[1] Lynch J P.  Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems[J]. Annals of Botany, 2013, 112(2): 347-357.   doi: 10.1093/aob/mcs293
[2] Mi G H, Chen F J, Wu Q P, et al.  Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems[J]. Science China Life Sciences, 2010, 53(12): 1369-1373.   doi: 10.1007/s11427-010-4097-y
[3] Zhang X, Davidson E A, Mauzerall D L, et al.  Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59.   doi: 10.1038/nature15743
[4] Guo J H, Liu X J, Zhang Y, et al.  Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.   doi: 10.1126/science.1182570
[5] Mueller N D, Gerber J S, Johnston M, et al.  Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490(7419): 254-257.   doi: 10.1038/nature11420
[6] Steffen W, Richardson K, Rockström J, et al.  Planetary boundaries: Guiding human development on a changing planet[J]. Science, 2015, 347(6223): 1259855-.   doi: 10.1126/science.1259855
[7] Chen Q W, Mu X H, Chen F J, et al.  Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply[J]. European Journal of Agronomy, 2016, 80: 137-153.   doi: 10.1016/j.eja.2016.08.002
[8] Li X X, Zeng R S, Liao H.  Improving crop nutrient efficiency through root architecture modifications[J]. Journal of Integrative Plant Biology, 2016, 58(3): 193-202.   doi: 10.1111/jipb.12434
[9] Li M, Xu J S, Wang X X, et al.  Photosynthetic characteristics and metabolic analyses of two soybean genotypes revealed adaptive strategies to low-nitrogen stress[J]. Journal of Plant Physiology, 2018, 229: 132-141.   doi: 10.1016/j.jplph.2018.07.009
[10] Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C.  Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops[J]. Journal of Experimental Botany, 2016, 68(10): 2513-2529.
[11] Zhao B, Ata-Ul-Karim S T, Liu Z D, et al.  Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize[J]. Field Crops Research, 2017, 208: 60-68.   doi: 10.1016/j.fcr.2017.03.010
[12] Xu G H, Fan X R, Miller A J.  Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63: 153-182.   doi: 10.1146/annurev-arplant-042811-105532
[13] Kiba T, Krapp A.  Plant nitrogen acquisition under low availability: regulation of uptake and root architecture[J]. Plant and Cell Physiology, 2016, 57(4): 707-714.   doi: 10.1093/pcp/pcw052
[14] Saiz-Fernández I, De Diego N, Sampedro M C, et al.  High nitrate supply reduces growth in maize, from cell to whole plant[J]. Journal of Plant Physiology, 2015, 173: 120-129.   doi: 10.1016/j.jplph.2014.06.018
[15] Cohen I, Rapaport T, Berger R T, Rachmilevitch S.  The effects of elevated CO2 and nitrogen nutrition on root dynamics[J]. Plant Science, 2018, 272: 294-300.   doi: 10.1016/j.plantsci.2018.03.034
[16] Kumar R, Bishop E, Bridges W C, et al.  Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize[J]. Plant, Cell & Environment, 2019, 42(9): 2597-2611.
[17] Griffiths C A, Paul M J, Foyer C H.  Metabolite transport and associated sugar signalling systems underpinning source/sink interactions[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857(10): 1715-1725.   doi: 10.1016/j.bbabio.2016.07.007
[18] Cui X Y, Song J F.  Soil NH4+/NO3 nitrogen characteristics in primary forests and the adaptability of some coniferous species[J]. Frontiers of Forestry in China, 2007, 2(1): 1-10.   doi: 10.1007/s11461-007-0001-8
[19] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F.  Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69: 85-122.   doi: 10.1146/annurev-arplant-042817-040056
[20] Deng M, Li D Q, Luo J Y, et al.  The genetic architecture of amino acids dissection by association and linkage analysis in maize[J]. Plant Biotechnology Journal, 2017, 15(10): 1250-1263.   doi: 10.1111/pbi.12712
[21] 魏明月, 云菲, 刘国顺, 宋亮.  不同光环境下烟草光合特性及同化产物的积累与分配机制[J]. 应用生态学报, 2017, 28(1): 159-168.
[22] Yamori W, Kondo E, Sugiura D, et al.  Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex[J]. Plant, Cell & Environment, 2016, 39(1): 80-87.
[23] Ning P, Yang L, Li C J, Fritschi F B.  Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize[J]. Journal of Experimental Botany, 2018, 69(7): 1707-1719.   doi: 10.1093/jxb/erx496
[24] Radchuk V, Riewe D, Peukert M, et al.  Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains[J]. Journal of Experimental Botany, 2017, 68(16): 4595-4612.   doi: 10.1093/jxb/erx266
[25] McKinley B, Rooney W, Wilkerson C, Mullet J.  Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor[J]. The Plant Journal, 2016, 88(4): 662-680.   doi: 10.1111/tpj.13269
[26] Strable J, Scanlon M J.  Maize (Zea mays): a model organism for basic and applied research in plant biology[J]. Cold Spring Harbor Protocols, 2009, 4(10): 1-9.
[27] Kurtyka R, Małkowski E, Kita A, Karcz W.  Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings[J]. Polish Journal of Environmental Studies, 2008, 17(1): 51-56.
[28] 冯万军, 张义荣, 姚颖垠, 等.  玉米杂交种与亲本苗期根系蛋白差异表达谱分析[J]. 自然科学进展, 2009, 19(6): 619-627.
