• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负压灌溉提高紫叶生菜的水分利用效率和根际微生物多样性

高翔 张淑香 龙怀玉

引用本文:
Citation:

负压灌溉提高紫叶生菜的水分利用效率和根际微生物多样性

    作者简介: 高翔E-mail:gxkochung@163.com;
    通讯作者: 张淑香, E-mail:zhangshuxiang@caas.cn

Improving water use efficiency and rhizosphere microbial diversity of purple leaf lettuce using negative pressure irrigation

    Corresponding author: ZHANG Shu-xiang, E-mail:zhangshuxiang@caas.cn ;
  • 摘要: 【目的】针对目前设施农业中常用的灌溉方式容易造成土表水分蒸发和水肥流失,且不能按照作物所需自动供水供肥的现状,本研究探讨了负压灌溉提高紫叶生菜的产量和品质,以及水分利用效率和土壤微生物群落多样性的机理。【方法】在温室内进行盆栽试验,以紫叶生菜 (Lactuca sativa L.) 为试验材料,设置3个灌溉处理:常规灌溉、滴灌和负压灌溉。收获后,测定了紫叶生菜的产量,分析了品质 (维生素C、可溶性糖、花青素和硝酸盐含量),植株的养分 (氮、磷和钾) 浓度和吸收量,监测了土壤水分含量动态的变化,计算了水分消耗量和水分利用效率,分析了根际土壤微生物的多样性指数和细菌在门分类上的群落结构组成。【结果】负压灌溉下显著提高紫叶生菜的产量和品质,负压灌溉比常规和滴灌处理的产量分别显著提高了68.1%和29.0%,也提高了维生素C、可溶性糖和花青素的含量,减少了硝酸盐含量。与常规灌溉相比负压灌溉显著提高了紫叶生菜氮、磷、钾的浓度和含量,分别提高13.0%、14.4%、38.4%和90.2%、92.6%、135.5%。紫叶生菜在负压灌溉下耗水量最少,为9900 cm3,比常规和滴灌处理分别减少了23.8%和23.8%;负压下水分利用效率比常规和滴灌分别显著提高了122.2%和70.5%。同时负压灌溉处理下动态的土壤含水量处于10.3%~11.3%之间,变异范围低于常规和滴灌处理9.2%~11.6%。通过高通量测序紫叶生菜根际土壤微生物群落发现,负压灌溉处理下微生物多样性指数最高,表现为OTU、Chao1和Shannon指标的数值显著高于常规和滴灌处理,其数值分别为1808、2437和8.48,分别比常规灌溉处理显著提高了15.2%、15.7%和3.16%。同时也改变了细菌在门分类水平上组成的相对丰度,在负压灌溉处理下比常规和滴灌处理分别提高了放线菌门 (Actinobacteria),绿弯菌门 (Chloroflexi),疣微菌门 (Verrucomicrobia)和浮霉菌门 (Planctomycetes) 在细菌门分类上的相对丰度。【结论】本试验证明了负压灌溉系统通过土壤水肥平稳供应机制,实现了紫叶生菜高产优质且高效利用水分的目标。因此,负压灌溉系统相比常规和滴灌,显著提高了紫叶生菜的产量和品质、水分利用效率和根际微生物群落的多样性,为设施农业的可持续性发展提供科学依据。
  • 图 1  不同灌溉处理对土壤水分含量动态的影响

    Figure 1.  Effects of different irrigation methods on soil water content

    表 1  不同灌溉模式对紫叶生菜产量和品质的影响

    Table 1.  Effect of different irrigation treatments on yield and quality of purple leaf lettuce

    灌溉处理
    Irrigation treatment
    产量 (g/pot)
    Yield
    维生素 C (mg/100 g)
    Vitamin C
    可溶性糖 (mg/g)
    Soluble sugar
    花青素 (mg/g)
    Anthocyanin
    硝酸盐 (mg/g)
    Nitrate
    常规 FI 94.3 ± 5.3 c6.34 ± 0.16 b52.0 ± 1.2 b1.75 ± 0.06 c446.0 ± 11.5 a
    滴灌 DI 122.9 ± 5.7 b6.74 ± 0.17 b53.7 ± 1.3 b2.25 ± 0.23 b391.3 ± 20.2 b
    负压 NPI158.5 ± 9.5 a7.68 ± 0.09 a59.5 ± 0.8 a3.05 ± 0.29 a347.3 ± 11.6 c
      注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数据为 3 个重复平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.
    下载: 导出CSV

    表 2  不同灌溉处理对紫叶生菜养分浓度 (mg/g)和吸收量 (mg/pot)的影响

    Table 2.  Effect of different irrigation treatments on nutrient concentration and uptake of purple leaf lettuce

    灌溉处理
    Irrigation treatment
    氮浓度
    N concentration
    磷浓度
    P concentration
    钾浓度)
    K concentration
    氮吸收量
    N uptake
    磷吸收量
    P uptake
    钾吸收量
    K uptake
    常规 FI 30.8 ± 2.4 b4.23 ± 0.18 b6.43 ± 0.98 c 256.0 ± 16.5 c35.3 ± 2.0 c53.2 ± 6.2 c
    滴灌 DI 34.1 ± 1.4 a4.76 ± 0.31 a8.13 ± 0.28 b 364.7 ± 14.6 b51.0 ± 3.8 b87.1 ± 4.5 b
    负压 NPI34.8 ± 1.5 a4.84 ± 0.09 a8.90 ± 0.48 a 487.0 ± 14.0 a68.0 ± 4.6 a125.3 ± 12.2 a
      注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.
    下载: 导出CSV

