• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿山生态型水蓼对施用猪粪土壤中磷的吸取净化效果

魏文静 李廷轩 张锡洲

引用本文:
Citation:

矿山生态型水蓼对施用猪粪土壤中磷的吸取净化效果

    作者简介: 魏文静 E-mail: 2671082428@qq.com;
    通讯作者: 李廷轩, E-mail:litinx@263.net
  • 基金项目: 国家自然科学基金项目(41671323)。

Phytoextraction efficiency of P by mining ecotype of Polygonum hydropiper grown in soils amended with swine manure

    Corresponding author: LI Ting-xuan, E-mail:litinx@263.net ;
  • 摘要: 【目的】 针对猪粪不合理利用导致土壤中磷过剩和磷流失的突出问题,明确磷富集植物矿山生态型水蓼 (Polygonum hydropiper) 对施用猪粪土壤磷的吸取净化效果,为高效提取施用猪粪土壤中的过量磷,降低磷素的流失风险提供科学依据。 【方法】 采用微区模拟试验,根据农田磷肥安全用量 (< 200 kg/hm2),设1、2、3 kg/m2共3个猪粪用量,以不施猪粪为对照 (CK),共4个处理,每处理3次重复。在矿山生态型水蓼收获期 (移栽后3个月) 采集植物地上部,采用微波消解仪 (CEM MARS5, USA) 消解—全自动间断化学分析仪 (AQ2, UK) 测定植株磷含量,分析矿山生态型水蓼对猪粪处理土壤中磷的富集能力。在矿山生态型水蓼移栽前和收获后按5点采样法分别采取0—20 cm和20—40 cm土层土壤样品,测定土壤样品中的水溶性磷和有效磷含量,分析种植矿山生态型水蓼前后猪粪处理土壤中易溶性磷含量的变化情况。 【结果】 不同用量猪粪处理下,矿山生态型水蓼地上部生物量较不施猪粪处理分别显著增加了18.4、24.6和42.0 g/株,最大时高达不施猪粪处理的2.16倍。各猪粪处理矿山生态型水蓼地上部磷含量显著高于不施猪粪处理,较不施猪粪处理分别增高了0.60、0.91和1.49 g/kg,最高为施猪粪处理的1.53倍。矿山生态型水蓼地上部磷积累量随猪粪用量的增加而显著增大,较不施猪粪处理分别增加了P 84.0、124和236 mg/株,最高为不施猪粪处理的3.32倍。各处理下,种植矿山生态型水蓼后0—20 cm土层中的水溶性磷和有效磷含量与种植前相比均显著降低,水溶性磷含量降低了74.9%~81.5%,有效磷含量降低了48.9%~60.0%;20—40 cm土层的水溶性磷和有效磷含量均无明显变化。 【结论】 种植矿山生态型水蓼能显著减少表层土壤中水溶性磷和有效磷量,高效吸取净化猪粪带入土壤中磷。因此,在高磷含量的土壤上种植、收获矿山生态型水蓼,是降低土壤磷素流失风险的有效生物手段。
  • 图 1  不同猪粪用量下矿山生态型水蓼地上部生物量

    Figure 1.  Biomass of shoot in mine ecotype Polygonum hydropiper grown under different swine manure dosages

    图 2  不同猪粪用量下矿山生态型水蓼地上部磷含量和积累量

    Figure 2.  Concentrations and accumulation of P in shoots of mine ecotype Polygonum hydropiper grown under different swine manure dosages

    图 3  矿山生态型水蓼种植前后0—20、20—40cm土层中水溶性磷和有效磷含量

    Figure 3.  Contents of water-soluble and available P in 0–20 and 20–40 cm soil layers before and after mine ecotype Polygonum hydropiper planting