[29] Li P C, Zhuang Z J, Cai H G, et al.  Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency[J]. Journal of Integrative Plant Biology, 2016, 58(3): 242-253.   doi: 10.1111/jipb.12384
[30] Chen C G, Chen H, He Y H, Xia R.  TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface[J]. BioRxiv, 2018, : 289660-.
[31] 姜琳琳, 韩立思, 韩晓日, 等.  氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响[J]. 植物营养与肥料学报, 2011, 17(1): 247-253.
[32] Paul M J, Pellny T K.  Carbon metabolite feedback regulation of leaf photosynthesis and development[J]. Journal of Experimental Botany, 2003, 54(382): 539-547.   doi: 10.1093/jxb/erg052
[33] Ghannoum O, Evans J R, Chow W S, et al.  Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses[J]. Plant Physiology, 2005, 137(2): 638-650.   doi: 10.1104/pp.104.054759
[34] Evans J R.  Improving photosynthesis[J]. Plant Physiology, 2013, 162(4): 1780-1793.   doi: 10.1104/pp.113.219006
[35] Garnett T, Conn V, Kaiser B N.  Root based approaches to improving nitrogen use efficiency in plants[J]. Plant, Cell & Environment, 2009, 32(9): 1272-1283.
[36] Mu X H, Chen Q W, Chen F J, et al.  A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf[J]. International Journal of Molecular Sciences, 2017, 18(12): 2624-.   doi: 10.3390/ijms18122624
[37] Paponov I A, Sambo P, Presterl T, et al.  Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling[J]. Plant and Soil, 2005, 272(1-2): 111-123.   doi: 10.1007/s11104-004-4211-7
[38] Muchow R C, Sinclair T R.  Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum[J]. Crop Science, 1994, 34(3): 721-727.   doi: 10.2135/cropsci1994.0011183X003400030022x
[39] McCullough D E, Aguilera A, Tollenaar M.  N uptake, N partitioning, and photosynthetic N-use efficiency of an old and a new maize hybrid[J]. Canadian Journal of Plant Science, 1994, 74(3): 479-484.   doi: 10.4141/cjps94-088
[40] Schlüter U, Mascher M, Colmsee C, et al.  Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis[J]. Plant Physiology, 2012, 160(3): 1384-1406.   doi: 10.1104/pp.112.204420
[41] Coque M, Martin A, Veyrieras J B, et al.  Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences[J]. Theoretical and Applied Genetics, 2008, 117(5): 729-747.   doi: 10.1007/s00122-008-0815-2
[42] Wang Q W, Daumal M, Nagano S, et al.  Plasticity of functional traits and optimality of biomass allocation in elevational ecotypes of Arabidopsis halleri grown at different soil nutrient availabilities[J]. Journal of Plant Research, 2019, 132: 237-249.   doi: 10.1007/s10265-019-01088-9
[43] Linkohr B I, Williamson L C, Fitter A H, et al.  Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis[J]. The Plant Journal, 2002, 29(6): 751-760.   doi: 10.1046/j.1365-313X.2002.01251.x
[44] Zhan A, Lynch J P.  Reduced frequency of lateral root branching improves N capture from low-N soils in maize[J]. Journal of Experimental Botany, 2015, 66(7): 2055-2065.   doi: 10.1093/jxb/erv007
[45] Liu J C, Li J H, Chen F J, et al.  Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.)[J]. Plant and Soil, 2008, 305(1-2): 253-265.   doi: 10.1007/s11104-008-9562-z
[46] Braun D M, Slewinski T L.  Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading[J]. Plant Physiology, 2009, 149(1): 71-81.   doi: 10.1104/pp.108.129049
[47] Saiz-Fernández I, De Diego N, Brzobohatý B, et al.  The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.)[J]. Plant Physiology and Biochemistry, 2017, 120: 213-222.   doi: 10.1016/j.plaphy.2017.10.006
[48] Sabermanesh K, Holtham L R, George J, et al.  Transition from a maternal to external nitrogen source in maize seedlings[J]. Journal of Integrative Plant Biology, 2017, 59(4): 261-274.   doi: 10.1111/jipb.12525
[49] Chun L, Mi G H, Li J S, et al.  Genetic analysis of maize root characteristics in response to low nitrogen stress[J]. Plant and Soil, 2005, 276(1-2): 369-382.   doi: 10.1007/s11104-005-5876-2
[50] Hardtke C S.  Root development-branching into novel spheres[J]. Current Opinion in Plant Biology, 2006, 9(1): 66-71.   doi: 10.1016/j.pbi.2005.11.004
[51] Abdel-Ghani A H, Kumar B, Reyes-Matamoros J, et al.  Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen level[J]. Euphytica, 2013, 189(1): 123-133.   doi: 10.1007/s10681-012-0759-0
[52] 李强, 罗延宏, 谭杰, 等.  玉米杂交种苗期耐低氮指标的筛选与综合评价[J]. 中国生态农业学报, 2014, 22(10): 1190-1199.
[53] 吴雅薇, 李强, 豆攀, 等.  低氮胁迫对不同耐低氮玉米品种苗期伤流液性状及根系活力的影响[J]. 植物营养与肥料学报, 2017, 23(2): 278-288.