• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灌溉定额和绿肥交互作用对小麦/玉米带田产量和养分利用的影响

袁金华 俄胜哲 车宗贤

引用本文:
Citation:

灌溉定额和绿肥交互作用对小麦/玉米带田产量和养分利用的影响

    作者简介: 袁金华 E-mail: yuanjinhua@gsagr.ac.cn;

Effects of irrigation quota and green manure interaction on crop yield and nutrition utilization in the wheat/corn intercropping system

  • 摘要: 【目的】研究灌溉定额、绿肥及其交互作用对河西绿洲灌区带田小麦、玉米产量和养分利用的影响,探寻适合灌区带田的水肥管理模式。 【方法】试验采用裂−裂区设计,主区处理为灌溉定额,设三个水平为4500、6000和7500 m3/hm2;裂区处理为绿肥,设两个水平为不种绿肥和种植绿肥;裂−裂区处理为化肥,设两个水平,为不施化肥和施用化肥,化肥处理氮、磷、钾肥料用量分别为N 525 kg/hm2、P2O5 150 kg/hm2、K2O 90 kg/hm2 【结果】与4500 m3/hm2的灌溉定额相比,6000 m3/hm2和7500 m3/hm2的灌溉定额极显著增加了小麦和玉米的籽粒产量及其收获指数,增加了小麦和玉米籽粒的氮磷钾吸收量及其养分收获指数,小麦籽粒产量形成的氮生理效率和玉米籽粒产量形成的氮磷钾生理效率;极显著降低了小麦百公斤籽粒氮需求量和玉米百公斤籽粒氮磷钾需求量。绿肥种植与否对小麦、玉米籽粒产量均没有显著影响。种植绿肥极显著降低了玉米籽粒的收获指数和钾收获指数。灌溉定额4500 m3/hm2与种植绿肥交互作用下,玉米磷收获指数最低;灌溉定额6000 m3/hm2与种植绿肥交互作用下玉米磷收获指数最高。种植绿肥处理显著增加了玉米百公斤籽粒氮磷钾需求量,显著降低了玉米百公斤籽粒磷钾生理效率。4500 m3/hm2灌溉定额下种植绿肥进一步加剧了干旱的胁迫程度,导致玉米百公斤籽粒氮、磷需求量显著增加,对钾的需求量极显著增加,磷生理效率显著下降,钾生理效率极显著下降。 【结论】灌溉定额是河西绿洲灌区带田小麦玉米籽粒产量和收获指数、籽粒氮磷钾吸收量和氮磷钾收获指数、百公斤籽粒氮磷钾需求量和氮磷钾生理效率的决定因素。亏缺灌溉定额(4500 m3/hm2)下,种植绿肥会降低小麦/玉米带田籽粒产量及肥料利用效率。在6000 m3/hm2的灌溉定额下,建议河西绿洲灌区小麦/玉米带田应配合种植绿肥,提高产量和肥料效益。
  • 表 1  小麦和玉米不同生育期灌水定额及灌溉定额 (m3/hm2)

    Table 1.  Irrigation quota and water amounts supplied at different plant phonological stages of wheat and corn

    灌溉定额
    Irrigation quota
    小麦Wheat玉米Corn
    拔节期
    Jointing stage
    of wheat
    抽穗期
    Heading
    stage
    灌浆期
    Filling
    stage
    大喇叭口期
    Full-grown
    stage of corn
    吐丝期
    Silking
    stage
    灌浆期
    Filling
    stage
    乳熟期
    Milk
    ripening
    冬水
    Winter
    irrigation
    4500750 0750750 01050 01200
    60007507507507507501050 01200
    750075075075075075010507501950
    下载: 导出CSV

    表 2  灌溉定额、绿肥及其交互作用对小麦产量和收获指数的影响

    Table 2.  Effects of irrigation quota, green manure and their interaction on yield and harvest index of wheat

    处理
    Treatment
    籽粒产量 (kg/hm2)
    Grain yield
    秸秆产量 (kg/hm2)
    Straw yield
    生物产量 (kg/hm2)
    Biomass
    收获指数
    Harvest index
    灌溉定额 (m3/hm2)
    Irrigation quota
    45001052 B2704 B3755 B0.272 B
    60001791 A3553 A5344 A0.335 A
    75001979 A3615 A5594 A0.355 A
    显著性 SignificanceP = 0.000P = 0.000P = 0.000P = 0.002
    绿肥Green manure−M1663 a3284 a4948 a0.330 a
    +M1551 a3297 a4848 a0.312 a
    显著性 SignificanceP = 0.349P = 0.936P = 0.679P = 0.289
    灌溉定额 × 绿肥Irrigation × Green manure4500−M1044 a2491 a3535 a0.287 a
    4500+M1059 a2916 a3976 a0.256 a
    6000−M1911 a3660 a5571 a0.345 a
    6000+M1671 a3447 a5117 a0.324 a
    7500−M2035 a3702 a5737 a0.356 a
    7500+M1924 a3527 a5451 a0.354 a
    显著性 SignificanceP = 0.672P = 0.177P = 0.288P = 0.771
    注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.
    下载: 导出CSV

    表 3  灌溉定额和绿肥及其交互作用对小麦籽粒、秸秆氮磷钾吸收量和氮磷钾收获指数的影响

    Table 3.  Effects of irrigation quota, green manure and their interaction on grain and straw N, P, K uptake, and N, P, K harvest index of wheat

    处理
    Treatment
    籽粒Grain (kg/hm2)秸秆Straw (kg/hm2)收获指数Harvest index
    NPKNPKNPK
    灌溉定额Irrigation quota (m3/hm2)
      450028.4 B3.06 B2.78 B29.5 a2.40 a31.8 B0.477 B0.542 B0.078 B
      600047.7 A5.38 A5.32 A35.6 a3.00 a49.5 A0.572 A0.642 A0.098 A
      750052.2 A6.01 A4.96 A34.7 a3.19 a44.2 A0.603 A0.658 A0.101 A
    显著性 SignificanceP = 0.000P = 0.000P = 0.000P = 0.135P = 0.098P = 0.001P = 0.010P = 0.008P = 0.007
    绿肥Green manure
      −M44.2 a4.97 a4.43 a31.5 a2.59 a41.3 a0.573 a0.645 a0.094 a
      +M41.3 a4.67 a4.27 a35.0 a3.14 a42.3 a0.529 a0.583 a0.090 a
    显著性 SignificanceP = 0.371P = 0.465P = 0.720P = 0.186P = 0.075P = 0.727P = 0.168P = 0.064P = 0.489
    灌溉定额 × 绿肥Irrigation quota × Green manure
      4500−M27.6 a2.99 a2.39 a26.7 a2.11 a27.5 a0.497 a0.573 a0.078 a
      4500+M29.1 a3.13 a3.17 a32.2 a2.70 a36.0 a0.457 a0.511 a0.078 a
      6000−M50.8 a5.74 a5.45 a33.8 a2.75 a53.2 a0.602 a0.680 a0.094 a
      6000+M44.6 a5.02 a5.18 a37.4 a3.25 a45.8 a0.542 a0.603 a0.101 a
      7500−M54.3 a6.17 a5.45 a34.0 a2.91 a43.2 a0.618 a0.681 a0.110 a
      7500+M50.1 a5.85 a4.47 a35.4 a3.46 a45.1 a0.588 a0.634 a0.092 a
    显著性 SignificanceP = 0.602P = 0.696P = 0.274P = 0.800P = 0.991P = 0.121P = 0.916P = 0.925P = 0.155
    注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.
    下载: 导出CSV

    表 4  灌溉定额和绿肥及其交互作用对小麦百公斤籽粒氮磷钾需求量和氮磷钾生理效率的影响

    Table 4.  Effects of irrigation quota, green manure and their interaction on N, P, K requirement for 100 kg grain and N, P, K physiological efficiency for grain yield formation of wheat

    处理
    Treatment
    100公斤籽粒产量需求量Requirement for 100 kg grain (kg)生理效率Physiological efficiency (kg/kg)
    NPKNPK
    灌溉定额Irrigation quota (m3/hm2)
      45005.98 A0.552 a3.51 A17.6 B188 b30.2 B
      60004.72 B0.474 b3.08 A21.5 A214 a33.4 B
      75004.40 B0.463 b2.46 B22.8 A217 a41.5 A
    显著性 SignificanceP = 0.004P = 0.043P = 0.005P = 0.003P = 0.033P = 0.004
    绿肥Green manure
      −M4.78 a0.464 a2.82 a21.5 a218 a37.3 a
      +M5.28 a0.529 a3.21 a19.8 a195 b32.8 a
    显著性 SignificanceP = 0.159P = 0.064P = 0.155P = 0.136P = 0.038P = 0.123
    灌溉定额 × 绿肥Irrigation quota × Green manure
      4500−M5.57 a0.504 a3.07 a18.7 a200 a34.1 a
      4500+M6.39 a0.600 a3.96 a16.6 a175 a26.3 a
      6000−M4.44 a0.445 a3.06 a22.6 a227 a34.2 a
      6000+M5.00 a0.503 a3.10 a20.3 a201 a32.7 a
      7500−M4.34 a0.442 a2.34 a23.0 a227 a43.5 a
      7500+M4.47 a0.484 a2.57 a22.5 a208 a39.5 a
    显著性 SignificanceP = 0.705P = 0.792P = 0.398P = 0.747P = 0.953P = 0.648
    注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.
    下载: 导出CSV

    表 5  灌溉定额和绿肥及其交互作用对玉米产量和收获指数的影响

    Table 5.  Effects of irrigation quota, green manure and their interaction on yield and harvest index of corn