    表 3  不同灌溉处理对紫叶生菜水分利用的影响

    Table 3.  Effect of different irrigation treatments on water consumption and use efficiency

    灌溉处理
    Irrigation treatment
    耗水量 (cm3)
    Water consumption
    水分利用效率 (kg/m3)
    Water use efficiency
    常规 FI 13000 ± 0.0 b7.25 ± 0.41 c
    滴灌 DI 13000 ± 0.0 b9.45 ± 0.44 b
    负压 NPI9900 ± 300 a16.11 ± 1.17 a
      注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.
    下载: 导出CSV

    表 4  不同灌溉处理紫叶生菜根际微生物多样性

    Table 4.  Diversity of microbial communities in the rhizosphere soil of purple leaf lettuce under different irrigation treatments

    灌溉处理Irrigation treatment获取分类单元
    OTU
    Chao1丰度
    Chao1
    香农多样性指数
    Shannon
     常规FI1569 ± 52 b2107 ± 48 b8.22 ± 0.03 b
     滴灌 DI1666 ± 58 b2201 ± 46 b8.31 ± 0.05 b
     负压 NPI1808 ± 33 a2437 ± 64 a8.48 ± 0.07 a
      注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation;OTU—Operational taxonomic units. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.
    下载: 导出CSV

    表 5  不同灌溉处理土壤细菌在门分类水平上的相对丰度百分比 (%)

    Table 5.  Relative percentage of the bacteria in total sequence under different irrigation treatments at the phylum level

