[1] Wells M L, Potin P, Craigie J S, et al.  Algae as nutritional and functional food sources: revisiting our understanding[J]. Journal of Applied Phycology, 2017, 29: 949-982.   doi: 10.1007/s10811-016-0974-5
[2] Alimonti G, Brambilla R, Pileci R, et al.  Edible energy: balancing inputs and waste in food supply chain and biofuels from algae[J]. The European Physical Journal Plus, 2017, 132: 14-.   doi: 10.1140/epjp/i2017-11301-8
[3] 蔡卓平, 吴皓, 骆育敏, 等.  经济微藻高密度培养技术及其生物资源化利用[J]. 生态科学, 2016, 35(5): 220-224.
Cai Z P, Wu H, Luo Y M, et al.  High density cultivation technology and bioresource utilization of economic microalgae[J]. Ecological Science, 2016, 35(5): 220-224.

中华人民共和国卫生部. 关于批准蛋白核小球藻等4种新资源食品的公告[R]. 2012-01-12.

Ministry of Health, PRC. Announcement on approval of four new food resources such as Chlorella globosa[R]. 2012-01-12.

[5] Procházková G, Brányiková I, Zachleder V, et al.  Effect of nutrient supply status on biomass composition of eukaryotic green microalgae[J]. Applied Phycology, 2014, 26(3): 1359-1377.   doi: 10.1007/s10811-013-0154-9
[6] Adams C, Godfrey V, Wahlen B, et al.  Understanding precision nitrogen stress to optimize the growth and lipid content trade off in oleaginous green microalgae[J]. Bioresource Technology, 2013, 131: 188-194.   doi: 10.1016/j.biortech.2012.12.143
[7] Griffiths M J, van Hille R P, Harrison S T L.  Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions[J]. Journal of Applied Phycology, 2012, 24(5): 989-1001.   doi: 10.1007/s10811-011-9723-y
[8] 代瑞华, 刘会娟, 曲久辉, 等.  氮磷限制对铜绿微囊藻生长和产毒的影响[J]. 环境科学学报, 2008, 28(9): 1739-1744.   doi: 10.3321/j.issn:0253-2468.2008.09.005
Dai R H, Liu H J, Qu J H, et al.  The effects of nitrogen limitation and phosphorus limitation on the growth and microcystin production of Microcystis aeruginosa[J]. Acta Scientiae Circumstantiae, 2008, 28(9): 1739-1744.   doi: 10.3321/j.issn:0253-2468.2008.09.005
[9] 吴桂秀, 高保燕, 周芷薇, 等.  高、低氮浓度对2株真眼点藻的生长和油脂积累的影响[J]. 微生物学通报, 2015, 42(8): 1442-1452.
Wu G X, Gao B Y, Zhou Z W, et al.  Effects of high and low nitrogen concentration on the growth and lipids accumulation pattern of two oleaginous microalgae[J]. Microbiology China, 2015, 42(8): 1442-1452.
[10] Gong Y M, Guo X, Wan X, et al.  Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages[J]. Journal of Basic Microbiology, 2013, 53(1): 29-36.   doi: 10.1002/jobm.v53.1
[11] Ashira R, Gray V M, Sym S.  Influence of nitrogen stress on Isochrysis galbana strain U4, a candidate for biodiesel production[J]. Phycological Research, 2014, 62(4): 237-249.   doi: 10.1111/pre.2014.62.issue-4
[12] Kawata M, Nanba M, Matsukawa R.  Isolation and characterization of a green alga Neochloris sp. for CO2 fixation[J]. Studies in Surface Science and Catalysis, 1998, 114: 637-640.   doi: 10.1016/S0167-2991(98)80840-9
[13] Li Y T, Han D X, Hu G R, et al.  Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii[J]. Biotechnology and Bioengineering, 2010, 107(2): 258-268.   doi: 10.1002/bit.22807
[14] Zhang C S, Hawley S A, Zong Y, et al.  Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK[J]. Nature, 2017, 548: 112-116.   doi: 10.1038/nature23275

Parker C. The effects of environmental stressors on biofilm formation of Chlorella vulgaris[D]. Boone, NC: MS Thesis of Appalachian State University, 2013.

