• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同培肥模式对茶园土壤微生物活性和群落结构的影响

林新坚 林斯 邱珊莲 陈济琛 王飞 王利民

引用本文:
Citation:

不同培肥模式对茶园土壤微生物活性和群落结构的影响

    通讯作者: 林新坚, E-mail:xinjianlin@163.net;
  • 基金项目:

    国家科技支撑计划项目(2006BAD25B08); 福建省属公益类基本科研专项(2010R1024-4); 福建省农科院(2009J01204)项目

Effect of different fertilization strategies on structure and activity of microbial community in tea orchard soils

    Corresponding author: LIN Xin-jian, E-mail:xinjianlin@163.net; ;
  • 摘要: 以闽东地区红黄壤茶园定位实验地为对象,通过测定6种不同施肥处理土壤微生物学特性,研究不同培肥对土壤微生物特性和生物化学过程的影响,阐明各指标间的相互关系。结果表明, 除了单施无机肥处理外,半量化肥+半量有机肥、 全量有机肥、 全量化肥+豆科绿肥以及半量化肥+半量有机肥+豆科绿肥等的培肥方式均不同程度提高了土壤有机质,可培养微生物数量,微生物量碳、氮含量及土壤酶活性,尤以半量无机肥+半量有机肥+豆科牧草的培肥模式增幅更为明显,而单施无机肥不利于微生物的生长、酶活性的提高和维持生态系统的稳定性。微生物群落磷脂脂肪酸(PLFAs)标记主成分分析显示,各种不同施肥方式使微生物群落结构发生改变。相关分析表明,微生物量与可培养微生物数量、微生物磷脂脂肪酸含量之间的相关性明显高于微生物量与各种酶活性之间的相关性,说明微生物数量大小对微生物群落结构的影响大于对酶活性功能的影响。研究也表明土壤各微生物指标能从不同方面反映土壤肥力水平,所以采用各种不同的方法能更客观地评价闽东地区茶园红黄壤质量的优劣。
  • [1] 徐建明,张甘霖,谢正苗,等. 土壤质量指标与评价[M]. 北京:科学出版社,2010. 178-184.

    [1] Xu J M, Zhang G L, Xie Z M, et al. Indices and assessment of soil quality[M]. Beijing: Science Press, 2010. 178-184.

    [2] 曹慧,杨浩,孙波,等. 不同种植时间菜园土壤微生物生物量和酶活性变化特征[J]. 土壤,2002(4):197-200.

    [2] Cao H, Yang H, Sun B, et al. Changes of microbial biomass and enzyme activities in garden soil as influenced by planting time[J]. soils, 2002(4): 197-200.

    [3] Frankenberger W T, Dick W A. Relationship between enzyme activities and microbial growth and activity indices in soil[J]. Soil Sci. Soc. Am. J, 1983, 47(5): 945-951.

    [4] Gray D B, Mary K T, Franis R, et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biol. Biochem., 2004, 36(11): 1785-1792.

    [5] 陈国潮. 土壤微生物量测定方法现状及其在红壤上的应用[J]. 土壤通报,1999,30(6): 284-287.

    [5] Chen G C. Situation of soil microbial biomass detection methods and its application in red soils[J]. Chin. J. Soil Sci., 1999, 30(6): 284-287.

    [6] Kenndy A C. Bacterial diversity in agroecosystems[J]. Agric. Ecosyst. Environ., 1999, 74(1-3): 65-76.

    [7] Lugato E, Berti A, Giardini L. Soil organic carbon (SOC) dynamics with and without residue incorporation in relation to different nitrogen fertilisation rates[J]. Geoderma, 2006, 135: 315-321.

    [8] 徐华勤,肖润林,杨知建,等. 不同培肥措施对红壤茶园土壤微生物量碳的影响[J]. 生态学杂志,2007,26(7):1009-1013.

    [8] Xu H Q, Xiao R L, Yang Z J, et al. Effects of different fertilization on red soil microbial biomass C in tea garden[J]. Chin. J. Ecosyst., 2007, 26(7): 1009-1013.

    [9] 徐华勤,肖润林,宋同清,等. 稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J]. 生物多样性,2008,16(2):166-174.

    [9] Xu H Q, Xiao R L, Song T Q, et al. Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations[J]. Biodiversity Science, 2008, 16(2): 166-174.

