[1]

Stocker T F, Qin D, Plattner G K, et al. The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change[A]. IPCC. Climate Change 2013[M]: Cambridge, United Kingdom and New York, USA: Cambridge University Press, 1535.

[2]

Solomon S, Qin D, Manning M, et al. The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change[A]. IPCC. Climate Change 2007[M]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 996.

[3] Vermeulen S J, Campbell B M, Ingram J S I.  Climate change and food systems[J]. Annual Review of Environment and Resources, 2012, 37: 195-222.   doi: 10.1146/annurev-environ-020411-130608
[4] Paustian K, Cole C V, Sauerbeck D, Sampson N.  CO2 mitigation by agriculture: An overview[J]. Climate Change, 1998, 40: 135-162.   doi: 10.1023/A:1005347017157
[5] Wollenberg E, Richards M, Smith P, et al.  Reducing emissions from agriculture to meet the 2℃target[J]. Global Chang Biology, 2016, 22(12): 3859-3864.   doi: 10.1111/gcb.13340
[6]

FAO. FAO statistical yearbook 2013: World food and agriculture[OB/OL]. http://apps.fao.org.

[7] Shang Q Y, Yang X, Gao C, et al.  Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments[J]. Global Change Biology, 2011, 17(6): 2196-2210.   doi: 10.1111/j.1365-2486.2010.02374.x
[8] Gu J X, Yuan M X, Liu J X, et al.  Trade-off between soil organic carbon sequestration and nitrous oxide emissions from winter wheat-summer maize rotations: Implications of a 25-year fertilization experiment in Northwestern China[J]. Science of the Total Environment, 2017, 595: 371-379.   doi: 10.1016/j.scitotenv.2017.03.280
[9] Huang X M, Chen C Q, Qian H Y, et al.  Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978[J]. Journal of Cleaner Production, 2017, 142: 1629-1637.   doi: 10.1016/j.jclepro.2016.11.131
[10] Jin V L, Schmer M R, Stewart C E, et al.  Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn[J]. Global Change Biology, 2017, 23: 2848-2862.   doi: 10.1111/gcb.13637
[11] Zhang M, Li B, Xiong Z.  Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: a three-year field study[J]. Atmospheric Environment, 2016, 145: 92-103.   doi: 10.1016/j.atmosenv.2016.09.024
[12]

中国经济社会大数据研究平台. 中国农村统计年鉴[M ]. 北京: 中国统计出版社, 2019.

China Economic and Social Big Data Research Platform. China rural statistical yearbook [M]. Beijing: China statistics Press, 2019.

[13] Cui Z, Chen X, Zhang F.  Current nitrogen management status and measures to improve the intensive wheat-maize system in China[J]. AMBIO, 2010, 39(5‒6): 376-384.
[14] 裴宏伟, 沈彦俊, 刘昌明.  华北平原典型农田氮素与水分循环[J]. 应用生态学报, 2015, 26(1): 283-296.
[15] 曾昭海.  豆科作物与禾本科作物轮作研究进展及前景[J]. 中国生态农业学报, 2018, 26(1): 57-61.
[16] Zhao J, Yang Y, Zhang K, et al.  Does crop rotation yield more in China? A meta-analysis[J]. Field Crops Research, 2020, 245: 107659-.   doi: 10.1016/j.fcr.2019.107659
[17]

FAO. FAOSTAT[DB/OL]. http://www.fao.org/faostat/zh/#data/QC. 2017.

[18] Bhattacharyya R, Chandra S, Singh R D, et al.  Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat-soybean rotation[J]. Soil & Tillage Research, 2007, 94: 386-396.
[19] Qin W, Wang D Z, Guo X S, et al.  Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: Results from a long-term experiment and crop modelling[J]. Scientific Reports, 2015, 5(1): 17514-.   doi: 10.1038/srep17514
[20]

IUSS Working Group WRB. World reference base for soil resources 2014 (update 2015). International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106[M]. Rome: FAO, 2015.

[21]

Hutchinson G, Livingston G. Use of chamber systems to measure trace gas fluxes[A]. Harper L A. Agricultural ecosystem effects on trace gases and global climate[M]. Madison, WI: American Society of Agronomy, 1993, 79–93.

[22] Zou J W, Huang Y, Jiang J Y, et al.  A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochemical Cycles, 2005, 19: GB2021-.
[23] Li T, Liu Z C, Zhang H C, et al.  Environmental emissions and energy consumptions assessment of a diesel engine from the life cycle perspective[J]. Journal of Cleaner Production, 2013, 53: 7-12.   doi: 10.1016/j.jclepro.2013.04.034
[24]

中华人民共和国国家发展和改革委员会. 省级温室气体清单编制指南(试行)[S]. 2011: 61–68.

National Development and Reform Commission of the People’s Republic of China. Guidelines for the preparation of provincial green-house gas inventories (Trial)[S]. 2011: 61–68.