    处理
    Treatment
    籽粒产量 (kg/hm2)
    Grain yield
    秸秆产量 (kg/hm2)
    Straw yield
    生物产量 (kg/hm2)
    Biomass
    收获指数
    Harvest index
    灌溉定额Irrigation quota (m3/hm2)
      45002659 B 8262 B10921 B0.240 B
      60006898 A10429 A17327 A0.392 A
      75005278 A 8340 B13618 B0.373 A
      显著性 SignificanceP = 0.000P = 0.004P = 0.001P = 0.000
    绿肥 Green manure
      −M5328 a 8681 a14010 a0.362 A
      +M4561 a 9340 a13901 a0.308 B
      显著性 SignificanceP = 0.228P = 0.204P = 0.918P = 0.009
    灌溉定额 × 绿肥Irrigation quota × Green manure
      4500−M3044 a 7579 a10623 a0.285 a
      4500+M2274 a 8946 a11219 a0.195 a
      6000−M6980 a 9538 a16519 a0.408 a
      6000+M6815 a11321 a18136 a0.377 a
      7500−M5961 a 8927 a14888 a0.382 a
      7500+M4595 a 7752 a12347 a0.354 a
      显著性 SignificanceP = 0.730P = 0.058P = 0.270P = 0.367
    注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.
    下载: 导出CSV

    表 6  灌溉定额和绿肥及其交互作用对玉米籽粒、秸秆氮磷钾吸收量和氮磷钾收获指数的影响

    Table 6.  Effects of irrigation quota, green manure and their interaction on grain and straw N, P, K uptake, and N, P, K harvest index of corn

    处理
    Treatment
    籽粒Grain (kg/hm2)秸秆Straw (kg/hm2)收获指数Harvest index
    NPKNPKNPK
    灌溉定额Irrigation quota (m3/hm2)
      450043.6 B6.7 B0.90 B139.0 a13.3 a 68.1 b0.252 B0.365 B0.015 B
      600099.0 A14.2 A2.34 A102.0 b 8.0 b101.0 a0.491 A0.635 A0.025 A
      750071.5 A10.7 A1.79 A 87.8 b 7.8 b 71.3 b0.443 A0.580 A0.024 A
    显著性 SignificanceP = 0.001P = 0.002P = 0.000P = 0.019P = 0.047P = 0.015P = 0.000P = 0.001P = 0.010
    绿肥 Green manure
      −M73.8 a10.4 a1.81 a104 a9.0 a68.0 b0.412 a0.542 a0.026 A
      +M68.9 a10.6 a1.55 a115 a10.5 a92.0 a0.378 a0.511 a0.017 B
    显著性 SignificanceP = 0.598P = 0.902P = 0.228P = 0.412P = 0.427P = 0.014P = 0.348P = 0.526P = 0.003
    灌溉定额 × 绿肥Irrigation quota × Green manure
      4500−M47.7 a7.2 a1.03 a113 a9.8 a52.4 b0.312 a0.451 b0.021 a
      4500+M39.5 a6.2 a0.77 a165 a16.8 a83.8 b0.193 a0.280 b0.009 a
      6000−M96.3 a12.8 a2.37 a112 a9.6 a74.6 b0.453 a0.564 ab0.032 a
      6000+M102 a15.6 a2.31 a91.7 a6.5 a127 a0.528 a0.706 a0.018 a
      7500−M77.5 a11.3 a2.02 a86.9 a7.6 a76.9 b0.471 a0.612 ab0.025 a
      7500+M65.4 a10.0 a1.56 a88.7 a8.1 a65.7 b0.415 a0.548 ab0.024 a
    显著性 SignificanceP = 0.723P = 0.405P = 0.730P = 0.105P = 0.106P = 0.028P = 0.095P = 0.048P = 0.167
    注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.
    下载: 导出CSV

    表 7  灌溉定额和绿肥及其交互作用对玉米百公斤籽粒氮磷钾需求量和氮磷钾生理效率的影响

    Table 7.  Effects of irrigation quota, green manure and their interaction on N, P, K requirements for 100 kg grain and N, P, K physiological efficiency for grain yield formation of corn