    细菌门类别 Phylum常规 FI滴灌 DI负压 NPI
    变形菌门 Proteobacteria 41.33 ± 4.25 a35.67 ± 2.53 a29.44 ± 3.53 b
    酸杆菌门 Acidobacteria18.31 ± 2.32 a16.17 ± 2.11 ab14.35 ± 1.62 b
    放线菌门 Actinobacteria11.25 ± 1.32 b12.61 ± 1.33 b15.42 ± 1.27 a
    绿弯菌门 Chloroflexi4.46 ± 0.61 b9.24 ± 1.15 a11.74 ± 1.38 a
    芽单胞菌门 Gemmatimonadetes5.11 ± 0.63 a5.98 ± 0.72 a6.51 ± 0.48 a
    菌门 TM77.83 ± 1.18 a6.36 ± 0.43 a6.11 ± 0.63 a
    菌门 WPS−25.66 ± 0.52 a4.81 ± 0.42 ab3.88 ± 0.29 b
    拟杆菌门 Bacteroidetes3.18 ± 0.24 b4.73 ± 0.51 a5.62 ± 0.57 a
    疣微菌门 Verrucomicrobia0.52 ± 0.05 c1.13 ± 0.18 b2.62 ± 0.17 a
    厚壁菌门 Firmicutes1.27 ± 0.32 b2.66 ± 0.28 a2.16 ± 0.22 a
    浮霉菌门 Planctomycetes0.51 ± 0.04 b0.67 ± 0.11 b1.07 ± 0.13 a
    其它菌门 Other0.57 1.97 1.08
      注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at P < 0.05 level.
    下载: 导出CSV
  • [1] 郝敬虹, 赵猛, 刘慧, 等. 不同品种紫叶生菜花青素含量及其抗氧化酶活性分析[J]. 北京农学院学报, 2014, 29(2): 25–28. Hao J, Zhao M, Liu H, et al. The anthocyanin content and antioxidant analysis of different varieties of purple lettuce[J]. Journal of Beijing University of Agriculture, 2014, 29(2): 25–28.
    [2] 陈鹏涛, 夏木凤, 申宝营, 等. 光质对不同紫叶生菜生长及光合色素的影响[J]. 浙江农业科学, 2017, 58(11): 1910–1912. Chen P, Xia F, Shen B, et al. Effects of light quality on growth and photosynthetic pigments of different purple lettuce[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(11): 1910–1912.
    [3] 邢英英, 张富仓, 张燕, 等. 滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响[J]. 中国农业科学, 2015, 48(4): 713–726. Xing Y, Zhang F, Zhang Y, et al. Effect of irrigation and fertilizer coupling on greenhouse tomato yield, quality, water and nitrogen utilization under fertigation[J]. Scientia Agricultura Sinica, 2015, 48(4): 713–726. doi: 10.3864/j.issn.0578-1752.2015.04.09
    [4] Li Y K, Wang L C, Xue X Z, et al. Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain[J]. Agricultural Water Management, 2017, 184: 1–8. doi: 10.1016/j.agwat.2016.12.018
    [5] 赵秀娟, 宋燕燕, 岳现录, 等. 负压灌溉下不同钾水平对小油菜生长的影响[J]. 中国农业科学, 2017, 50(4): 59–65. Zhao X, Song Y, Yue X, et al. Effect of different potassium levels on the growth of bok choy under negative pressure[J]. Scientia Agricultura Sinica, 2017, 50(4): 59–65.
    [6] 龙怀玉, 张怀志, 岳现录, 等. 负压灌溉重液式负压阀设计与试验[J]. 农业工程学报, 2018, 34(1): 85–92. Long H, Zhang H, Yue X, et al. Design and experiment of heavy liquid-type negative pressure valve used for negative pressure irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 85–92. doi: 10.11975/j.issn.1002-6819.2018.01.12
    [7] 李生平, 武雪萍, 龙怀玉, 等. 负压水肥一体化灌溉对黄瓜产量和水、氮利用效率的影响[J]. 植物营养与肥料学报, 2017, 23(2): 416–426. Li S, Wu X, Long H, et al. Water and nitrogen use efficiencies of cucumber under negatively pressurized fertigation[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 416–426. doi: 10.11674/zwyf.16196
    [8] Wu K, Yuan S F, Wang L L, et al. Effects of bioorganic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities[J]. Biology and Fertility of Soils, 2014, 50: 961–971. doi: 10.1007/s00374-014-0916-9
    [9] Berendsen R, Pieterse C, Bakker P. The rhizosphere microbiome and plant health[J]. Trends Plant Science, 2012, 17: 478–486. doi: 10.1016/j.tplants.2012.04.001
    [10] 赵秀娟, 宋燕燕, 张淑香, 等. 黄瓜适宜的负压灌溉条件与养分配比研究[J]. 中国土壤与肥料, 2017, 4: 689–697. Zhao X, Song Y, Zhang S, et al. Effect of different nutrient ratios on cucumber under negative pressure irrigation[J]. Soils and Fertilizers Sciences in China, 2017, 4: 689–697.
    [11] 李生平, 武雪萍, 党建友, 等. 负压灌溉对黄瓜产量品质及水氮利用效率的影响[J]. 中国土壤与肥料, 2017, 2: 55–62. Li S, Wu X, Dang J, et al. Effects of negative pressure irrigation on yield, quality and water and nitrogen use efficiency of cucumber[J]. Soils and Fertilizers Sciences in China, 2017, 2: 55–62. doi: 10.11838/sfsc.20170209
    [12] Gao X, Wu M, Xu R, et al. Root interactions in maize/soybean intercropping system control soybean soil-borne disease, red crown rot[J]. PLoS One, 2014, 9: e95031. doi: 10.1371/journal.pone.0095031
    [13] Schloss P D, Westcott S L, Ryabin T, et al. Introducing methur: open-ource, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75: 7537–7541. doi: 10.1128/AEM.01541-09
    [14] Wang J, Huang Y, Long H. Water and salt movement in different soil textures under various negative irrigation pressures[J]. Journal of Integrative Agriculture, 2016, 15: 1874–1882. doi: 10.1016/S2095-3119(15)61209-6
    [15] Wang C X, Gu F, Chen J L, et al. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies[J]. Agricultural Water Management, 2015, 161: 9–19. doi: 10.1016/j.agwat.2015.07.010
    [16] 宋燕燕, 赵秀娟, 张淑香, 等. 水肥一体化配合硝化/脲酶抑制剂实现油菜减氮增效研究[J]. 植物营养与肥料学报, 2017, 23(3): 632–640. Song Y, Zhao X, Zhang S, et al. Reducing nitrogen input and improving yield and quality of rape through combination of fertigation and nitrification/urease inhibitor addition[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 632–640. doi: 10.11674/zwyf.16162
    [17] Chaparro J M, Sheflin A M, Manter D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2010, 48: 489–499.
    [18] Qiu M, Zhang R, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48: 807–816. doi: 10.1007/s00374-012-0675-4
    [19] 贾志红, 孙敏, 杨珍平, 等. 施肥对作物根际微生物的影响[J]. 作物学报, 2004, 30(5): 491–495. Jia Z, Sun M, Yang Z, et al. Influence of different fertilizers to crop rhizosphere microorganisms[J]. Acta Agronomica Sinica, 2004, 30(5): 491–495. doi: 10.3321/j.issn:0496-3490.2004.05.016
    [20] Li X, Rui J, Mao Y, et al. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J]. Soil Biology and Biochemistry, 2014, 68: 392–401. doi: 10.1016/j.soilbio.2013.10.017
    [21] Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J]. Applied Environmental Microbiology, 2001, 67: 2284–2291. doi: 10.1128/AEM.67.5.2284-2291.2001
    [22] 陈香碧, 苏以荣, 何寻阳, 等. 喀斯特原生土壤与退化生态系统土壤细菌群落结构[J]. 应用生态学报, 2009, 20: 863–871. Chen X, Su Y, He X, et al. Soil bacterial community structure in primeval forest and degranded ecosystem in Karst region[J]. Chinese Journal of Applied Ecology, 2009, 20: 863–871.
    [23] Huang M Y. Identification and fermentation of antagonistic bacterium against Ralstonia solanacearum[J]. Microbiology, 2011, 38: 214–220.
    [24] Wei Z, Yang X, Yin S, et al. Efficacy of bacillus-fortified organic fertilizer in controlling bacterial wilt of tomato in the field[J]. Applied Soil Ecology, 2011, 48: 152–159. doi: 10.1016/j.apsoil.2011.03.013
    [25] Hu W, Samac D, Liu X, et al. Microbial communities in the cysts of soybean cyst nematode affected by tillage and biocide in a suppressive soil[J]. Applied Soil Ecology, 2017, 119: 396–406. doi: 10.1016/j.apsoil.2017.07.018
  • [1] 边云杨萍果龙怀玉丁亚会李迪 . 两种材质灌水器负压供水压力对菠菜水分利用效率及养分吸收的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.17171
    [2] 傅丰贝陆文娟李伏生 . 不同控水时段根区局部灌溉对玉米生理和水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2014.0607
    [3] 王亮林涛严昌荣何文清王静汤秋香 . 不同残膜量和灌溉定额对棉花养分和水分利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.17139
    [4] 李生平武雪萍龙怀玉张淑香王相玲梁国鹏高丽丽李景王碧胜郝秀钗李建波张胜爱 . 负压水肥一体化灌溉对黄瓜产量和水、氮利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.16196 
    [5] 刘敬然赵文青周治国董合林赵新华孟亚利 . 施氮量与播种期对棉花产量和品质及棉铃对位叶光合产物的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2015.0414
    [6] 刘宇锋梁燕菲邓少虹李伏生 , . 灌溉方式和有机无机氮比例对水稻产量与水分利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2012.11396
    [7] 周茂娟梁银丽贺丽娜高静韦泽秀黄茂林吴燕 . 地表覆盖方式对辣椒水分利用效率、果实品质及氮素分布的影响 . 植物营养与肥料学报, doi: 10.11674/zwyf.2009.0123
    [8] 李邵薛绪掌郭文善张伟娟陈菲 . 水肥耦合对温室盆栽黄瓜产量与水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2010.0217
    [9] 周毅郭世伟宋娜张崇林李想沈其荣 . 供氮形态和水分胁迫对苗期—分蘖期水稻光合与水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2006.0308
    [10] 宋尚有王勇樊廷录高育锋唐小明李尚中 . 氮素营养对黄土高原旱地玉米产量、品质及水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2007.0306
    [11] 农梦玲李伏生刘水 . 根区局部灌溉和氮、钾水平对玉米干物质积累和水肥利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2010.0635
    [12] 张宏周建斌*王春阳董放郑险峰李生秀 . 栽培模式及施氮对冬小麦-夏玉米体系产量与水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2010.0506
    [13] 张亚琦李淑文付巍文宏达 . 施氮对杂交谷子产量与光合特性及水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2014.0508
    [14] 董彦红赵志成张旭刘学娜李清明 . 分根交替滴灌对管栽黄瓜光合作用及水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.14179
    [15] 蒋耿民李援农*周乾 . 不同揭膜时期和施氮量对陕西关中地区夏玉米生理生长、产量及水分利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2013.0505
    [16] 周怀平解文艳关春林杨振兴李红梅 . 长期秸秆还田对旱地玉米产量、效益及水分利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2013.0207
    [17] 何晓雁郝明德李慧成蔡志风 . 黄土高原旱地小麦施肥对产量及水肥利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2010.0606
    [18] 田肖肖吕慎强张亮李娜孙晓景建元王林权李厚华 . 免耕覆盖有效提高夏玉米产量及水氮利用效率. 植物营养与肥料学报, doi: 10.11674/zwyf.16290
    [19] 郭熙盛叶舒娅王文军朱宏斌武际吴礼树 . 钾肥品种与用量对黄瓜产量和品质的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2004.0314
    [20] 孟晓瑜王朝辉*杨宁杨荣章孜亮赵护兵 . 底墒和磷肥对渭北旱塬冬小麦产量与水肥利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.1097
  • 加载中
图(1)表(5)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 网络出版日期:  2019-06-28