[25] 宋大平, 庄大方, 陈巍.  安徽省畜禽粪便污染耕地、水体现状及其风险评价[J]. 环境科学, 2012, 33(1): 110-116.
[26] Lal R.  Carbon emissions from farm operations[J]. Environment International, 2004, 30: 981-990.   doi: 10.1016/j.envint.2004.03.005
[27]

张晓旭. 不同集约化栽培模式稻麦轮作系统净碳收支、温室效应及碳足迹研究[D]. 南京: 南京农业大学博士学位论文, 2017.

Zhang X X. Studies on net carbon budget, global warming potential and carbon footprint in annual rice-wheat rotations under different intensified cultivation patterns[D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2017.

[28]

Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter[A]. Page A L, Miller R H, Keeney D R. Methods of soil analysis, Part 2: Chemical and microbiological properties[M]. Madison, WI: American Society of Agronomy, 1982: 539–579.

[29]

Culley J. Density and compressibility [A]. Carter M R. Soil sampling and methods of analysis[M]. Boca Raton, Florida: Lewis Publishers, 1993. 529–539.

[30] Bellamy P, Loveland P, Bradley R, et al.  Carbon losses from all soils across England and Wales 1978–2003[J]. Nature, 2005, 437: 245-248.   doi: 10.1038/nature04038
[31] Pan G, Xu X, Smith P, et al.  An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring[J]. Agriculture, Ecosystems & Environment, 2010, 136: 133-138.
[32] Lu F, Wang X, Han B, et al.  Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland[J]. Global Change Biology, 2009, 15(2): 281-305.   doi: 10.1111/j.1365-2486.2008.01743.x
[33] Berhane M, Xu M, Liang Z, et al.  Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis[J]. Global Change Biology, 2020, 26(4): 2686-2701.   doi: 10.1111/gcb.15018
[34] Mosier A R, Halvorson A D, Reule C A, et al.  Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado[J]. Journal of Environmental Quality, 2006, 35: 1584-.   doi: 10.2134/jeq2005.0232
[35] Bandyopadhyay K K, Misra A K, Ghosh P K, et al.  Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean[J]. Soil & Tillage Research, 2010, 110(1): 115-125.
[36] Chen H, Deng A X, Zhang W J, et al.  Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat[J]. The Crop Journal, 2018, 6(6): 589-599.
[37] 张丽娟, 刘树庆, 李彦慧, 等.  栗钙土有机物料的腐解特征及土壤有机质调控[J]. 土壤通报, 2001, 32(5): 201-205.   doi: 10.3321/j.issn:0564-3945.2001.05.003
[38] Bhattacharyya R, Pandey A K, Gopinath K A, et al.  Fertilization and crop residue addition impacts on yield sustainability under a rainfed maize-wheat system in the Himalayas[J]. Proceedings of the National Academy of Sciences (India Section B-Biological Sciences), 2016, 86: 21-32.   doi: 10.1007/s40011-014-0394-8
[39] Hua K K, Zhang W J, Guo Z B, et al.  Evaluating crop response and environmental impact of the accumulation of phosphorus due to long-term manuring of vertisol soil in northern China[J]. Agriculture Ecosystems & Environment, 2016, 219: 101-110.
[40] Girma K, Holtz S L, Arnall D B, et al.  The magruder plots: untangling the puzzle[J]. American Society of Agronomy, 2007, 99: 1191-1198.   doi: 10.2134/agronj2007.0008
[41] 霍琳, 张晓贺, 杨思存, 等.  有机无机肥配施对新垦盐渍荒地玉米养分吸收利用的影响[J]. 干旱地区农业研究, 2013, 31(5): 173-178.   doi: 10.3969/j.issn.1000-7601.2013.03.028
[42] Thangarajan R, Bolan N S, Tian G, et al.  Role of organic amendment application on greenhouse gas emission from soil[J]. Science of the Total Environment, 2013, 465(6): 72-96.
[43] Sun B F, Zhao H, Lü Y Z, et al.  The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands[J]. Journal of Integrative Agriculture, 2016, 15(2): 440-450.   doi: 10.1016/S2095-3119(15)61063-2
[44] Smith P, Powlson D S, Glendining M J, et al.  Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments[J]. Global Change Biology, 1997, 3: 67-79.   doi: 10.1046/j.1365-2486.1997.00055.x
[45] Lal R.  Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1): 1-22.
[46] Huang T, Gao B, Christie P, et al.  Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management[J]. Biogeosciences, 2013, 10(8): 7897-7911.
[47] Yang B, Xiong Z, Wang J, et al.  Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: A 3-year field experiment[J]. Ecological Engineering, 2015, 81: 289-297.   doi: 10.1016/j.ecoleng.2015.04.071
[48] 王上, 李康利, 聂江文, 等.  华北平原春绿豆–夏玉米种植模式经济效益和碳足迹评价[J]. 中国生态农业学报, 2020, 28(6): 910-919.