    处理
    Treatment
    100公斤籽粒产量需求量 Requirement for 100 kg grain (kg)生理效率 Physiological efficiency (kg/kg)
    NPKNPK
    灌溉定额Irrigation quota (m3/hm2)
      45007.92 A0.865 A3.09 A15.5 B147 B44.2 B
      60003.10 B0.343 B1.52 B34.2 A310 A74.2 A
      75003.52 B0.412 B1.49 B33.0 A292 A72.1 A
    显著性 SignificanceP = 0.000P = 0.000P = 0.000P = 0.000P = 0.000P = 0.010
    绿肥 Green manure
      −M4.03 b0.436 b1.49 B30.1 a279 a77.0 A
      +M5.67 a0.643 a2.58 A25.1 a221 b50.0 B
    显著性 SignificanceP = 0.021P = 0.018P = 0.002P = 0.075P = 0.039P = 0.003
    灌溉定额 × 绿肥Irrigation quota × Green manure
      4500−M5.67 B0.594 B1.91 B19.9 a192 a62.3 a
      4500+M10.20 A1.140 A4.27 A11.2 a103 a26.0 a
      6000−M3.37 B0.361 B1.16 B32.9 a310 a94.0 a
      6000+M2.84 B0.324 B1.89 B35.5 a310 a54.4 a
      7500−M3.04 B0.353 B1.41 B37.3 a336 a74.7 a
      7500+M4.00 B0.471 B1.57 B28.7 a249 a69.5 a
    显著性 SignificanceP = 0.010P = 0.008P = 0.001P = 0.150P = 0.310P = 0.167
    注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.
    下载: 导出CSV
  • [1] Matin M A, Bourque C P A. Mountain-river runoff components and their role in the seasonal development of desert-oases in northwest China[J]. Journal of Arid Environments, 2015, 122: 1–15 doi: 10.1016/j.jaridenv.2015.05.011
    [2] 王昕, 李海港, 程凌云, 等. 磷与水分互作的根土界面效应及其高效利用机制研究进展[J]. 植物营养与肥料学报, 2017, 23(4): 1054–1064
    Wang X, Li H G, Cheng L Y, et al. Advances of root-soil interface effects of phosphorus and water interaction and mechanisms of their efficient use[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 1054–1064
    [3] 马强, 宇万太, 张璐, 等. 下辽河平原不同水−肥条件下玉米地土壤养分收支及氮肥利用效率[J]. 中国农业科学, 2008, 41(6): 1727–1734 doi: 10.3864/j.issn.0578-1752.2008.06.020
    Ma Q, Yu W T, Zhang L, et al. Effect of precipitation and fertilization on maize farmland nutrient budget and fertilizer-nitrogen use efficiency in Low Reach of Liaohe River Plain[J]. Scientia Agricultura Sinica, 2008, 41(6): 1727–1734 doi: 10.3864/j.issn.0578-1752.2008.06.020
    [4] 孟晓瑜, 王朝晖, 杨宁, 等. 底墒和磷肥对渭北旱塬冬小麦产量与水、肥利用的影响[J]. 植物营养与肥料学报, 2011, 17(5): 1083–1090
    Meng X Y, Wang Z H, Yang N, et al. Effect of soil moisture before sowing and phosphorus fertilization on winter wheat yield, water and fertilizer use efficiencies on Weibei Tableland of the Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1083–1090
    [5] 李可懿, 王朝晖, 赵护兵, 等. 黄土高原旱地小麦与豆科绿肥轮作及施氮对小麦产量和籽粒养分的影响[J]. 干旱地区农业研究, 2011, 29(2): 110–116, 123
    Li K Y, Wang Z H, Zhao H B, et al. Effect of rotation with legumes and N fertilization on yield and grain nutrient contents of wheat in dryland of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2011, 29(2): 110–116, 123
    [6] Jama B, Palm C A, Buresh R J, et al. Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: A review[J]. Agroforestry Systems, 2000, 49: 201–221 doi: 10.1023/A:1006339025728
    [7] Kim S Y, Park C K, Gwon H S, et al. Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies[J]. Science of the Total Environment, 2015, 537: 441–446 doi: 10.1016/j.scitotenv.2015.07.061
    [8] 张久东, 包兴国, 胡志桥, 等. 绿肥与化肥配施对冬小麦产量和土壤肥力的影响[J]. 干旱地区农业研究, 2011, 29(6): 125–129
    Zhang J D, Bao X G, Hu Z Q, et al. Effect of combined application of green manure and chemical fertilizer on wheat yield and soil fertility[J]. Agricultural Research in the Arid Areas, 2011, 29(6): 125–129
    [9] 张久东, 包兴国, 王婷, 等. 增施绿肥与降低氮肥对小麦产量和土壤肥力的影响[J]. 核农学报, 2011, 25(5): 998–1003
    Zhang J D, Bao X G, Wang T, et al. Effect of green manure utilization and reduced N fertilizer on wheat yield and soil fertility[J]. Journal of Nuclear Agricultural Science, 2011, 25(5): 998–1003
    [10] 卢秉林, 包兴国, 张久东, 等. 间作绿肥饲草与减施氮肥对河西绿洲灌区玉米产量和土壤肥力的影响[J]. 干旱地区农业研究, 2015, 33(2): 170–175
    Lu B L, Bao X G, Zhang J D, et al. Effects of intercropping green manure forages and nitrogen-reduction on corn yield and soil fertility in Hexi Oasis Irrigation[J]. Agricultural Research in the Arid Areas, 2015, 33(2): 170–175
    [11] 张久东, 包兴国, 曹卫东, 等. 间作绿肥作物对玉米产量和土壤肥力的影响[J]. 中国土壤与肥料, 2013, (4): 43–47
    Zhang J D, Bao X G, Cao W D, et al. Effect of intercropping green manure crops on maize yield and soil fertility[J]. Soil and Fertilizer Sciences in China, 2013, (4): 43–47
    [12] 卢秉林, 包兴国, 张久东, 等. 河西绿洲灌区玉米与绿肥间作模式对作物产量和经济效益的影响[J]. 中国土壤与肥料, 2014, (2): 67–71
    Lu B L, Bao X G, Zhang J D, et al. Effects of different intercropping systems of corn and green manure on crop yield and economic benefit in Hexi oasis irrigation[J]. Soil and Fertilizer Sciences in China, 2014, (2): 67–71
    [13] 袁金华, 俄胜哲, 黄涛, 等. 水肥管理对带田土壤肥力和作物产量的影响[J]. 土壤通报, 2017, 48(2): 433–440
    Yuan J H, E S Z, Huang T, et al. Effects of water and fertilizer management on soil fertility and crop yield in wheat/corn intercropping system[J]. Chinese Journal of Soil Science, 2017, 48(2): 433–440
    [14] 袁金华, 俄胜哲, 车宗贤, 等. 水肥管理对春小麦产量和根际土壤肥力特征的影响[J]. 土壤与作物, 2017, 6(1): 17–24
    Yuan J H, E S Z, Che Z X, et al. Effects of water and fertilizer management on yield of spring wheat and fertility characteristics in rhizosphere soil[J]. Soil and Crops, 2017, 6(1): 17–24
    [15] 白金顺, 曹卫东, 包兴国, 等. 长期绿肥翻压对西北旱地小麦籽粒矿质元素含量的影响[J]. 光谱学与光谱分析, 2017, 37(6): 1847–1851
    Bai J S, Cao W D, Bao X G, et al. Effects of long-term green manure application on the concentrations of mineral elements in grain of dryland wheat in Northwest of China[J]. Spectroscopy and Spectral Analysis, 2017, 37(6): 1847–1851
    [16] 杜青峰, 王党军, 于翔宇, 等. 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响[J]. 草业学报, 2016, 25(3): 225–233
    Bai J S, Cao W D, Bao X G, et al. Effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptake[J]. Acta Prataculturae Sinica, 2016, 25(3): 225–233
    [17] Florian C, Antoine F, Christian G. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate[J]. European Journal of Agronomy, 2009, 30(1): 41–51 doi: 10.1016/j.eja.2008.07.003
    [18] Regehr A, Oelbermann M, Videla C, et al. Gross nitrogen mineralization and immobilization in temperate maize-soybean intercrops[J]. Plant and Soil, 2015, 391(1–2): 353–365 doi: 10.1007/s11104-015-2438-0
    [19] 李燕青, 孙文彦, 许建新, 等. 黄淮海地区绿肥与化肥配施对棉花生长和肥料利用率的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1397–1403
    Li Y Q, Sun W Y, Xu J X, et al. Influence of combined application of green manure and inorganic fertilizers on cotton growth and fertilizer use efficiency in Huanghuaihai Area[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1397–1403
    [20] Ngwira A R, Aune J B, Mkwinda S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi[J]. Field Crops Research, 2012, 132: 149–157 doi: 10.1016/j.fcr.2011.12.014
    [21] 赵娜, 赵护兵, 曹群虎, 等. 渭北旱区夏闲期豆科绿肥对土壤肥力性状的影响[J]. 干旱地区农业研究, 2011, 29(2): 124–128, 146
    Zhao N, Zhao H B, Cao Q H, et al. Effect of green manure on soil fertility properties in summer fallow period in Weibei dryland[J]. Agricultural Research in the Arid Areas, 2011, 29(2): 124–128, 146
    [22] Li F C, Wang Z H, Dai J, et al. Summer fallow soil management-impact on rainfed winter wheat[J]. Acta Agriculturae Scandinavica (Section B: Soil & Plant Science, 2014, 64(5): 398–407
    [23] Yao Z Y, Wang Z, Li J, et al. Screen for sustainable cropping systems in the rain-fed area on the Loess Plateau of China[J]. Soil and Tillage Research, 2018, 176: 26–35 doi: 10.1016/j.still.2017.07.014
    [24] Fang Q X, Yu Q, Wang E L, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain[J]. Plant and Soil, 2006, 284: 335–350 doi: 10.1007/s11104-006-0055-7
    [25] Altieri M A. The ecological impacts of large-scale agrofuel monoculture production systems in the Americas[J]. Bulletin of Science, Technology & Society, 2009, 29: 236–244
    [26] Li Y J, Chen X, Shamsi I H, et al. Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil[J]. Pedosphere, 2012, 22: 661–672 doi: 10.1016/S1002-0160(12)60051-4
    [27] Liu R J, Sheng P P, Hui H B, et al. Integrating irrigation management for improved grain yield of winter wheat and rhizosphere AM fungal diversity in a semi-arid cropping system[J]. Agricultural Systems, 2015, 132: 167–173 doi: 10.1016/j.agsy.2014.10.002
    [28] 胡新元, 马忠明, 崔云玲, 等. 施氮对带田作物产量及水分利用效率的影响[J]. 甘肃农业科技, 2010, (7): 12–15 doi: 10.3969/j.issn.1001-1463.2010.07.005
    Hu X Y, Ma Z M, Cui Y L, et al. Impact of nitrogen fertilization on yield and water use efficiency of strip intercropping crops[J]. Gansu Agricultural Science and Technology, 2010, (7): 12–15 doi: 10.3969/j.issn.1001-1463.2010.07.005
    [29] 杨蕊菊, 柴守玺, 马忠明. 施氮量对小麦/玉米带田土壤水分及硝态氮的影响[J]. 生态学报, 2012, 32(24): 7905–7912
    Yang R J, Chai S X, Ma Z M. Dynamic changes of soil moisture and nitrate nitrogen in wheat and maize intercropping field under different nitrogen supply[J]. Acta Ecologica Sinica, 2012, 32(24): 7905–7912
    [30] 杨蕊菊, 马忠明. 水肥耦合对小麦/玉米带田产量及构成因素的影响[J]. 西北农业学报, 2015, 24(1): 54–59
    Yang R J, Ma Z M. The effect of water and fertilizer coupling on yield and yield components of intercropped wheat/maize[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(1): 54–59
    [31] 杨蕊菊, 柴守玺, 马忠明, 等. 水肥耦合对小麦玉米带田产量效应及土壤水分动态研究[J]. 核农学报, 2011, 25(5): 1004–1009
    Yang R J, Chai S X, Ma Z M, et al. Water and fertilizer coupling on soil water dynamics and yield in intercropped wheat and maize[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 1004–1009
    [32] 王德权, 马忠明, 杨蕊菊, 等. 水肥耦合条件下间作小麦光合特性的响应[J]. 中国农学通报, 2009, 25(15): 215–218
    Wang D Q, Ma Z M, Yang R J, et al. Response of intercropping wheat photosynthetic characteristics during the water and fertilizer coupling condition[J]. Chinese Agricultural Science Bulletin, 2009, 25(15): 215–218
    [33] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    Lu R K. Analysis method of soil and agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [34] 何刚, 王朝晖, 李富翠, 等. 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响[J]. 中国农业科学, 2016, 49(9): 1657–1671
    He G, Wang Z H, Li F C, et al. Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland[J]. Scientia Agricultura Sinica, 2016, 49(9): 1657–1671
    [35] 郭金金, 张富仓, 王海东, 等. 不同施氮量下缓释氮肥与尿素掺混对玉米生长与氮素吸收利用的影响[J]. 中国农业科学, 2017, 50(20): 3930–3943 doi: 10.3864/j.issn.0578-1752.2017.20.009
    Guo J J, Zhang F C, Wang H D, et al. Effects of slow-release nitrogen fertilizer and urea blending on maize growth and nitrogen uptake under different nitrogen application rates[J]. Scientia Agricultura Sinica, 2017, 50(20): 3930–3943 doi: 10.3864/j.issn.0578-1752.2017.20.009
    [36] 王永华, 黄源, 辛明华, 等. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响[J]. 中国农业科学, 2017, 50(6): 1031–1046
    Wang Y H, Huang Y, Xin M H, et al. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil[J]. Scientia Agricultura Sinica, 2017, 50(6): 1031–1046
    [37] 盖钧镒. 试验统计方法[M]. 北京: 中国农业出版社, 2000.
    Gai J Y. Method of experiment statistics[M]. Beijing: China Agriculture Press, 2000.
    [38] 刘小虎. SPSS 12.0 for Windows在农业试验统计中的应用[M]. 沈阳: 东北大学出版社, 2007.
    Liu X H. Use of SPSS 12.0 for Windows in statistics of agricultural experiment[M]. Shenyang: Northeast University Press, 2007.
    [39] Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: a review[J]. Agronomy for Sustainable Development, 2012, 32(2): 501–529 doi: 10.1007/s13593-011-0068-3
    [40] Dong B D, Liu M Y, Jiang J W, et al. Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields[J]. Agricultural Water Management, 2014, 143(1): 93–101
    [41] 梁永成, 包兴国. 小麦玉米带田麦带内套种绿肥试验[J]. 甘肃农业科技, 1996, (7): 33–34
    Liang Y C, Bao X G. Experiment of interplanting green manure in wheat and corn intercropping system[J]. Gansu Agricultural Science and Technology, 1996, (7): 33–34
    [42] Roper M M, Milroy S P, Poole M L. Green and brown manures in dryland wheat production systems in Mediterranean-type environments[J]. Advances in Agronomy, 2012, 117: 275–313 doi: 10.1016/B978-0-12-394278-4.00005-2
    [43] 方缘, 张玉书, 米娜, 等. 干旱胁迫及补水对玉米生长发育和产量的影响[J]. 玉米科学, 2018, 26(1): 89–97
    Fang Y, Zhang Y S, Mi N, et al. Effect of drought stress and water-recharge to maize growth and yield[J]. Journal of Maize Sciences, 2018, 26(1): 89–97
    [44] Hinsinger P, Plassard C, Tang C X, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248: 43–59 doi: 10.1023/A:1022371130939
    [45] Chuan L M, He P, Jin J Y, et al. Estimating nutrient uptake requirements for wheat in China[J]. Field Crops Research, 2013, 146: 96–104 doi: 10.1016/j.fcr.2013.02.015
    [46] Yue S C, Meng Q F, Zhao R F, et al. Change in nitrogen requirement with increasing grain yield for winter wheat[J]. Agronomy Journal, 2012, 104(6): 1687–1693 doi: 10.2134/agronj2012.0232
    [47] Zhan A, Chen X P, Li S Q, et al. Changes in phosphorus requirement with increasing grain yield for winter wheat[J]. Agronomy Journal, 2015, 107(6): 2003–2015 doi: 10.2134/agronj15.0089
    [48] Zhan A, Zhou C Q, Ye Y L,. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China[J]. Field Crops Research, 2016, 191: 13–19 doi: 10.1016/j.fcr.2016.04.001
    [49] Xu X P, He P, Pampolino M F, et al. Nutrient requirements for maize in China base on QUEFTS analysis[J]. Field Crops Research, 2013, 150: 115–125 doi: 10.1016/j.fcr.2013.06.006
    [50] Hou P, Gao Q, Xie R Z, et al. Grain yields in relation to N requirement: Optimizing nitrogen management for spring maize grown in China[J]. Field Crops Research, 2012, 129: 1–6 doi: 10.1016/j.fcr.2012.01.006
    [51] Wu L Q, Cui Z L, Chen X P, et al. Change in phosphorus requirement with increasing grain yield for Chinese maize production[J]. Field Crops Research, 2015, 180: 216–220 doi: 10.1016/j.fcr.2015.06.001
    [52] Setiyono T D, Walters D T, Cassman K G, et al. Estimating maize nutrient uptake requirements[J]. Field Crops Research, 2010, 118: 158–168 doi: 10.1016/j.fcr.2010.05.006
    [53] Gunes A, Inal A, Adak M S, et al. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture[J]. Nutrient Cycling in Agroecosystems, 2007, 78: 83–96 doi: 10.1007/s10705-006-9075-1
  • [1] 屈会峰赵护兵刘吉飞黄鸿博王朝辉翟丙年 . 不同覆盖措施下旱地冬小麦的氮磷钾需求及其生理效率. 植物营养与肥料学报, 2017, 25(4): 874-882. doi: 10.11674/zwyf.16466
    [2] 蔡泽江孙楠王伯仁徐明岗黄晶张会民 . 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响*. 植物营养与肥料学报, 2011, 19(1): 71-78. doi: 10.11674/zwyf.2011.0110
    [3] 李玉英孙建好余常兵程序张福锁李隆 . 施氮量和蚕豆/玉米间作对土壤无机氮时空分布的影响 . 植物营养与肥料学报, 2009, 17(4): 815-823. doi: 10.11674/zwyf.2009.0412
    [4] 木合塔尔·扎热吴正保马合木提·阿不来提史彦江 . 不同树龄骏枣树养分吸收差异研究. 植物营养与肥料学报, 2016, 24(4): 1141-1148. doi: 10.11674/zwyf.15091
    [5] 陈磊郝明德戚龙海 . 长期施肥对黄土旱塬区土壤植物系统中氮、磷养分的影响. 植物营养与肥料学报, 2007, 15(6): 1006-1012. doi: 10.11674/zwyf.2007.0604
    [6] 张佳佳丁文成艾超崔荣宗李明悦金崇伟徐新朋何萍 . 优化施肥对萝卜产量和肥料利用率的影响. 植物营养与肥料学报, 2019, 25(2): 187-199. doi: 10.11674/zwyf.18055
    [7] 蔡大同张春兰蒋廷惠徐阳春杜国华周瑞荣林长丰 . 优质小麦氮肥分期施用的农业和生理效率. 植物营养与肥料学报, 1996, 4(2): 104-109. doi: 10.11674/zwyf.1996.0202
    [8] 谭金芳洪坚平赵会杰韩燕来王宜伦 . 不同施钾量对旱作冬小麦产量、品质和生理特性的影响 . 植物营养与肥料学报, 2008, 16(3): 456-462. doi: 10.11674/zwyf.2008.0308
    [9] 段英华卢昌艾杨洪波马常宝刘亚男徐明岗 . 长期施肥下我国灌淤土粮食产量和土壤养分的变化. 植物营养与肥料学报, 2018, 24(6): 1475-1483. doi: 10.11674/zwyf.18180
    [10] 李鹏程董合林刘爱忠刘敬然李如义孙淼李亚兵毛树春 . 施氮量对棉花功能叶片生理特性、 氮素利用效率及产量的影响. 植物营养与肥料学报, 2015, 23(1): 81-91. doi: 10.11674/zwyf.2015.0109
    [11] 刘璐王朝辉刁超朋王森李莎莎 . 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系. 植物营养与肥料学报, 2018, 24(3): 599-608. doi: 10.11674/zwyf.17168
    [12] 蒋耿民李援农*周乾 . 不同揭膜时期和施氮量对陕西关中地区夏玉米生理生长、产量及水分利用效率的影响. 植物营养与肥料学报, 2013, 21(5): 1065-1072. doi: 10.11674/zwyf.2013.0505
    [13] 肖靖秀汤利郑毅 . 氮肥用量对油菜//蚕豆间作系统作物产量及养分吸收的影响. 植物营养与肥料学报, 2011, 19(6): 1468-1473. doi: 10.11674/zwyf.2011.1040
    [14] 李伶俐房卫平谢德意马宗斌杜远仿张东林 . 施氮量对杂交棉光合生理特性及产量、品质的影响. 植物营养与肥料学报, 2010, 18(5): 1183-1189. doi: 10.11674/zwyf.2010.0519
    [15] 魏淑丽王志刚于晓芳孙继颖贾琦屈佳伟苏布达高聚林张永清 . 施氮量和密度互作对玉米产量和氮肥利用效率的影响. 植物营养与肥料学报, 2019, 25(2): 1-1. doi: 10.11674/zwyf.18084
    [16] 鱼欢杨改河王之杰 . 不同施氮量及基追比例对玉米冠层生理性状和产量的影响. 植物营养与肥料学报, 2010, 18(2): 266-273. doi: 10.11674/zwyf.2010.0202
    [17] 马宗斌严根土刘桂珍黄群李伶俐朱伟 . 施氮量对黄河滩区棉花叶片生理特性、干物质积累及产量的影响. 植物营养与肥料学报, 2013, 21(4): 849-857. doi: 10.11674/zwyf.2013.0410
    [18] 曹胜彪张吉旺董树亭刘鹏赵斌杨今胜 . 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012, 20(6): 1343-1353. doi: 10.11674/zwyf.2012.12135
    [19] 葛均筑展茗赵明李建鸽李淑娅田少阳 . 一次性施肥对长江中游春玉米产量及养分利用效率影响. 植物营养与肥料学报, 2013, 21(5): 1073-1082. doi: 10.11674/zwyf.2013.0506
    [20] 张绍文何巧林王海月蒋明金李应洪严奉君杨志远孙永健郭翔马均 . 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响. 植物营养与肥料学报, 2018, 24(1): 82-94. doi: 10.11674/zwyf.17105
  • 加载中
表(7)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  34
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 网络出版日期:  2019-02-20
  • 刊出日期:  2019-02-01

