[1] |
郑庆福, 王永和, 孙月光, 等.
不同物料和炭化方式制备生物炭结构性质的FTIR研究[J]. 光谱学与光谱分析光谱学与光谱分析, 2014, 34(4): 962-966.
doi: 10.3964/j.issn.1000-0593(2014)04-0962-05 |
[2] |
Herath H M S K, Camps-Arbestain M, Hedley M.
Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol[J]. GeodermaGeoderma, 2013, 209-210: 188-197.
doi: 10.1016/j.geoderma.2013.06.016 |
[3] |
Basso A S, Miguez F E, Laird D A, et al.
Assessing potential of biochar for increasing water-holding capacity of sandy soils[J]. GCB BioenergyGCB Bioenergy, 2013, 5(2): 132-143.
doi: 10.1111/gcbb.12026 |
[4] |
Lehmann J.
A handful of carbon[J]. NatureNature, 2007, 447(7141): 143-144.
doi: 10.1038/447143a |
[5] |
Liu Y X, Lu H H, Yang S M, Wang Y F.
Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops ResearchField Crops Research, 2016, 191: 161-167.
doi: 10.1016/j.fcr.2016.03.003 |
[6] |
Liang B Q, Lehmann J, Solomon D, et al.
Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America JournalSoil Science Society of America Journal, 2006, 70(5): 1719-1730.
doi: 10.2136/sssaj2005.0383 |
[7] |
Lehmann J, Silva J P D, Steiner C, et al.
Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and SoilPlant and Soil, 2003, 249(2): 343-357.
doi: 10.1023/A:1022833116184 |
[8] |
吴文卫, 周丹丹.
生物炭老化及其对重金属吸附的影响机制[J]. 农业环境科学学报农业环境科学学报, 2019, 38(1): 13-19.
|
[9] |
米会珍, 朱利霞, 沈玉芳, 李世清.
生物炭对旱作农田土壤有机碳及氮素在团聚体中分布的影响[J]. 农业环境科学学报农业环境科学学报, 2015, 34(8): 1550-1556.
doi: 10.11654/jaes.2015.08.017 |
[10] |
Major J, Rondon M, Molina D, et al.
Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and SoilPlant and Soil, 2010, 333(1-2): 117-128.
doi: 10.1007/s11104-010-0327-0 |
[11] |
Jones D L, Rousk J, Edwards-Jones G, et al.
Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and BiochemistrySoil Biology and Biochemistry, 2012, 45: 113-124.
doi: 10.1016/j.soilbio.2011.10.012 |
[12] |
Gaskin J W, Speir R A, Harris K, et al.
Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield[J]. Agronomy JournalAgronomy Journal, 2010, 102(2): 623-633.
doi: 10.2134/agronj2009.0083 |
[13] |
Jeffery S, Verheijen F G A, Velde M V D, Bastos A C.
A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture Ecosystems and EnvironmentAgriculture Ecosystems and Environment, 2011, 144(1): 175-187.
doi: 10.1016/j.agee.2011.08.015 |
[14] |
Glaser B, Lehr V I.
Biochar effects on phosphorus availability in agricultural soils: A meta-analysis[J]. Scientific ReportsScientific Reports, 2019, 9(1): 9338-.
doi: 10.1038/s41598-019-45693-z |
[15] |
Chintala R, Schumacher T E, Mcdonald L M, et al.
Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. Clean-Soil, Air, WaterClean-Soil, Air, Water, 2014, 42(5): 626-634.
doi: 10.1002/clen.201300089 |
[16] |
Sandaña, P, Pinochet D.
Grain yield and phosphorus use efficiency of wheat and pea in a high yielding environment[J]. Journal of Soil Science and Plant NutritionJournal of Soil Science and Plant Nutrition, 2014, 14(4): 973-986.
|
[17] |
Fang Y Y, Singh B P, Luo Y, et al.
Biochar carbon dynamics in physically separated fractions and microbial use efficiency in contrasting soils under temperate pastures[J]. Soil Biology and BiochemistrySoil Biology and Biochemistry, 2018, 116: 399-409.
doi: 10.1016/j.soilbio.2017.10.042 |
[18] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. |
[19] |
Six J, Elliott E T, Paustian K, Doran J W.
Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America JournalSoil Science Society of America Journal, 1998, 62(5): 1367-1377.
doi: 10.2136/sssaj1998.03615995006200050032x |
[20] |
Duan P P, Wu Z, Zhang Q Q, et al.
Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils[J]. Soil Biology and BiochemistrySoil Biology and Biochemistry, 2018, 120: 37-47.
doi: 10.1016/j.soilbio.2018.01.027 |
[21] |
Zhang Q, Zhou W, Liang G Q, et al.
Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment[J]. Applied Soil EcologyApplied Soil Ecology, 2015, 94: 59-71.
doi: 10.1016/j.apsoil.2015.05.005 |
[22] |
何玉亭, 王昌全, 沈杰, 等.