负压灌溉提高紫叶生菜的水分利用效率和根际微生物多样性

    作者简介:高翔E-mail:gxkochung@163.com
    通讯作者: 张淑香, zhangshuxiang@caas.cn
  • 中国农业科学院农业资源与农业区划研究所,北京 100081

摘要: 目的针对目前设施农业中常用的灌溉方式容易造成土表水分蒸发和水肥流失,且不能按照作物所需自动供水供肥的现状,本研究探讨了负压灌溉提高紫叶生菜的产量和品质,以及水分利用效率和土壤微生物群落多样性的机理。方法在温室内进行盆栽试验,以紫叶生菜 (Lactuca sativa L.) 为试验材料,设置3个灌溉处理:常规灌溉、滴灌和负压灌溉。收获后,测定了紫叶生菜的产量,分析了品质 (维生素C、可溶性糖、花青素和硝酸盐含量),植株的养分 (氮、磷和钾) 浓度和吸收量,监测了土壤水分含量动态的变化,计算了水分消耗量和水分利用效率,分析了根际土壤微生物的多样性指数和细菌在门分类上的群落结构组成。结果负压灌溉下显著提高紫叶生菜的产量和品质,负压灌溉比常规和滴灌处理的产量分别显著提高了68.1%和29.0%,也提高了维生素C、可溶性糖和花青素的含量,减少了硝酸盐含量。与常规灌溉相比负压灌溉显著提高了紫叶生菜氮、磷、钾的浓度和含量,分别提高13.0%、14.4%、38.4%和90.2%、92.6%、135.5%。紫叶生菜在负压灌溉下耗水量最少,为9900 cm3,比常规和滴灌处理分别减少了23.8%和23.8%;负压下水分利用效率比常规和滴灌分别显著提高了122.2%和70.5%。同时负压灌溉处理下动态的土壤含水量处于10.3%~11.3%之间,变异范围低于常规和滴灌处理9.2%~11.6%。通过高通量测序紫叶生菜根际土壤微生物群落发现,负压灌溉处理下微生物多样性指数最高,表现为OTU、Chao1和Shannon指标的数值显著高于常规和滴灌处理,其数值分别为1808、2437和8.48,分别比常规灌溉处理显著提高了15.2%、15.7%和3.16%。同时也改变了细菌在门分类水平上组成的相对丰度,在负压灌溉处理下比常规和滴灌处理分别提高了放线菌门 (Actinobacteria),绿弯菌门 (Chloroflexi),疣微菌门 (Verrucomicrobia)和浮霉菌门 (Planctomycetes) 在细菌门分类上的相对丰度。结论本试验证明了负压灌溉系统通过土壤水肥平稳供应机制,实现了紫叶生菜高产优质且高效利用水分的目标。因此,负压灌溉系统相比常规和滴灌,显著提高了紫叶生菜的产量和品质、水分利用效率和根际微生物群落的多样性,为设施农业的可持续性发展提供科学依据。