灌溉定额和绿肥交互作用对小麦/玉米带田产量和养分利用的影响

    作者简介:袁金华 E-mail: yuanjinhua@gsagr.ac.cn
  • 甘肃省农业科学院土壤肥料与节水农业研究所/农业部甘肃耕地保育与农业环境科学观测实验站,甘肃兰州730070

摘要:  目的研究灌溉定额、绿肥及其交互作用对河西绿洲灌区带田小麦、玉米产量和养分利用的影响,探寻适合灌区带田的水肥管理模式。 方法试验采用裂−裂区设计,主区处理为灌溉定额,设三个水平为4500、6000和7500 m3/hm2;裂区处理为绿肥,设两个水平为不种绿肥和种植绿肥;裂−裂区处理为化肥,设两个水平,为不施化肥和施用化肥,化肥处理氮、磷、钾肥料用量分别为N 525 kg/hm2、P2O5 150 kg/hm2、K2O 90 kg/hm2 结果与4500 m3/hm2的灌溉定额相比,6000 m3/hm2和7500 m3/hm2的灌溉定额极显著增加了小麦和玉米的籽粒产量及其收获指数,增加了小麦和玉米籽粒的氮磷钾吸收量及其养分收获指数,小麦籽粒产量形成的氮生理效率和玉米籽粒产量形成的氮磷钾生理效率;极显著降低了小麦百公斤籽粒氮需求量和玉米百公斤籽粒氮磷钾需求量。绿肥种植与否对小麦、玉米籽粒产量均没有显著影响。种植绿肥极显著降低了玉米籽粒的收获指数和钾收获指数。灌溉定额4500 m3/hm2与种植绿肥交互作用下,玉米磷收获指数最低;灌溉定额6000 m3/hm2与种植绿肥交互作用下玉米磷收获指数最高。种植绿肥处理显著增加了玉米百公斤籽粒氮磷钾需求量,显著降低了玉米百公斤籽粒磷钾生理效率。4500 m3/hm2灌溉定额下种植绿肥进一步加剧了干旱的胁迫程度,导致玉米百公斤籽粒氮、磷需求量显著增加,对钾的需求量极显著增加,磷生理效率显著下降,钾生理效率极显著下降。 结论灌溉定额是河西绿洲灌区带田小麦玉米籽粒产量和收获指数、籽粒氮磷钾吸收量和氮磷钾收获指数、百公斤籽粒氮磷钾需求量和氮磷钾生理效率的决定因素。亏缺灌溉定额(4500 m3/hm2)下,种植绿肥会降低小麦/玉米带田籽粒产量及肥料利用效率。在6000 m3/hm2的灌溉定额下,建议河西绿洲灌区小麦/玉米带田应配合种植绿肥,提高产量和肥料效益。