两种生物质炭对红壤团聚体结构稳定性和微生物群落的影响[J]. 中国农业科学中国农业科学, 2016, 49(12): 2333-2342.
doi: 10.3864/j.issn.0578-1752.2016.12.009 |
[23] |
Cheng C H, Lehmann J, Thies J E, et al.
Oxidation of black carbon by biotic and abiotic processes[J]. Organic GeochemistryOrganic Geochemistry, 2006, 37(11): 1477-1488.
doi: 10.1016/j.orggeochem.2006.06.022 |
[24] |
Tisdall J M, Oades J M.
Organic matter and water-stable aggregates in soils[J]. Journal of Soil ScienceJournal of Soil Science, 1982, 33(2): 141-163.
doi: 10.1111/j.1365-2389.1982.tb01755.x |
[25] |
Muñoz C, Gongora S, Zagal E.
Use of biochar as a soil amendment: a brief review[J]. Chilean Journal of Agricultural and Animal Sciences, ex Agro-CienciaChilean Journal of Agricultural and Animal Sciences, ex Agro-Ciencia, 2016, 32(1): 37-47.
|
[26] |
Yu H W, Zou W X, Chen J J, et al.
Biochar amendment improves crop production in problem soils: A review[J]. Journal of Environmental ManagementJournal of Environmental Management, 2019, 232: 8-21.
|
[27] |
Schmidt M W I, Noack A G..
Black carbon in soils and sediments: analysis, distribution, implications, and current challenges[J]. Global Biogeochemical CyclesGlobal Biogeochemical Cycles, 2000, 14(3): 777-793.
doi: 10.1029/1999GB001208 |
[28] |
Ngatia L W, Hsieh Y P, Nemours D, et al.
Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption[J]. ChemosphereChemosphere, 2017, 180: 201-211.
doi: 10.1016/j.chemosphere.2017.04.012 |
[29] |
Deluca T H, Gundale M J, Mackenzie M D, Jones D L. Biochar effects on soil nutrient transformations[A]. Lehmann J, Joseph S. Biochar for environmental management: science and technology[C]. London: Routledge, 2015.421–454. |
[30] |
Goldberg S, Sposito G.
A chemical model of phosphate adsorption by soils: I. reference oxide minerals[J]. Soil Science Society of America JournalSoil Science Society of America Journal, 1984, 48(4): 772-783.
doi: 10.2136/sssaj1984.03615995004800040015x |
[31] |
Prendergast-Miller M, Duvall M, Sohi S.
Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability[J]. European Journal of Soil ScienceEuropean Journal of Soil Science, 2014, 65(1): 173-185.
doi: 10.1111/ejss.12079 |
[32] |
Tejada M, Gonzalez J L.
Influence of organic amendments on soil structure and soil loss under simulated rain[J]. Soil and Tillage ResearchSoil and Tillage Research, 2007, 93(1): 197-205.
doi: 10.1016/j.still.2006.04.002 |
[33] |
Abiven S, Hund A, Martinsen V, Cornelissen G.
Biochar amendment increases maize root surface areas and branching: a shovelomics study in Zambia[J]. Plant and SoilPlant and Soil, 2015, 395(1-2): 45-55.
doi: 10.1007/s11104-015-2533-2 |
[34] |
徐敏, 伍钧, 张小洪, 杨刚.
生物炭施用的固碳减排潜力及农田效应[J]. 应用生态学报应用生态学报, 2018, 38(2): 393-404.
|
[35] |
Zheng H, Wang Z, Deng X, et al.
Characteristics and nutrient values of biochars produced from giant reed at different temperatures[J]. Bioresource TechnologyBioresource Technology, 2012, 130(2): 463-471.
|
[36] |
Zheng H, Wang Z, Deng X, et al.
Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil[J]. GeodermaGeoderma, 2013, 206(9): 32-39.
|
[37] |
Fungo B, Lehmann J, Kalbitz K, et al.
Aggregate size distribution in a biochar-amended tropical ultisol under conventional hand-hoe tillage[J]. Soil and Tillage ResearchSoil and Tillage Research, 2017, 165: 190-197.
doi: 10.1016/j.still.2016.08.012 |
[38] |
Zhu X, Chen B, Zhu L, Xing B.
Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review[J]. Environmental PollutionEnvironmental Pollution, 2017, 227: 98-115.
doi: 10.1016/j.envpol.2017.04.032 |
[39] |
Garland G, Bünemann E K, Oberson A, et al.
Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model[J]. Soil Biology and BiochemistrySoil Biology and Biochemistry, 2018, 116: 91-98.
doi: 10.1016/j.soilbio.2017.10.007 |
[40] |
Fox A, Kwapinski W, Griffiths B S, Schmalenberger A.
The role of sulfur-and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne[J]. FEMS Microbiology EcologyFEMS Microbiology Ecology, 2014, 90(1): 78-91.
doi: 10.1111/1574-6941.12374 |
[41] |
Sukartono, Utomo W H, Kusuma Z, Nugroho W H.
Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia[J]. Journal of Tropical AgricultureJournal of Tropical Agriculture, 2011, 49: 47-52.
|