English Abstract

  • 紫叶生菜 (Lactuca sativa L.) 为菊科莴苣属草本植物,其营养价值高,富含维生素A、维生素C、花青素、尼克酸和食物纤维等多种营养物质,它以生长期短,复种指数高,生长均匀整齐,商品率高而倍受青睐[1-2]。紫叶生菜是一种高产作物,对水分和肥料的需求量较大[1-2]。目前,在设施园艺生产中推广的滴灌技术与传统灌溉技术相比具有良好的节水增产效果,但其在通过灌水器从土壤表层输送水分和养分的过程中,依然容易造成水分的流失和蒸腾[3-5],且不能按照作物对水分的需求进行自动供给[5-6]

    负压灌溉系统是一种新型的节水灌溉技术,它是把灌水器埋入土层的作物根系区域,能为作物适时适量提供水分和养分,可有效减少地表蒸发和地下深层渗漏,且土壤含水量可通过调节能保持在合理的范围之内[5-7]。根际是土壤微生物的活跃区域,负压灌溉在作物的根际周围进行供水供肥,直接影响着根际的微生态条件[7-9],对作物根际微生物的多样性和群落结构的影响有待研究。

    负压灌溉对作物生长的影响已有报道[5-7],本研究以紫叶生菜为试验材料,探讨了负压灌溉对紫叶生菜的产量、品质及养分、水分吸收利用动态,以及根际土壤微生物群落的多样性和组成丰度,以期为负压灌溉的推广提供科学理论依据。

    • 试验在中国农业科学院温室进行,供试土壤为沙壤土,基本理化性质为pH值6.86、容重1.41 g/cm3、有机质1.62%、速效磷13.7 mg/kg、速效钾86.4 mg/kg、速效氮93.6 mg/kg。供试作物为紫叶生菜。

      试验共设3个灌溉处理,分别为常规灌溉、滴灌和负压灌溉。每盆种植4株紫叶生菜,设置3个重复。紫叶生菜于2017年4月13日播种,于两叶一心期移栽于种植盆中 (长42 cm、宽26 cm、高25 cm),每盆装入30 kg土壤,肥料溶于负压灌溉的供水器中,肥料配方按照文献[5]进行配置。2017年5月22日收获紫叶生菜,然后进行指标测定。

    • 负压灌溉水肥一体化系统 (中国农业科学院农业资源与农业区划研究所专利,ZL201110093923.2),利用负压数显开关控制负压值,根据前期负压灌溉试验结果可设定负压值为–5 kPa。常规灌溉是将肥料溶解入水中后直接浇灌至土表上,滴灌为利用滴灌系统进行供应水分。

    • 收获后,直接称量每盆紫叶生菜鲜重;在实验室内,采用2,6-二氯酚靛酚法测定维生素C含量,硝酸盐含量测定采用水杨酸比色法,可溶性糖采用蒽酮比色法,花青素采用分光光度计比色法[1, 10]

      收获后的紫叶生菜在105℃下杀青30 min,75℃下烘干,粉碎过0.25 mm筛,用H2SO4–H2O2消煮,用2300自动定氮仪 (Kjedahl 2300,FOSS,Sweden) 测定含氮量,钼锑抗比色法测定含磷量,火焰光度计法测定含钾量[10-12]。植物氮、磷、钾吸收量为植株干重与其氮、磷、钾浓度的乘积。

    • 收集土壤剖面0—25 cm的土壤,于105℃烘箱中干燥至恒重,计算土壤含水量,在紫叶生菜移苗至种植盆后每5天测定一次。水分利用效率 (g/m3) = 产量 (kg/pot)/耗水量 (m3) × 1000[5, 10]

    • 负压灌溉为每天记录储水罐中水分的下降刻度,直至收获,累加总耗水量。常规灌溉是在紫叶生菜移栽前灌溉一次,灌溉量4000 cm3/pot,移栽后每3天灌溉一次,每次灌溉量为3000 cm3/pot,共计13000 cm3/pot。滴灌处理的灌溉量设置与常规处理一致,利用滴灌系统进行供应水分,其出水量为每小时2000 cm3,每天滴灌一次,每次灌溉量1000 cm3/pot,共计13000 cm3/pot。