English Abstract

  • 位于我国甘肃西北部的河西走廊得缘于祁连山丰富的冰雪融水,农业灌溉发达,是西北地区最主要的商品粮基地,走廊内的主要耕作土壤为灌漠土。近年来,随着全球气候变暖、工农业和城镇的快速发展,该区单位面积耕地的灌水量日益减少,缺水大大降低了作物的养分利用效率,造成减产。农业灌溉用水供给不足是目前河西绿洲灌区限制作物生产的关键因素,提高水分和养分的利用效率是维持河西绿洲灌区农业可持续发展的重要措施[1]。水分对植物的养分利用率有重要影响,适宜的水分条件可以通过蒸腾流提高养分的吸收和运输速率,从而提高养分利用率[2]。合理灌溉是调控作物养分转化及产量增加的重要手段,水分与养分之间的互作效应是其高效利用的关键。马强等[3]对下辽河平原不同水肥条件下土壤养分收支及氮肥利用率的研究表明,适宜的水分条件可以增加玉米的养分吸收量,对提高氮肥利用率作用显著。水分也制约作物累积的干物质向籽粒转移的数量或比例[4]。李可懿等[5]对黄土高原旱地小麦的研究表明,由于水分限制,小麦产量降低9.7%~26.6%,小麦籽粒养分吸收量显著降低或呈现降低趋势。绿肥作为传统的有机肥料,有改善土壤质量、提高土壤养分含量、提高作物产量以及培肥地力等作用[67],在我国有悠久的历史,在河西绿洲灌区被广泛种植。目前,对绿肥与作物的种植模式探索、高效绿肥品种培育、绿肥对化肥的减施作用、绿肥对土壤养分的活化作用以及绿肥的养地作用方面开展的研究较多[814]。白金顺等[15]对河西灌区武威绿洲灌漠土25年长期定位试验的研究表明,长期翻压绿肥能有效提高旱地小麦/玉米带田小麦的矿质营养元素含量。杜青峰等[16]研究表明,豆科绿肥与玉米间作增强了玉米的养分吸收性能。间作玉米养分含量的增加得益于土壤有效养分含量的增加[1718]。李燕青等[19]研究表明,翻压绿肥有助于棉花氮、磷和钾素的吸收,与不翻压绿肥相比,籽棉产量增加近30%。但也有研究表明豆科绿肥与玉米间作在干旱年份会降低玉米产量[20],干旱年份种植豆科绿肥会消耗更多的水分,从而加剧土壤的干旱程度[2123]。河西走廊是典型的灌溉农业区,水是灌漠土农业存在的决定因素。以往的研究主要集中于氮肥施用量以及灌溉定额和氮肥的耦合作用对小麦/玉米带田作物产量和经济性状、土壤水分和养分含量的影响[2432],在灌溉定额、绿肥及其交互作用下灌漠土小麦/玉米带田作物对养分吸收利用的效果以及适宜灌溉定额的确定方面缺乏研究。本研究在河西灌区武威绿洲典型灌漠土区进行,以当地广泛分布的小麦/玉米带田为研究对象,在固定氮、磷、钾肥施用量的基础上长期监测灌溉定额和绿肥种植对小麦及玉米籽粒产量和收获指数、籽粒氮磷钾吸收量和收获指数、籽粒产量形成的氮磷钾需求量和生理效率的影响,旨在为河西绿洲灌区小麦/玉米带田作物生产中提高水分和养分利用效率,确定适宜灌溉定额和加强农田水肥管理提供依据。

    • 大田定位试验始于2007年3月,设置在甘肃省农业科学院武威绿洲农业试验站(38°37′N, 102°40′E),试验站位于河西走廊东段,祁连山北麓,海拔1500 m,无霜期150天左右,年降雨量150 mm,年蒸发量2021 mm,年平均气温7.7℃,年日照时数3023 h,≥ 10℃有效积温为3016℃,年太阳辐射总量140~158 kJ/cm2,麦收后 ≥ 10℃有效积温为1350℃,属于典型的两季不足、一季有余的自然生态区。试验地土壤为灌漠土,试验开始时0—20 cm耕层土壤的基本理化性质为有机质16.7 g/kg、碱解氮60.2 mg/kg、有效磷7.10 mg/kg、速效钾78.6 mg/kg、pH 8.25。

    • 试验采用裂−裂区设计,主区处理为灌溉定额,设三个水平为4500、6000和7500 m3/hm2;裂区处理为绿肥,设两个水平,为不种绿肥和种植绿肥;裂−裂区处理为化肥,设两个水平,为不施化肥和施用化肥,不施化肥处理即氮磷钾肥均不施用,施用化肥处理氮磷钾肥等量施用。共计12个处理,每个处理设4次重复,共48个小区,每个小区面积为24 m2 (7.5 m × 3.2 m),小区间间隔为0.5 m。本研究样品采集于2016年(试验第10年)。每个小区采用地面灌溉,用水表严格控制灌水定额,小麦和玉米不同生育期历年灌水定额及灌溉定额见表1。分别在小麦拔节期、抽穗期、灌浆期,玉米大喇叭口期、吐丝期、灌浆期和乳熟期灌水,再加1次冬水,共灌水8次。

      灌溉定额
      Irrigation quota
      小麦Wheat玉米Corn
      拔节期
      Jointing stage
      of wheat
      抽穗期
      Heading
      stage
      灌浆期
      Filling
      stage
      大喇叭口期
      Full-grown
      stage of corn
      吐丝期
      Silking
      stage
      灌浆期
      Filling
      stage
      乳熟期
      Milk
      ripening
      冬水
      Winter
      irrigation
      4500750 0750750 01050 01200
      60007507507507507501050 01200
      750075075075075075010507501950

      表 1  小麦和玉米不同生育期灌水定额及灌溉定额 (m3/hm2)

      Table 1.  Irrigation quota and water amounts supplied at different plant phonological stages of wheat and corn

      历年化肥施用量按当地小麦/玉米带田的常规施肥水平进行,氮(N)施入量为525 kg/hm2、磷(P2O5)施入量为150 kg/hm2、钾(K2O)施入量为90 kg/hm2,磷肥和钾肥全部作基肥,氮肥30%作基肥,10%在小麦拔节期给小麦带追施,30%在玉米拔节期给玉米带追施,30%在玉米大喇叭口期给玉米带追施。基肥在春季翻地前均匀撒施于地面,于翻地时深翻入土。小麦带追肥在小麦带均匀撒施,撒施完立即灌水。玉米带追肥在两行玉米的行间于地膜上开穴深施,施肥后立即灌水。氮肥为尿素(含N 46%),磷肥为磷酸二铵(含N 18%、P2O5 46%),钾肥为氯化钾(含K2O 60%)。

      小麦和玉米采用带状间作,每个带幅为150 cm,每个小区种植5带,其中小麦带为70 cm,播种6行,行距为11.7 cm,小麦播种量为450 kg/hm2;玉米带为80 cm,播种2行,行距为26.7 cm,株距为22 cm。绿肥品种为‘土库曼毛叶苕子’,播种量为60 kg/hm2,于小麦灌浆期灌水时在小麦带撒施,在玉米灌浆期灌水前进行翻压。供试小麦品种为‘永良4号’,于2016年3月23日播种,7月14日收获;玉米品种为‘武科2号’,于2016年4月18日播种,10月9日收获。

    • 小麦成熟后,避开两边,选择第3和第4带小麦分别进行收割放入网袋中,风干棚中风干,脱粒机脱粒,计算小麦籽粒产量、秸秆产量和生物产量;取籽粒和秸秆样品粉碎后,进行氮、磷、钾含量测定。玉米成熟后,选择第3和第4带玉米分别进行收获,玉米穗和秸秆于风干棚中风干后计算玉米籽粒产量、秸秆产量和生物产量;取籽粒和秸秆样品粉碎后,进行氮、磷、钾含量测定。

    • 小麦及玉米的籽粒和秸秆样品经硫酸−过氧化氢消煮后,全氮含量采用蒸馏法,全磷含量用钼锑抗比色法,全钾含量用火焰光度法进行测定[33]

    • 相关指标的计算公式如下[3436]

      籽粒氮(磷、钾)吸收量(kg/hm2)= 籽粒含氮(磷、钾)量(g/kg) × 籽粒产量(kg/hm2)/1000;

      秸秆氮(磷、钾)吸收量(kg/hm2)= 秸秆含氮(磷、钾)量(g/kg) × 秸秆生物量(kg/hm2)/1000;

      地上部氮(磷、钾)吸收量(kg/hm2)= 籽粒氮(磷、钾)吸收量(kg/hm2) + 秸秆氮(磷、钾)吸收量(kg/hm2);