[16] Barros A I, Goncalves A L, Simões M, et al.  Harvesting techniques applied to microalgae: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1489-1500.   doi: 10.1016/j.rser.2014.09.037
[17] Stanier R Y, Kunisawa R, Mandel M, et al.  Purification and properties of unicellular blue-green algae(Order chroococcales)[J]. Microbiology and Molecular Biology Reviews, 1971, 35: 171-205.
[18] Zhao P, Yu X Y, Li J J, et al.  Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10[J]. Journal of Bioscience and Bioengineering, 2014, 117(1): 72-77.
[19] 任洁, 郎筱宇, 刘志媛.  三种脂染色法快速检测小球藻油脂相对含量[J]. 农业生物技术学报, 2015, 23(7): 967-972.
Ren J, Lang X Y, Liu Z Y.  Rapidly determinating relative lipid level of Chlorella vulgaris sp. by three dyeing methods[J]. Journal of Agricultural Biotechnology, 2015, 23(7): 967-972.
[20] Bradford M M.  A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemisry, 1976, 72(1): 248-254.
[21] 徐嫔, 孟迎迎, 杨海波, 等.  海洋微藻淀粉含量的测定[J]. 广东农业科学, 2012, 18: 130-132.   doi: 10.3969/j.issn.1004-874X.2012.01.045
Xu P, Meng Y Y, Yang H B, et al.  Detection of starch content in marine microalga[J]. Guangdong Agricultural Sciences, 2012, 18: 130-132.   doi: 10.3969/j.issn.1004-874X.2012.01.045
[22] Yang S F, Li X Y.  Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions[J]. Process Biochemistry, 2009, 44: 91-96.   doi: 10.1016/j.procbio.2008.09.010
[23] Lv J P, Guo J Y, Feng J, et al.  A comparative study on flocculating ability and growth potential of two microalgae in simulated secondary effluent[J]. Bioresource Technology, 2016, 205: 111-117.   doi: 10.1016/j.biortech.2016.01.047
[24] Alam M A, Wan C, Guo S L, et al.  Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7[J]. Journal of Bioscience and Bioengineering, 2014, 118(1): 29-33.   doi: 10.1016/j.jbiosc.2013.12.021
[25] Chen W, Westerhoff P, Leenheer J A, et al.  Fluorescence excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science Technology, 2003, 37(24): 5701-5710.   doi: 10.1021/es034354c
[26] Wilen B M, Jin B, Lant P.  The influence of key chemical constituents in activated sludgeon surface and flocculation properties[J]. Water Research, 2003, 37: 2127-2139.   doi: 10.1016/S0043-1354(02)00629-2
[27] 吴桂秀, 黄罗冬, 高保燕, 等.  不同氮源及其浓度对标志链带藻合成淀粉和油脂的影响[J]. 微生物学报, 2016, 56(7): 1168-1177.
Wu G X, Huang L D, Gao B Y, et al.  Effects of different nitrogen sources and concentrations on starch and lipid biosynthesis by Desmodesmus insignis[J]. Acta Microbiologica Sinica, 2016, 56(7): 1168-1177.
[28] Lee D Y, Park J J, Barupal D K, et al.  System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium[J]. Moleular Cell Proteomics, 2012, 11: 973-988.   doi: 10.1074/mcp.M111.016733
[29] Fernandes B, Teixeira J, Dragone G, et al.  Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga[J]. Bioresource Technology, 2013, 144: 268-274.   doi: 10.1016/j.biortech.2013.06.096
[30] Geider R G, Roche J L, Greene R M, et al.  Response of the photosynthetic apparatus of Phaeodactylum tricornutum(Bacillariophyceae)to nitrate, phosphate, or iron starvation[J]. Journal Phycology, 1993, 29: 755-766.   doi: 10.1111/j.0022-3646.1993.00755.x
[31] Chen H, Zheng Y L, Zhan J, et al.  Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism[J]. Biotechnology for Biofuels, 2017, 10: 153-.   doi: 10.1186/s13068-017-0839-4
[32] Salim S, Kosterink N R, Wacka N T, et al.  Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis[J]. Journal Biotechnology, 2014, 174: 34-38.   doi: 10.1016/j.jbiotec.2014.01.026