    • 收获紫叶生菜后,每个处理随机选取3株,首先把植株从盆中取出,抖落根周围松散的土,然后把紧附在根上的土用无菌水冲洗,高速离心收集沉淀,保存于–80℃冰箱用于高通量测序,每个处理3次重复。土壤DNA提取用OMEGA Soil DNA提取试剂盒 (OMEGA,GA,USA),然后利用高通量测序细菌16S rRNA基因V2-V3区,根据引物124-F (5′-CACGGATCCGGACGGGTGAGTAACACG-3′);515-R (5′-ATCGTATTACCGCGGCTGCT GCTGGCA-3′) 进行测序[8, 13]。结果用于微生物群落多样性和结构分析,获取分类单元 (OTU,operational taxonomic units)、Chao1丰度、香农多样性指数 (Shannon) 等指标,细菌门分类地位的相对丰度以高通量测序数据的序列相对丰度代替[8, 13]

    • 运用Excel 2016 (Microsoft Company,USA) 进行平均数和标准差计算,并且利用SAS9.0 (SAS Institute Inc,Cary,NC,USA) 软件对试验数据进行统计分析。

    • 负压灌溉系统下种植紫叶生菜,其产量和品质显著高于常规和滴灌处理 (表1)。由表1可见,负压灌溉处理的产量最高,滴灌其次,常规灌溉处理最差。其中,负压灌溉比常规和滴灌处理产量分别显著提高了68.1%和29.0%。同时,负压灌溉处理下的紫叶生菜的维生素C、可溶性糖和花青素含量是最高的,常规灌溉处理最差。负压灌溉处理比常规处理的维生素C、可溶性糖和花青素含量分别显著提高了21.1%、14.4%和74.3%。在硝酸盐含量上,负压灌溉处理的含量最低,常规灌溉最高。综合分析,负压灌溉处理的品质最好,滴灌其次,常规处理最差。说明利用负压灌溉系统种植紫叶生菜,可获得高产优质的紫叶生菜。

      灌溉处理
      Irrigation treatment
      产量 (g/pot)
      Yield
      维生素 C (mg/100 g)
      Vitamin C
      可溶性糖 (mg/g)
      Soluble sugar
      花青素 (mg/g)
      Anthocyanin
      硝酸盐 (mg/g)
      Nitrate
      常规 FI 94.3 ± 5.3 c6.34 ± 0.16 b52.0 ± 1.2 b1.75 ± 0.06 c446.0 ± 11.5 a
      滴灌 DI 122.9 ± 5.7 b6.74 ± 0.17 b53.7 ± 1.3 b2.25 ± 0.23 b391.3 ± 20.2 b
      负压 NPI158.5 ± 9.5 a7.68 ± 0.09 a59.5 ± 0.8 a3.05 ± 0.29 a347.3 ± 11.6 c
        注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数据为 3 个重复平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.

      表 1  不同灌溉模式对紫叶生菜产量和品质的影响

      Table 1.  Effect of different irrigation treatments on yield and quality of purple leaf lettuce

    • 负压灌溉条件下种植紫叶生菜,提高了植株氮磷钾浓度和吸收量 (表2)。负压灌溉处理下植株氮磷钾的浓度和吸收量是最高的,滴灌次之,常规处理最差。负压灌溉比常规灌溉处理的氮磷钾浓度和吸收量分别显著提高了13.0%、14.4%、38.4%和90.2%、92.6%、135.5%。

      灌溉处理
      Irrigation treatment
      氮浓度
      N concentration
      磷浓度
      P concentration
      钾浓度)
      K concentration
      氮吸收量
      N uptake
      磷吸收量
      P uptake
      钾吸收量
      K uptake
      常规 FI 30.8 ± 2.4 b4.23 ± 0.18 b6.43 ± 0.98 c 256.0 ± 16.5 c35.3 ± 2.0 c53.2 ± 6.2 c
      滴灌 DI 34.1 ± 1.4 a4.76 ± 0.31 a8.13 ± 0.28 b 364.7 ± 14.6 b51.0 ± 3.8 b87.1 ± 4.5 b
      负压 NPI34.8 ± 1.5 a4.84 ± 0.09 a8.90 ± 0.48 a 487.0 ± 14.0 a68.0 ± 4.6 a125.3 ± 12.2 a
        注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.

      表 2  不同灌溉处理对紫叶生菜养分浓度 (mg/g)和吸收量 (mg/pot)的影响

      Table 2.  Effect of different irrigation treatments on nutrient concentration and uptake of purple leaf lettuce

    • 表3可见,负压灌溉条件下种植紫叶生菜,其耗水量最少,水分利用率最高。负压灌溉处理下种植紫叶生菜,其整个生育期耗水量9900 cm3,低于常规和滴灌处理的13000 cm3。负压灌溉比常规和滴灌处理的水分利用效率分别显著提高了122.2%和70.5%。

      灌溉处理
      Irrigation treatment
      耗水量 (cm3)
      Water consumption
      水分利用效率 (kg/m3)
      Water use efficiency
      常规 FI 13000 ± 0.0 b7.25 ± 0.41 c
      滴灌 DI 13000 ± 0.0 b9.45 ± 0.44 b
      负压 NPI9900 ± 300 a16.11 ± 1.17 a
        注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.