      氮(磷、钾)收获指数 = 籽粒氮(磷、钾)吸收量(kg/hm2)/地上部氮(磷、钾)吸收量(kg/hm2);

      百公斤籽粒氮(磷、钾)需求量(kg)=地上部吸氮(磷、钾)量(kg/hm2)/ 籽粒产量(kg/hm2) × 100 kg;

      籽粒产量形成的氮(磷、钾)生理效率(kg/kg)=籽粒产量(kg/hm2)/地上部氮(磷、钾)吸收量(kg/hm2)。

      数据经Excel 2003整理后,采用SPSS 15.0软件进行统计分析。灌溉定额、绿肥及其交互作用下小麦和玉米各指标差异性的比较采用裂区的方差统计分析方法 (Univariate) 进行[3738]

    • 灌溉定额能极显著影响小麦籽粒产量、秸秆产量、生物产量和收获指数(表2)。与4500 m3/hm2的灌溉定额相比,6000和7500 m3/hm2灌溉定额的籽粒产量极显著增加了70.2%和88.1%;秸秆产量极显著增加了31.4%和33.7%;生物产量极显著增加了42.3%和49.0%;收获指数极显著增加了23.2%和30.5%。6000 m3/hm2和7500 m3/hm2灌溉定额之间没有显著差异。不种绿肥与种植绿肥之间没有显著差异。灌溉定额与绿肥的交互作用之间没有显著差异。

      处理
      Treatment
      籽粒产量 (kg/hm2)
      Grain yield
      秸秆产量 (kg/hm2)
      Straw yield
      生物产量 (kg/hm2)
      Biomass
      收获指数
      Harvest index
      灌溉定额 (m3/hm2)
      Irrigation quota
      45001052 B2704 B3755 B0.272 B
      60001791 A3553 A5344 A0.335 A
      75001979 A3615 A5594 A0.355 A
      显著性 SignificanceP = 0.000P = 0.000P = 0.000P = 0.002
      绿肥Green manure−M1663 a3284 a4948 a0.330 a
      +M1551 a3297 a4848 a0.312 a
      显著性 SignificanceP = 0.349P = 0.936P = 0.679P = 0.289
      灌溉定额 × 绿肥Irrigation × Green manure4500−M1044 a2491 a3535 a0.287 a
      4500+M1059 a2916 a3976 a0.256 a
      6000−M1911 a3660 a5571 a0.345 a
      6000+M1671 a3447 a5117 a0.324 a
      7500−M2035 a3702 a5737 a0.356 a
      7500+M1924 a3527 a5451 a0.354 a
      显著性 SignificanceP = 0.672P = 0.177P = 0.288P = 0.771
      注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.

      表 2  灌溉定额、绿肥及其交互作用对小麦产量和收获指数的影响

      Table 2.  Effects of irrigation quota, green manure and their interaction on yield and harvest index of wheat

    • 灌溉定额能极显著影响小麦籽粒氮磷钾吸收量、秸秆钾吸收量和氮磷钾收获指数(表3)。与4500 m3/hm2的灌溉定额相比,6000和7500 m3/hm2灌溉定额的籽粒氮吸收量极显著增加了68.0%和83.8%;磷吸收量极显著增加了75.8%和96.4%;钾吸收量极显著增加了91.4%和78.4%;秸秆钾吸收量极显著增加了55.7%和39.0%;氮收获指数极显著增加了19.9%和26.4%;磷收获指数极显著增加了18.5%和21.4%;钾收获指数极显著增加了25.6%和29.5%。6000和7500 m3/hm2灌溉定额之间没有显著差异。不种绿肥与种植绿肥之间没有显著差异。灌溉定额与绿肥的交互作用之间没有显著差异。

      处理
      Treatment
      籽粒Grain (kg/hm2)秸秆Straw (kg/hm2)收获指数Harvest index
      NPKNPKNPK
      灌溉定额Irrigation quota (m3/hm2)
        450028.4 B3.06 B2.78 B29.5 a2.40 a31.8 B0.477 B0.542 B0.078 B
        600047.7 A5.38 A5.32 A35.6 a3.00 a49.5 A0.572 A0.642 A0.098 A
        750052.2 A6.01 A4.96 A34.7 a3.19 a44.2 A0.603 A0.658 A0.101 A
      显著性 SignificanceP = 0.000P = 0.000P = 0.000P = 0.135P = 0.098P = 0.001P = 0.010P = 0.008P = 0.007
      绿肥Green manure
        −M44.2 a4.97 a4.43 a31.5 a2.59 a41.3 a0.573 a0.645 a0.094 a
        +M41.3 a4.67 a4.27 a35.0 a3.14 a42.3 a0.529 a0.583 a0.090 a
      显著性 SignificanceP = 0.371P = 0.465P = 0.720P = 0.186P = 0.075P = 0.727P = 0.168P = 0.064P = 0.489
      灌溉定额 × 绿肥Irrigation quota × Green manure
        4500−M27.6 a2.99 a2.39 a26.7 a2.11 a27.5 a0.497 a0.573 a0.078 a
        4500+M29.1 a3.13 a3.17 a32.2 a2.70 a36.0 a0.457 a0.511 a0.078 a
        6000−M50.8 a5.74 a5.45 a33.8 a2.75 a53.2 a0.602 a0.680 a0.094 a
        6000+M44.6 a5.02 a5.18 a37.4 a3.25 a45.8 a0.542 a0.603 a0.101 a
        7500−M54.3 a6.17 a5.45 a34.0 a2.91 a43.2 a0.618 a0.681 a0.110 a
        7500+M50.1 a5.85 a4.47 a35.4 a3.46 a45.1 a0.588 a0.634 a0.092 a
      显著性 SignificanceP = 0.602P = 0.696P = 0.274P = 0.800P = 0.991P = 0.121P = 0.916P = 0.925P = 0.155
      注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.

      表 3  灌溉定额和绿肥及其交互作用对小麦籽粒、秸秆氮磷钾吸收量和氮磷钾收获指数的影响

      Table 3.  Effects of irrigation quota, green manure and their interaction on grain and straw N, P, K uptake, and N, P, K harvest index of wheat

    • 灌溉定额能极显著影响小麦籽粒产量形成的氮钾需求量和氮钾生理效率,能显著影响小麦产量形成的磷需求量和磷生理效率(表4)。与4500 m3/hm2的灌溉定额相比,6000和7500 m3/hm2灌溉定额的籽粒产量形成的氮需求量极显著降低了21.1%和26.4%;磷需求量显著降低了14.1%和16.1%;籽粒产量形成的氮生理效率极显著增加了22.2%和29.5%;磷生理效率显著增加了13.8%和15.4%。与4500和6000 m3/hm2的灌溉定额相比,7500 m3/hm2灌溉定额的籽粒产量形成的钾需求量极显著降低了29.9%和20.1%;籽粒产量形成的钾生理效率极显著增加了37.4%和24.3%。与不种绿肥相比,种植绿肥籽粒产量形成的磷生理效率显著降低了10.6%。灌溉定额与绿肥的交互作用之间没有显著差异。

      处理
      Treatment
      100公斤籽粒产量需求量Requirement for 100 kg grain (kg)生理效率Physiological efficiency (kg/kg)
      NPKNPK
      灌溉定额Irrigation quota (m3/hm2)
        45005.98 A0.552 a3.51 A17.6 B188 b30.2 B
        60004.72 B0.474 b3.08 A21.5 A214 a33.4 B
        75004.40 B0.463 b2.46 B22.8 A217 a41.5 A
      显著性 SignificanceP = 0.004P = 0.043P = 0.005P = 0.003P = 0.033P = 0.004
      绿肥Green manure
        −M4.78 a0.464 a2.82 a21.5 a218 a37.3 a
        +M5.28 a0.529 a3.21 a19.8 a195 b32.8 a
      显著性 SignificanceP = 0.159P = 0.064P = 0.155P = 0.136P = 0.038P = 0.123
      灌溉定额 × 绿肥Irrigation quota × Green manure
        4500−M5.57 a0.504 a3.07 a18.7 a200 a34.1 a
        4500+M6.39 a0.600 a3.96 a16.6 a175 a26.3 a
        6000−M4.44 a0.445 a3.06 a22.6 a227 a34.2 a
        6000+M5.00 a0.503 a3.10 a20.3 a201 a32.7 a
        7500−M4.34 a0.442 a2.34 a23.0 a227 a43.5 a
        7500+M4.47 a0.484 a2.57 a22.5 a208 a39.5 a
      显著性 SignificanceP = 0.705P = 0.792P = 0.398P = 0.747P = 0.953P = 0.648
      注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.

      表 4  灌溉定额和绿肥及其交互作用对小麦百公斤籽粒氮磷钾需求量和氮磷钾生理效率的影响

      Table 4.  Effects of irrigation quota, green manure and their interaction on N, P, K requirement for 100 kg grain and N, P, K physiological efficiency for grain yield formation of wheat

    • 灌溉定额能极显著影响玉米籽粒产量、秸秆产量、生物产量和收获指数(表5)。与4500 m3/hm2的灌溉定额相比,6000和7500 m3/hm2灌溉定额的籽粒产量极显著增加了159%和98.5%;收获指数极显著增加了63.3%和55.4%。与4500和7500 m3/hm2的灌溉定额相比,6000 m3/hm2灌溉定额的秸秆产量极显著增加了26.2%和25.0%;生物产量极显著增加了58.7%和27.2%。与不种绿肥相比,种植绿肥收获指数极显著降低了14.9%。灌溉定额与绿肥交互作用之间的差异不显著。

      处理
      Treatment
      籽粒产量 (kg/hm2)
      Grain yield
      秸秆产量 (kg/hm2)
      Straw yield
      生物产量 (kg/hm2)
      Biomass
      收获指数
      Harvest index
      灌溉定额Irrigation quota (m3/hm2)
        45002659 B 8262 B10921 B0.240 B
        60006898 A10429 A17327 A0.392 A
        75005278 A 8340 B13618 B0.373 A
        显著性 SignificanceP = 0.000P = 0.004P = 0.001P = 0.000
      绿肥 Green manure
        −M5328 a 8681 a14010 a0.362 A
        +M4561 a 9340 a13901 a0.308 B
        显著性 SignificanceP = 0.228P = 0.204P = 0.918P = 0.009
      灌溉定额 × 绿肥Irrigation quota × Green manure
        4500−M3044 a 7579 a10623 a0.285 a
        4500+M2274 a 8946 a11219 a0.195 a
        6000−M6980 a 9538 a16519 a0.408 a
        6000+M6815 a11321 a18136 a0.377 a
        7500−M5961 a 8927 a14888 a0.382 a
        7500+M4595 a 7752 a12347 a0.354 a
        显著性 SignificanceP = 0.730P = 0.058P = 0.270P = 0.367
      注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.