    [10] 邓欣,谭济才,尹丽蓉,等. 不同茶园土壤微生物数量状况调查初报[J]. 茶叶通讯,2005,32(2):7-9.

    [10] Deng X, Tan J C, Yin L R, et al. Investigation on the quantitative condition of soil microbes in different tea garden[J]. Tea Communication, 2005, 32(2): 7-9.

    [11] 林新坚,黄东风,李卫华,等. 施肥模式对茶叶产量、营养累积及土壤肥力的影响[J]. 中国生态农业学报,2012,20(2):151-157.

    [11] Lin X J, Huang D F, Li W H, et al. Effects of fertilization regimes on yield, nutrition accumulation of tea and soil fertility [J]. Chin. J. Eco-Agric., 2012, 20(2): 151-157.

    [12] 王利民,林新坚,黄东风,等. 红黄壤茶园不同培肥模式的土壤理化效应[J]. 东北林业大学学报,2012,40(1):1-5.

    [12] Wang L M, Lin X J, Huang D F, et al. Effect of different fertilization patterns on physicochemical properties of red-yellow soil in tea garden[J]. Journal of Northeast Forestry University, 2012, 40(1): 1-5.

    [13] 关松荫. 土壤酶及其研究法[M]. 北京:中国农业出版社,1986.

    [13] Guan S Y. Soil enzyme and its research methods[M]. Beijing: Agricultural Press, 1986.

    [14] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biol. Biochem., 1987, 19(6): 703-707.

    [15] Trasar-Cepeda C, Camina F, Leiros M C, et al. An improved method to measure catalase activity in soils[J]. Soil Biol. Biochem., 1999, 31(3): 483-485.

    [16] Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium[J]. Biology and Fertility of Soils, 1988, 6(1): 68-72.

    [17] Tabatabai M A, Bremner J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J]. Soil Biol. Biochem., 1969, 1(4): 301-307.

    [18] Frosteg?rd A, Tunlid A, B??th E. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to diferent heavy metals[J]. Appl. Environ. Microbiol., 1993, 59(11): 3605-3617.

    [19] Kourtev P S, Ehrenfeld J G, H?ggelom M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2002, 83(11): 3152-3166.

    [20] Cavigelli M A, Robertson G P, Klug M J. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure[J]. Plant and Soil, 1995, 170(1): 99-113.

    [21] Zelles L, Bai Q Y, Beck T, et al. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils[J]. Soil Biol. Biochem., 1992, 24(4): 317-323.

    [22] He J Z, Zheng Y, Chen C R, et al, Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches[J]. J. Soils Sediments, 2008, 8(5): 349-358.

    [23] Girvan M S, Bullimore J, Pretty J N, et al. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Appl. Environ. Microbiol. , 2003, 69(3): 1800-1809.

    [24] Sessitsch A, Weilharter A, Gerzabek MH, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Appl. Environ. Microbiol., 2001, 67(9): 4215-4224.

    [25] 单武雄,罗文,肖润林,等. 连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响[J].中国生态农业学报,2010,18(3):472-476.

    [25] Shan W X, Luo W, Xiao R L, et al. Effect of 5-year rapeseed cake fertilization and straw mulching on tea plantation soil ecosystem[J]. Chin. J. Eco-Agric., 2010, 18(3): 472-476.

    [26] 彭萍,李品武,杨水平,等. 施肥对茶园土壤微生物及土壤肥力的影响[J]. 西南农业学报,2006,19(6):1096-1099.

    [26] Peng P, Li P W, Yang S P, et al. Effects of fertilization on tea garden edaphon and soil fertility[J]. Southwest China J. Agric. Sci., 2006, 19(6): 1096-1099.

    [27] 高云超,朱文珊,陈文新. 土壤微生物生物量周转的估算[J]. 生态学杂志,1993,12(6):6-10.

    [27] Gao Y C, Zhu W S, Chen W X. Estimation for biomass and turnover of soil microorganisms[J]. Chinese Journal of Ecology, 1993, 12(6): 6-10.

    [28] Glover J D, Reganold J P, Andrews P K. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State[J]. Agriculture, Ecosystems and Environment, 2000, 80(1-2): 29-45.