      表 3  不同灌溉处理对紫叶生菜水分利用的影响

      Table 3.  Effect of different irrigation treatments on water consumption and use efficiency

      负压灌溉条件下动态土壤水分含量变化范围小于常规和滴灌处理 (图1)。由图1可见,负压灌溉处理下土壤含水量处于10.3%~11.3%之间,小于常规和滴灌处理的9.2%~11.6%。说明负压灌溉下的土壤含水量处于较为适中的范围,而常规和滴灌处理的含水量范围波动较大。

      图  1  不同灌溉处理对土壤水分含量动态的影响

      Figure 1.  Effects of different irrigation methods on soil water content

    • 表4可看出,负压灌溉下紫叶生菜根际土壤微生物的多样性指数最高,表现为OTU,Chao1和Shannon指数的数值最高。在OTU指标上,负压灌溉处理的数值是最高的,比常规和滴灌处理分别显著提高了15.2%和8.52%。Chao1和Shannon指标有相同的趋势,负压处理数值最高,滴灌其次,常规灌溉处理最差。说明负压灌溉下种植紫叶生菜能显著提高根际土壤的微生物多样性。

      灌溉处理Irrigation treatment获取分类单元
      OTU
      Chao1丰度
      Chao1
      香农多样性指数
      Shannon
       常规FI1569 ± 52 b2107 ± 48 b8.22 ± 0.03 b
       滴灌 DI1666 ± 58 b2201 ± 46 b8.31 ± 0.05 b
       负压 NPI1808 ± 33 a2437 ± 64 a8.48 ± 0.07 a
        注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation;OTU—Operational taxonomic units. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at the P < 0.05 level.

      表 4  不同灌溉处理紫叶生菜根际微生物多样性

      Table 4.  Diversity of microbial communities in the rhizosphere soil of purple leaf lettuce under different irrigation treatments

      表5所示,不同灌溉处理对紫叶生菜根际土壤细菌群落结构在细菌门水平上组成有显著的差异。在细菌门分类上,Proteobacteria (变形菌门) 和Acidobacteria (酸枝菌门) 是最丰富的两个门,占整体细菌群落约50%。其中Proteobacteria (变形菌门) 在不同灌溉处理中的占比分别为常规 (41.33%)、滴灌 (35.67%) 和负压 (29.44%)。同时,在负压灌溉处理下提高了Actinobacteria (放线菌门),Chloroflexi (绿弯菌门),Verrucomicrobia (疣微菌门)和Planctomycetes (浮霉菌门)在细菌门上的相对丰度。说明不同灌溉处理对紫叶生菜根际土壤微生物群落结构有影响。

      细菌门类别 Phylum常规 FI滴灌 DI负压 NPI
      变形菌门 Proteobacteria 41.33 ± 4.25 a35.67 ± 2.53 a29.44 ± 3.53 b
      酸杆菌门 Acidobacteria18.31 ± 2.32 a16.17 ± 2.11 ab14.35 ± 1.62 b
      放线菌门 Actinobacteria11.25 ± 1.32 b12.61 ± 1.33 b15.42 ± 1.27 a
      绿弯菌门 Chloroflexi4.46 ± 0.61 b9.24 ± 1.15 a11.74 ± 1.38 a
      芽单胞菌门 Gemmatimonadetes5.11 ± 0.63 a5.98 ± 0.72 a6.51 ± 0.48 a
      菌门 TM77.83 ± 1.18 a6.36 ± 0.43 a6.11 ± 0.63 a
      菌门 WPS−25.66 ± 0.52 a4.81 ± 0.42 ab3.88 ± 0.29 b
      拟杆菌门 Bacteroidetes3.18 ± 0.24 b4.73 ± 0.51 a5.62 ± 0.57 a
      疣微菌门 Verrucomicrobia0.52 ± 0.05 c1.13 ± 0.18 b2.62 ± 0.17 a
      厚壁菌门 Firmicutes1.27 ± 0.32 b2.66 ± 0.28 a2.16 ± 0.22 a
      浮霉菌门 Planctomycetes0.51 ± 0.04 b0.67 ± 0.11 b1.07 ± 0.13 a
      其它菌门 Other0.57 1.97 1.08
        注(Note):FI—Flooding irrigation;DI—Drip irrigation;NPI—Negative pressure irrigation. 测定数值为 3 个重复的平均值 ± 标准误差 All data are the mean of three replicates ± SE;同列数据后不同字母表示处理间有显著性差异 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments at P < 0.05 level.

      表 5  不同灌溉处理土壤细菌在门分类水平上的相对丰度百分比 (%)

      Table 5.  Relative percentage of the bacteria in total sequence under different irrigation treatments at the phylum level