      表 5  灌溉定额和绿肥及其交互作用对玉米产量和收获指数的影响

      Table 5.  Effects of irrigation quota, green manure and their interaction on yield and harvest index of corn

    • 灌溉定额能极显著影响玉米籽粒氮磷钾吸收量和氮磷钾收获指数,能显著影响秸秆氮磷钾吸收量(表6)。与4500 m3/hm2的灌溉定额相比,6000 和7500 m3/hm2灌溉定额的籽粒氮吸收量极显著增加了127%和64.0%;磷吸收量极显著增加了111%和59.2%;钾吸收量极显著增加了160%和98.7%;秸秆氮吸收量显著降低了26.6%和36.8%;磷吸收量显著降低了39.6%和41.2%;氮收获指数极显著增加了94.8%和75.8%;磷收获指数极显著增加了74.0%和58.9%;钾收获指数极显著增加了66.7%和60.0%。与4500 和7500 m3/hm2的灌溉定额相比,6000 m3/hm2灌溉定额的秸秆钾吸收量显著增加了48.3%和41.7%。与不种绿肥相比,种植绿肥秸秆钾吸收量显著增加了35.3%,钾收获指数极显著降低了34.6%。灌溉定额与绿肥之间的交互作用对玉米秸秆钾吸收量和玉米磷收获指数影响显著。不种绿肥条件下,随灌溉定额增加,玉米秸秆钾吸收量呈增加趋势,但表现不显著;种植绿肥条件下,6000 m3/hm2灌溉定额下玉米秸秆钾吸收量最高,显著高于4500 和7500 m3/hm2灌溉定额下51.6%和93.3%。不种绿肥条件下,随灌溉定额增加玉米磷收获指数呈增加趋势,但处理间差异不显著;种植绿肥条件下,6000 m3/hm2灌溉定额下玉米磷收获指数最高,显著高于4500 m3/hm2灌溉定额。

      处理
      Treatment
      籽粒Grain (kg/hm2)秸秆Straw (kg/hm2)收获指数Harvest index
      NPKNPKNPK
      灌溉定额Irrigation quota (m3/hm2)
        450043.6 B6.7 B0.90 B139.0 a13.3 a 68.1 b0.252 B0.365 B0.015 B
        600099.0 A14.2 A2.34 A102.0 b 8.0 b101.0 a0.491 A0.635 A0.025 A
        750071.5 A10.7 A1.79 A 87.8 b 7.8 b 71.3 b0.443 A0.580 A0.024 A
      显著性 SignificanceP = 0.001P = 0.002P = 0.000P = 0.019P = 0.047P = 0.015P = 0.000P = 0.001P = 0.010
      绿肥 Green manure
        −M73.8 a10.4 a1.81 a104 a9.0 a68.0 b0.412 a0.542 a0.026 A
        +M68.9 a10.6 a1.55 a115 a10.5 a92.0 a0.378 a0.511 a0.017 B
      显著性 SignificanceP = 0.598P = 0.902P = 0.228P = 0.412P = 0.427P = 0.014P = 0.348P = 0.526P = 0.003
      灌溉定额 × 绿肥Irrigation quota × Green manure
        4500−M47.7 a7.2 a1.03 a113 a9.8 a52.4 b0.312 a0.451 b0.021 a
        4500+M39.5 a6.2 a0.77 a165 a16.8 a83.8 b0.193 a0.280 b0.009 a
        6000−M96.3 a12.8 a2.37 a112 a9.6 a74.6 b0.453 a0.564 ab0.032 a
        6000+M102 a15.6 a2.31 a91.7 a6.5 a127 a0.528 a0.706 a0.018 a
        7500−M77.5 a11.3 a2.02 a86.9 a7.6 a76.9 b0.471 a0.612 ab0.025 a
        7500+M65.4 a10.0 a1.56 a88.7 a8.1 a65.7 b0.415 a0.548 ab0.024 a
      显著性 SignificanceP = 0.723P = 0.405P = 0.730P = 0.105P = 0.106P = 0.028P = 0.095P = 0.048P = 0.167
      注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.

      表 6  灌溉定额和绿肥及其交互作用对玉米籽粒、秸秆氮磷钾吸收量和氮磷钾收获指数的影响

      Table 6.  Effects of irrigation quota, green manure and their interaction on grain and straw N, P, K uptake, and N, P, K harvest index of corn

    • 灌溉定额能极显著影响玉米籽粒产量形成的氮磷钾需求量和生理效率(表7)。与4500 m3/hm2的灌溉定额相比,6000和7500 m3/hm2灌溉定额的籽粒产量形成的氮需求量极显著降低了60.9%和55.6%;磷需求量极显著降低了60.3%和52.4%;钾需求量极显著降低了50.8%和51.8%;籽粒产量形成的氮生理效率极显著增加了121%和113%;磷生理效率极显著增加了111%和98.6%;钾生理效率极显著增加了67.9%和63.1%。与不种绿肥相比,种植绿肥籽粒产量形成的氮需求量显著增加了40.7%,磷需求量显著增加了47.5%,钾需求量极显著增加了73.2%;籽粒产量形成的磷生理效率显著降低了20.8%,钾生理效率极显著降低了35.1%。4500 m3/hm2 + 种植绿肥处理籽粒产量形成的氮磷钾需求量均极显著高于其他交互作用的处理。

      处理
      Treatment
      100公斤籽粒产量需求量 Requirement for 100 kg grain (kg)生理效率 Physiological efficiency (kg/kg)
      NPKNPK
      灌溉定额Irrigation quota (m3/hm2)
        45007.92 A0.865 A3.09 A15.5 B147 B44.2 B
        60003.10 B0.343 B1.52 B34.2 A310 A74.2 A
        75003.52 B0.412 B1.49 B33.0 A292 A72.1 A
      显著性 SignificanceP = 0.000P = 0.000P = 0.000P = 0.000P = 0.000P = 0.010
      绿肥 Green manure
        −M4.03 b0.436 b1.49 B30.1 a279 a77.0 A
        +M5.67 a0.643 a2.58 A25.1 a221 b50.0 B
      显著性 SignificanceP = 0.021P = 0.018P = 0.002P = 0.075P = 0.039P = 0.003
      灌溉定额 × 绿肥Irrigation quota × Green manure
        4500−M5.67 B0.594 B1.91 B19.9 a192 a62.3 a
        4500+M10.20 A1.140 A4.27 A11.2 a103 a26.0 a
        6000−M3.37 B0.361 B1.16 B32.9 a310 a94.0 a
        6000+M2.84 B0.324 B1.89 B35.5 a310 a54.4 a
        7500−M3.04 B0.353 B1.41 B37.3 a336 a74.7 a
        7500+M4.00 B0.471 B1.57 B28.7 a249 a69.5 a
      显著性 SignificanceP = 0.010P = 0.008P = 0.001P = 0.150P = 0.310P = 0.167
      注(Note):+M、−M 分别代表种植绿肥和不种植绿肥;数值后不同小、大写字母分别表示同类型处理间在 0.05、0.01 水平差异显著性。+M and −M represent planting and not planting green manure. Values followed by different small and capital letters are significantly different among the same kind treatments at the 0.05 and 0.01 levels, respectively.