    [29] 张平究,李恋卿,潘根兴,等. 长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J]. 生态学报,2004,24(12):2818-2824.

    [29] Zhang P J, Li L Q, Pan G X, et al. Influence of long-term fertilizer management on topsoil microbial biomass and genetic diversity of a paddy soil from the Tai Lake region, China[J]. Acta Ecol. Sin., 2004, 24(12): 2818-2824.

    [30] 徐阳春,沈其荣,冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.

    [30] Xu Y C, Shen Q R, Ran W. Effects of zero-tiliage and application of manure on soil microbial biomass C, N and pafter sixteen years of cropping[J]. Acta Pedol. Sin., 2002, 39(1): 89-96.

    [31] 来璐,郝明德,王永功. 黄土高原旱地长期轮作与施肥土壤微生物量磷的变化[J]. 植物营养与肥料学报,2004,10(5):546-549.

    [31] Lai L, Hao M D, Wang Y G. Changes of long-term rotation and fertilization on soil microbial phosphorus under dryland in Loess Plateau[J]. Plant Nutr. Fert. Sci., 2005, 10(5): 546-549.

    [32] 李东坡,武志杰,陈利军,等. 长期培肥黑土微生物量磷动态变化及影响因素[J]. 应用生态学报,2004,15(10):1897-1902.

    [32] Li D P, Wu Z J, Chen L J, et al. Dynamics of microbial biomass P and its affecting factors in a long-term fertilized black soil[J]. Chin. J. Appl. Ecol., 2004, 15(10): 1897-1902.

    [33] Maly S, Kralovec J, Hampel D. Effects of long-term mineral fertilization on microbial biomass, microbial activity, and the presence of r- and K-strategists in soil[J]. Biol. Fertil. Soils, 2009, 45(7): 753-760.

    [34] Ladd J N, Amato M, Li-Kai Z, et al. Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian Alfisol[J]. Soil Biol. Biochem., 1994, 26(7): 821-831.

    [35] Kautz T, Wirth S, Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime[J]. Eur. J. Soil Biol., 2004, 40(2): 87-94.

    [36] Aber J D. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems[J]. Trends in Ecology and Evolution, 1992, 7(7): 220-224.

    [37] Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals[J]. Biol. Fertil. Soils, 1995, 19(4): 269-279.

    [38] Yao H, He Z, Wilson M J, et al. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use[J]. Microb. Ecol., 2000, 40(3): 223-237.

    [39] 徐晶,陈婉华. 不同施肥处理对湖南红壤中微生物数量及酶活性的影响[J]. 土壤肥料,2003,(5):8-11.

    [39] Xu J, Chen W H, Sun R L. Effects of different fertilization systems on amount of soil microorganism and enzyme activity in red soil of Hunan[J]. Soils and Fertilizers, 2003, (5): 8-11.

    [40] Giusquiani P L, Pagliai M, Gigliotti G, et al. Urban waste compost: effects on physical, chemical and biochemical soil properties[J]. J. Environ. Qual., 1995, 24(1): 175–182.

    [41] 孙瑞莲,赵秉强,朱鲁生,等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报,2003,9(4):406-410.

    [41] Sun R L, Zhao B Q, Zhu L S, et al. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility[J]. Plant Nutr. Fert. Sci., 2003, 9(4): 406-410.

    [42] 任全,单武雄,肖润林,等. 不同施肥措施对红壤丘陵茶园土壤酶活性及呼吸强度的影响[J].农业现代化研究,2007,28(4):498-500.

    [42] Ren Q, Shan W X, Xiao R L, et al. Impact of Fertilizers on Soil Enzyme Activity and Intensity of Breathing of Tea Plantation in Red-soil Hilly Region[J]. Reas. Agric. Modern., 2007, 28(4): 498-500.

    [43] 刘恩科,赵秉强,李秀英,等. 长期施肥对土壤微生物量及土壤酶活性的影响[J]. 植物生态学报,2008,32(1):176-182.

    [43] Liu E K, Zhao B Q, Li X Y, et al. Biological properties and enzymatic activity of arable soils affected by long-term different fertilization systems[J]. Journal of Plant Ecology, 2008, 32(1): 176-182.

    [44] Frostegard A, Tunlid A, Baath E. Use and misuse of PLFA measurements in soils[J]. Soil Biol. Biochem., 2011, 43(8): 1621-1625.

