Mutters R G, et al.  Methane pool and flux dynamics in a rice field following straw incorporation[J]. Soil Biology & Biochemistry, 1999, 31(9): 1313-1322.
[40]

杨敏. 水稻秸秆生物质炭在稻田土壤中的稳定性及其机理研究[D]. 杭州: 浙江大学硕士学位论文, 2013.

Yang M. Stability of rice straw-derived biochar and its mechanism in paddy soil[D]. Hangzhou: MS Thesis of Zhejiang University, 2013.