      表 7  灌溉定额和绿肥及其交互作用对玉米百公斤籽粒氮磷钾需求量和氮磷钾生理效率的影响

      Table 7.  Effects of irrigation quota, green manure and their interaction on N, P, K requirements for 100 kg grain and N, P, K physiological efficiency for grain yield formation of corn

    • 适宜的水分条件能促进作物个体发育和群体构建,提高作物体内干物质积累及干物质向籽粒转运的能力,从而增加作物产量,而水分不足则限制籽粒产量的形成[3940],制约作物累积的干物质向籽粒转移的多少或比例[45]。与4500 m3/hm2的灌溉定额相比,6000和7500 m3/hm2的灌溉定额均极显著增加了小麦玉米籽粒产量和收获指数。说明4500 m3/hm2的灌溉定额不利于小麦和玉米籽粒产量的形成,降低了作物累积的干物质向籽粒转移的比例,属于亏缺灌溉定额。6000和7500 m3/hm2灌溉定额之间小麦玉米籽粒产量无显著差异,表明即使增加了1500 m3/hm2的灌溉定额,也没有带来相应籽粒产量的显著增加。对于水资源日益匮乏的河西灌溉农业区,6000 m3/hm2是既能保证作物产量又能节约用水的适宜灌溉定额。

      绿肥种植与否对小麦玉米籽粒产量均没有显著影响,这和梁永成等[41]在邻近试验地的研究结果一致。种植绿肥极显著降低了玉米的收获指数。这主要是因为绿肥在自身生长过程中会消耗土壤水分,减少土壤贮水量[42],本研究中的绿肥在小麦收获后与玉米约有1个月的共生期,日期介于7月中下旬和8月上旬之间,这段时间为河西绿洲灌区蒸发最为强烈的时候,也是绿肥生长最为迅速的时候。绿肥的快速生长加速了对土壤水分的消耗,降低了共生期玉米生长过程中干物质积累向籽粒转运的能力,从而降低了玉米的收获指数[45]

    • 本研究表明,与4500 m3/hm2的灌溉定额相比,6000和7500 m3/hm2的灌溉定额均极显著增加了小麦玉米籽粒氮磷钾吸收量和氮磷钾收获指数。这主要是由于灌溉定额不足造成的干旱胁迫极显著降低了小麦玉米籽粒氮磷钾养分的吸收量和积累效率的原因造成的。水分不足限制作物生长和籽粒产量的形成,抑制营养物质从茎秆向籽粒转移的生理过程[43],不利于养分元素的吸收和向籽粒的转运[36]

      种植绿肥极显著降低了玉米钾收获指数,这主要是因为种植绿肥消耗了较多的土壤水分,从而降低了共生期玉米的有效水分,有效水分的减少抑制钾素从茎秆向籽粒的转移,从而降低了玉米钾收获指数。这和Yao等[23]的研究结果一致,其研究结果表明,种植豆科绿肥消耗了更多的水分从而降低了土壤的有效水分。此外,绿肥在旱季消耗的水分大于湿季,表明绿肥加剧了土壤干旱程度,尤其在干旱年份表现得更显著[2123]

      灌溉定额与绿肥的交互作用对玉米磷收获指数的显著影响主要表现在种植绿肥条件下,4500 m3/hm2的低灌溉定额和种植绿肥的高耗水过程加剧了干旱对玉米生长的胁迫程度,造成此条件下玉米磷收获指数最低。6000 m3/hm2 + 种植绿肥交互作用下玉米磷收获指数最高,这主要是因为种植和翻压绿肥能活化碱性土壤中的磷[44],加上适宜的水分含量,给玉米营造了一个水分和养分高效的生长环境,从而提高了玉米磷收获指数。

    • Chuan等[45]根据2000—2011年我国小麦产区籽粒产量和养分吸收量的数据,利用QUEFTS模型预测出我国小麦百公斤籽粒形成的氮磷钾需求量为N 2.28 kg、P 0.440 kg、K 1.90 kg,对应的氮磷钾生理效率为N 43.9 kg/kg、P 227 kg/kg、K 52.7 kg/kg。本研究得出的小麦百公斤籽粒产量形成的氮磷钾需求量的范围分别为N 4.34~6.39 kg、P 0.442~0.600 kg和K 2.34~3.96 kg,氮磷钾生理效率为N 16.6~23.0 kg/kg、P 175~227 kg/kg和K 26.3~43.5 kg/kg。可以看出,本研究中小麦籽粒产量形成的氮钾需求量高于预测值,磷需求量和预测值接近。小麦籽粒产量形成的氮磷钾需求量均表现为4500 m3/hm2灌溉定额下的较高,最高值均为4500 m3/hm2 + 种植绿肥的处理,但与其他处理差异不显著。研究发现,在低产量范围内,小麦籽粒产量形成的氮磷钾需求量随籽粒收获指数的增加而降低[4648]。本研究中小麦籽粒产量形成的氮、磷、钾需求量与小麦籽粒收获指数之间的相关性方程分别为:

      y1 = –20.016x + 11.450 (r = 0.931, P = 0.000)

      y2 = –1.416x + 0.950 (r = 0.822, P = 0.000)

      y3 = –12.237x + 6.939 (r = 0.852, P = 0.000)

      式中:y1、y2、y3分别为小麦籽粒产量形成的氮、磷、钾需求量;x为小麦籽粒收获指数。

      从相关性方程可以看出,小麦籽粒产量形成的氮、磷、钾需求量与小麦籽粒收获指数之间均呈极显著的负线性相关。本研究中小麦收获指数介于0.256~0.356之间,尤其是低灌溉定额下的较低,介于0.256~0.287之间,远低于全国小麦收获指数的平均值0.440[45],这是造成本研究中小麦籽粒产量形成的氮磷钾需求量高于全国平均值的主要原因。

      小麦籽粒产量形成的氮钾生理效率与预测值相比低很多,磷生理效率和预测值接近。小麦籽粒产量形成的氮磷钾生理效率均表现为4500 m3/hm2灌溉定额下的较低,最低值均为4500 m3/hm2 + 种植绿肥的处理,但与其他处理差异不显著。可见,灌溉定额不足导致的水分胁迫是造成小麦籽粒产量形成的氮磷钾生理效率较低的主要原因。低灌溉定额下种植绿肥进一步加剧了干旱造成的胁迫程度,造成种植绿肥条件下小麦籽粒产量形成的磷生理效率的显著降低。

      Xu等[49]根据2001—2010年我国玉米产区玉米籽粒产量和地上部养分积累的数据,利用QUEFTS模型预测出我国春玉米百公斤籽粒氮磷钾需求量为N 1.69 kg、P 0.350 kg和K 1.53 kg,相应的氮磷钾生理效率为N 59.0 kg/kg、P 287 kg/kg和K 65.0 kg/kg。本研究得出的百公斤玉米籽粒产量形成的氮磷钾需求量范围为N 2.84~10.2 kg、P 0.324~1.14 kg和K 1.16~4.27 kg,氮磷钾生理效率为N 11.2~37.3 kg/kg、P 103~336 kg/kg和K 26.0~94.0 kg/kg。可以看出,本研究中玉米籽粒产量形成的氮需求量高于预测值,磷和钾需求量和预测值接近。玉米籽粒产量形成的氮磷钾需求量均表现为4500 m3/hm2灌溉定额下的较高,最高值均为4500 m3/hm2 + 种植绿肥的处理,均极显著高于其他处理条件下。研究发现,在低产量范围内,玉米籽粒产量形成的氮磷钾需求量随籽粒收获指数的增加而降低[4952]。本研究中玉米籽粒产量形成的氮、磷、钾需求量与玉米籽粒收获指数之间的相关性方程分别为:

      y1 = –30.132x + 14.942 (r = 0.887, P = 0.000)

      y2 = –3.275x + 1.637(r = 0.860, P = 0.000)

      y3 = –11.245x + 5.801 (r = 0.841, P = 0.000)

      式中:y1、y2、y3分别为玉米籽粒产量形成的氮、磷、钾需求量;x为玉米收获指数。

      从相关性方程可以看出,玉米籽粒产量形成的氮、磷、钾需求量与玉米籽粒收获指数之间均呈极显著的负线性相关。本研究中玉米收获指数介于0.195~0.408之间,尤其是低灌溉定额下的较低,介于0.195~0.285之间,远低于全国玉米收获指数的平均值0.510[50],这是造成本研究中玉米籽粒产量形成的氮磷钾需求量高于全国平均值的主要原因。

      玉米籽粒产量形成的氮生理效率与预测值相比低很多,磷和钾生理效率和预测值接近。玉米籽粒产量形成的氮磷钾生理效率均表现为4500 m3/hm2灌溉定额下的较低,最低值均为4500 m3/hm2 + 种植绿肥的处理。可见,灌溉定额不足导致的水分胁迫是造成玉米籽粒产量形成的氮磷钾生理效率较低的主要原因。低灌溉定额下种植绿肥进一步加剧了干旱的胁迫程度,造成种植绿肥条件下玉米籽粒产量形成的氮磷钾生理效率的降低。

      灌溉定额不足条件下较低的小麦玉米籽粒收获指数是造成小麦玉米籽粒产量形成的氮磷钾需求量较高的主要原因。灌溉定额不足导致的干旱胁迫是造成小麦玉米籽粒产量形成的氮磷钾生理效率降低的主要原因。干旱条件下,土壤水分供应不足降低了土壤中养分活性和对作物供应养分的能力,也降低了作物吸收转化养分的能力[2, 53]。而灌溉定额不足情况下绿肥的种植又加剧了干旱的胁迫程度,造成种植绿肥条件下小麦玉米籽粒产量形成的氮磷钾需求量和生理效率的降低。

    • 灌溉定额是河西绿洲灌区带田小麦玉米籽粒产量和收获指数、籽粒氮磷钾吸收量和氮磷钾收获指数、籽粒产量形成的氮磷钾需求量和氮磷钾生理效率的决定因素。灌溉定额不足极显著降低了小麦和玉米籽粒产量和收获指数、小麦和玉米籽粒氮磷钾吸收量和氮磷钾收获指数、小麦籽粒产量形成的氮生理效率和玉米籽粒产量形成的氮磷钾生理效率,极显著增加了小麦籽粒产量形成的氮需求量和玉米籽粒产量形成的氮磷钾需求量。灌溉定额不足情况下种植绿肥进一步加剧了干旱的胁迫程度,导致玉米籽粒产量形成的氮磷需求量的显著增加和钾需求量的极显著增加、籽粒产量形成的磷生理效率的显著下降和钾生理效率的极显著下降。因此,在河西灌溉农业区,灌溉定额不足情况下应注意种植绿肥对带田籽粒产量形成的氮磷钾需求量和生理效率所带来的负效应,根据实际情况确定灌溉定额。依据本研究得出的河西绿洲灌区小麦/玉米带田的适宜水肥管理模式为6000 m3/hm2的灌溉定额和种植绿肥相配合。

参考文献 (53)

目录

    /

    返回文章
    返回