    [45] 于树,汪景宽,李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J]. 生态学报,2008,28(9):4221-4227.

    [45] Yu S, Wang J K, Li S Y. Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA[J]. Acta Ecol. Sin., 2008, 28(9): 4221-4227.

    [46] 白震,张明,宋斗妍,等. 不同施肥对农田黑土微生物群落的影响[J]. 生态学报,2008,28(7):3244-3253.

    [46] Bai Z, Zhang M, Song D Y, et al. Effect of different fertilizaiton on microbial community in an arable mollisol [J]. Acta Ecol. Sin., 2008, 28(7): 3244-3253.

    [47] Vries F T, Hoffland E, Eekeren N, et al. Fungal/bacteria ratios in grasslands with contrasting nitrogen management[J]. Soil Biol. Biochem., 2006, 38(8): 2092-2103.

    [48] Guckert J B, Hood M A, White D C. Phospholipid, esterlinked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increases in the trans/cis ratio and proportions of cyclopropyl fatty acids[J]. Appl. Environ. Microbiol., 1986, 52(4): 794-801.
  • [1] 张四海王意锟朱强根黄键金爱武张国 . 根结线虫病土引入秸秆碳源对土壤微生物群落结构的影响. 植物营养与肥料学报, 2014, 20(4): 923-929. doi: 10.11674/zwyf.2014.0414
    [2] 黄莹李雅颖姚槐应 . 强酸性茶园土壤中添加不同肥料氮后N2O释放量变化. 植物营养与肥料学报, 2013, 19(6): 1533-1538. doi: 10.11674/zwyf.2013.0631
    [3] 李清华王飞林诚何春梅李昱钟少杰林新坚 . 长期施肥对黄泥田土壤微生物群落结构及团聚体组分特征的影响. 植物营养与肥料学报, 2015, 21(6): 1599-1606. doi: 10.11674/zwyf.2015.0627
    [4] 李娟赵秉强李秀英So Hwat Bing , . 长期不同施肥条件下土壤微生物量及 土壤酶活性的季节变化特征 . 植物营养与肥料学报, 2009, 15(5): 1093-1099. doi: 10.11674/zwyf.2009.0516
    [5] 袁玲杨邦俊郑兰君刘学成 . 长期施肥对土壤酶活性和氮磷养分的影响. 植物营养与肥料学报, 1997, 3(4): 300-306. doi: 10.11674/zwyf.1997.0403
    [6] 肖琼王齐齐邬磊蔡岸冬王传杰张文菊徐明岗 . 施肥对中国农田土壤微生物群落结构与酶活性影响的整合分析. 植物营养与肥料学报, 2018, 24(6): 1598-1609. doi: 10.11674/zwyf.18241
    [7] 任豫霜朱丹姜伟李玖燃张磊 . 酸性土壤中接种耐酸根瘤菌对豆科植物根际微生态的影响. 植物营养与肥料学报, 2017, 23(4): 1077-1088. doi: 10.11674/zwyf.16362
    [8] 张爱加周明明林文雄 . 不同种植模式对甘蔗根际土壤生物学特性的影响. 植物营养与肥料学报, 2013, 19(6): 1525-1532. doi: 10.11674/zwyf.2013.0630
    [9] 聂成牛磊张旭博李悦杜薇刘颖慧 . 放牧模式对内蒙古典型草原生长季土壤呼吸速率的影响. 植物营养与肥料学报, 2019, 25(3): 402-411. doi: 10.11674/zwyf.18440
    [10] 王旭东胡田田张一平 . 不同施肥处理土壤胡敏酸及其级分与Fe2+络合特征Ⅱ.胡敏酸级分与Fe2+络合特征. 植物营养与肥料学报, 2001, 7(2): 139-144. doi: 10.11674/zwyf.2001.0204
    [11] 韩哲刘守伟潘凯吴凤芝 . 不同栽培模式对黄瓜根际土壤酶活性及细菌群落结构的影响. 植物营养与肥料学报, 2012, 18(4): 922-931. doi: 10.11674/zwyf.2012.11479
    [12] 吴凤芝孟立君王学征 . 设施蔬菜轮作和连作土壤酶活性的研究. 植物营养与肥料学报, 2006, 12(4): 554-558. doi: 10.11674/zwyf.2006.0416
    [13] 吕卫光沈其荣余廷园诸海涛 . 酚酸化合物对土壤酶活性和土壤养分的影响. 植物营养与肥料学报, 2006, 12(6): 845-849. doi: 10.11674/zwyf.2006.0615
    [14] 郭腾飞梁国庆周卫刘东海王秀斌孙静文李双来胡诚 . 施肥对稻田温室气体排放及土壤养分的影响. 植物营养与肥料学报, 2016, 22(2): 337-345. doi: 10.11674/zwyf.14557
    [15] 张科袁玲梁永江 . 不同植烟模式对烤烟产质量、土壤养分和酶活性的影响. 植物营养与肥料学报, 2010, 16(1): 124-128. doi: 10.11674/zwyf.2010.0118
    [16] 崔雯雯宋全昊高小丽贾志宽 . 糜子不同种植方式对土壤酶活性及养分的影响. 植物营养与肥料学报, 2015, 21(1): 234-240. doi: 10.11674/zwyf.2015.0126
    [17] 张桂山贾小明马晓航钱忠史春余张夫道 . 山东棕壤重金属污染土壤酶活性的预警研究. 植物营养与肥料学报, 2004, 10(3): 272-276. doi: 10.11674/zwyf.2004.0310
    [18] 丁伟叶江平蒋卫霍沁建陈晓明梁永江张长华袁玲 . 施肥对植烟土壤微生物的影响. 植物营养与肥料学报, 2012, 18(5): 1175-1183. doi: 10.11674/zwyf.2012.11415
    [19] 陈振华孙彩霞郝建军陈利军武志杰 , . 土壤酶活性对大田单季种植转Bt基因及转双价棉花的响应 . 植物营养与肥料学报, 2009, 15(5): 1226-1230. doi: 10.11674/zwyf.2009.0534
    [20] 邱莉萍王益权刘军张兴昌 . 旱地长期培肥土壤脲酶和碱性磷酸酶动力学及热力学特征研究. 植物营养与肥料学报, 2007, 13(6): 1028-1034. doi: 10.11674/zwyf.2007.0607
  • 加载中
计量
  • 文章访问数:  4931
  • HTML全文浏览量:  9
  • PDF下载量:  931
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-18
  • 录用日期:  2012-11-02
  • 刊出日期:  2013-01-25