    • 本研究结果表明,与常规和滴灌相比,负压灌溉系统显著提高了紫叶生菜产量和品质,其产量分别是常规和滴灌处理的1.68倍和1.29倍,也从品质上提高了可溶性糖、维生素C和花青素含量,降低了硝酸盐含量 (表1)。这个研究结果与赵秀娟,李生平等的负压灌溉研究相一致,在负压灌溉系统下种植作物能够显著增加作物产量和品质[7, 10-11]。主要是由于负压灌溉的供水供肥方式,其灌水头处于植物根层土壤区域,并能依据作物所需供水供肥,而根际是主要的吸收水肥区域,吸收充足的水分和营养则加快了作物植株体内同化物质的运转与积累[10, 14],也显著增加了紫叶生菜对氮磷钾养分的吸收 (表2),最终负压灌溉下紫叶生菜的产量和品质显著高于常规和滴灌处理 (表1)。水分和养分是作物生长发育的基础,水分参与了作物产量和品质形成,减少灌溉量可降低果皮渗透调节,促进维生素C含量,提高进入韧皮部的糖浓度[3, 11, 15]。而当供水吸力过高时,水分胁迫过重,造成后期植株合成碳水化合物等营养物质的功能显著降低,从而导致作物的果实品质显著下降[3, 7, 11],常规和滴灌的灌溉方式就容易造成水分过重的胁迫,使得作物品质显著低于平稳水分供应的负压灌溉处理。而当作物处于干旱胁迫时,生长受到抑制,硝态氮含量就会升高,而蔬菜体内过多累积硝酸盐虽无害于植株,却对食用后的人体健康构成潜在威胁[11, 16],常规灌溉就不能保证水分的充足供应,容易造成硝酸盐含量的累积。同时,作物增加钾的吸收后,能促进硝酸盐代谢,降低硝酸盐的含量,提高植物体内可溶性糖和维生素C的含量[3, 11]。因此,本研究证明了在负压灌溉下种植紫叶生菜,由于保证了充足和稳定的水分和养分供应,以及减少了水分的消耗和土表蒸腾,其产量和品质显著高于常规和滴灌处理。

    • 负压灌溉能够显著节约灌溉用水,提高水分利用率,保持土壤含水量在平稳的状态 (表3图1)。主要是由于负压灌溉系统将灌水器埋入土壤中,通过作物的蒸腾作用使根系土水势下降,以及土壤吸力产生的水势差,植物根据自身需要水分的特性,实现了对水分的连续自动获取[5-7, 14]。负压灌溉保证作物生育期内土壤水分含量处于较为稳定状态 (图1),从而改善根际土壤水分环境,避免了土壤养分因漫水灌溉造成的水分过多而产生的深层渗漏和无效地表蒸发,土壤过湿会导致土壤内氧气缺乏而不利于作物的生长,土壤干燥则会导致根系缺水也不利于作物的生长[7, 11],常规和滴灌就容易造成水分的流失,以及土层表面的无效蒸发。本研究证明,通过负压灌溉种植紫叶生菜,耗水量比常规和滴灌节约了23.8%,水分利用效率分别提高了122.2%和70.5%,且土壤含水量的范围处于10.3%~11.3%的范围之内,达到了节水高效的效果 (表3)。

    • 根际土壤中存在着大量微生物,其群落结构的改变与土壤类型、根际养分和土壤水分含量等有着密切的关系[8, 17-18]。灌溉方式决定了土壤含水量的差异,水分含量过多或缺乏均能影响土壤微生物的活性和多样性,限制作物的生长发育[17-20]。本研究发现,负压灌溉处理中微生物多样性要显著高于常规灌溉和滴灌处理,其中滴灌处理的微生物多样性又高于常规灌溉处理 (表4),这主要是由于负压灌溉能够为作物提供适宜的水分条件,利于作物根系生理菌群的代谢活动,而常规灌溉时常处于缺乏和过涝的水分状态之中,制约了细菌的正常生理功能[7, 17, 19]

      高通量测序细菌在不同的门分类上的相对丰度结果可知,不同的灌溉方式改变了细菌在门上分类的相对含量 (表5)。其中,紫叶生菜根际土壤中Proteobacteria (变形菌门) 是最主要的细菌类群,该类群的代谢活动是土壤中最主要的细菌活动[8, 19-20]。负压灌溉处理下变形菌门丰度显著低于常规和滴灌处理 (表5),这可能是由于变形菌门大部分是厌氧性,而负压灌溉能保持土壤水分一致,增加了土壤的通气性,这导致其含量下降[9, 21-22]。Acidobacteria (酸枝菌门) 在土壤根际微生物中也属于优势菌,其通常存在于营养相对匮乏的土壤中,而营养充裕的农业耕作土壤中尤为稀少[8, 22]。本研究发现,负压灌溉处理的酸枝杆菌门显著低于常规灌溉的丰度 (表5),表明负压灌溉处理持续为作物根际提供水分和养分,使其根际土壤肥力处于肥沃状态,则其酸枝杆菌门含量较低。Actinobacteria (放线菌门) 分类下的许多属微生物被认为是促生菌和生防菌,它能促进植物对营养物质的吸收及抵抗外来生物胁迫,如链霉菌产生的抗生素对病原微生物就有抑制的作用[18, 23-25]。负压灌溉处理下显著增加了Actinobacteria门的相对丰度 (表5),这也可能是增加紫叶生菜产量和品质的因素之一。但是,根际微生物的群落是巨大的,许多的促生菌和病原微生物都能影响作物的生长,具体菌株的鉴定和功能分析,值得进一步研究。因此,本研究证明了负压灌溉提高了紫叶生菜根际微生物的多样性,改变了微生物群落结构,使作物获得健康的根际环境,从而提高了作物的生长和品质。在今后的生产实践中,有必要结合微生物群落的研究,配合适宜的供水和施肥环境,使之更利于健康的微生态环境的建立,进而提升设施农业的可持续性发展。

    • 与漫灌和滴灌相比,负压灌溉显著提高了紫叶生菜的产量和品质,减少了耗水量,土壤含水量保持在适宜的范围内且变异较小,提高了水分利用效率和对氮磷钾的吸收利用。提高了根际微生物的多样性,也改变了细菌群落结构在门分类上的丰度。

参考文献 (25)

目录

    /

    返回文章
    返回