不同培肥模式对茶园土壤微生物活性和群落结构的影响

    通讯作者: 林新坚, xinjianlin@163.net;
  • 1. 福建省农业科学院土壤肥料研究所,福建福州 350003;
  • 2. 福州大学生物科学与工程学院,福建福州 350108
  • 基金项目:

    国家科技支撑计划项目(2006BAD25B08); 福建省属公益类基本科研专项(2010R1024-4); 福建省农科院(2009J01204)项目

  • 摘要: 以闽东地区红黄壤茶园定位实验地为对象,通过测定6种不同施肥处理土壤微生物学特性,研究不同培肥对土壤微生物特性和生物化学过程的影响,阐明各指标间的相互关系。结果表明, 除了单施无机肥处理外,半量化肥+半量有机肥、 全量有机肥、 全量化肥+豆科绿肥以及半量化肥+半量有机肥+豆科绿肥等的培肥方式均不同程度提高了土壤有机质,可培养微生物数量,微生物量碳、氮含量及土壤酶活性,尤以半量无机肥+半量有机肥+豆科牧草的培肥模式增幅更为明显,而单施无机肥不利于微生物的生长、酶活性的提高和维持生态系统的稳定性。微生物群落磷脂脂肪酸(PLFAs)标记主成分分析显示,各种不同施肥方式使微生物群落结构发生改变。相关分析表明,微生物量与可培养微生物数量、微生物磷脂脂肪酸含量之间的相关性明显高于微生物量与各种酶活性之间的相关性,说明微生物数量大小对微生物群落结构的影响大于对酶活性功能的影响。研究也表明土壤各微生物指标能从不同方面反映土壤肥力水平,所以采用各种不同的方法能更客观地评价闽东地区茶园红黄壤质量的优劣。

    English Abstract

    参考文献 (1)

    目录

      /

      返回文章
      返回