  • [1] 陈菲菲, 张崇尚, 王艺诺, 等. 规模化生猪养殖粪便处理与成本收益分析[J]. 中国环境科学, 2017, 37(9): 3455–3463. Chen F F, Zhang C S, Wang Y N, et al. Patterns and cost-benefit analysis of manure disposal of scale pig production in China[J]. China Environmental Science, 2017, 37(9): 3455–3463. doi: 10.3969/j.issn.1000-6923.2017.09.032
    [2] 朱建春, 张增强, 樊志民, 等. 中国畜禽粪便的能源效果与氮磷耕地负荷及总量控制[J]. 农业环境科学学报, 2014, 33(3): 435–445. Zhu J C, Zhang Z Q, Fan Z M, et al. Biogas potential, cropland load and total amount control of animal manure in China[J]. Journal of Agro-Environment Science, 2014, 33(3): 435–445. doi: 10.11654/jaes.2014.03.005
    [3] Pagliari P H, Laboski C A M. Investigation of the inorganic and organic phosphorus forms in animal manure[J]. Journal of Environmental Guality, 2012, 41(3): 901–910.
    [4] Nicholson F A, Bhogal A, Chadwick D, et al. An enhanced software tool to support better use of manure nutrients: MANNER‐NPK[J]. Soil Use and Management, 2013, 29(4): 473–484. doi: 10.1111/sum.2013.29.issue-4
    [5] Pizzeghello D, Berti A, Nardi S, et al. Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications[J]. Agriculture Ecosystems and Environment, 2014, 189(6): 216–228.
    [6] Pagliari, Paulo H, Laboski, et al. Dairy manure treatment effects on manure phosphorus fractionation and; changes in soil test phosphorus[J]. Biology and Fertility of Soils, 2013, 49(8): 987–999. doi: 10.1007/s00374-013-0798-2
    [7] Duan Y, Xu M, He X, et al. Long-term pig manure application reduces the requirement of chemical phosphorus and potassium in two rice-wheat sites in subtropical China[J]. Soil Use and Management, 2011, 27(4): 427–436. doi: 10.1111/sum.2011.27.issue-4
    [8] Xue Q Y, Shamsi I H, Sun D S, et al. Impact of manure application on forms and quantities of phosphorus in a Chinese Cambisol under different land use[J]. Journal of Soils and Sediments, 2013, 13(5): 837–845. doi: 10.1007/s11368-012-0627-5
    [9] Nelson N O, Parsons J E, Mikkelsen R L. Field-scale evaluation of phosphorus leaching in acid sandy soils receiving swine waste[J]. Journal of Environmental Quality, 2005, 34(6): 2024–2035. doi: 10.2134/jeq2004.0445
    [10] Lemaire G, Franzluebbers A, de Faccio Carvalho P C, et al. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality[J]. Agriculture, Ecosystems and Environment, 2014, 190(6): 4–8.
    [11] Ongley E D, Zhang X, Yu T. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5): 1159–1168. doi: 10.1016/j.envpol.2009.10.047
    [12] Novak J M, Chan A S K. Development of P-hyperaccumulator plant strategies to remediate soils with excess P concentrations[J]. Critical Reviews in Plant Sciences, 2002, 21(5): 493–509. doi: 10.1080/0735-260291044331
    [13] Van d S C, Chardon W J, Koopmans G F, et al. Phytoextraction of phosphorus-enriched grassland soils[J]. Journal of Environmental Quality, 2009, 38(2): 751–761. doi: 10.2134/jeq2008.0068
    [14] Sharma N C, Sahi S V. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions[J]. Environmental Science Technology, 2011, 45(24): 10531–10537. doi: 10.1021/es200942v
    [15] 吴浩, 卢志军, 黄汉东, 等. 三种植物对土壤中磷吸收和富集能力的比较[J]. 植物生态学报, 2015, 39(1): 63–71. Hao W U, Lu Z J, Huang H D, et al. Comparison of phosphorus uptake and accumulation capacity among three plant species[J]. Chinese Journal of Plant Ecology, 2015, 39(1): 63–71. doi: 10.17521/cjpe.2015.0007
    [16] Priya P, Sahi S V. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium)[J]. Plant Physiol Biochem, 2009, 47(1): 31–36. doi: 10.1016/j.plaphy.2008.09.002
    [17] Silveira M L, Vendramini J M B, Sui X, et al. Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P[J]. Bioenergy Research, 2013, 6(2): 469–475. doi: 10.1007/s12155-012-9267-2
    [18] Suriyagoda L B D, Tibbett M, Edmonds-Tibbett T, et al. Poor regulation of phosphorus uptake and rhizosphere carboxylates in three phosphorus-hyperaccumulating species of Ptilotus[J]. Plant and Soil, 2016, 402(1–2): 145–158. doi: 10.1007/s11104-015-2784-y
    [19] Ye D, Li T, Zhang X, et al. P uptake characteristics and P removal potentials of Pilea sinofasciata grown under soils amended with swine manure[J]. Ecological Engineering, 2014, 73(45): 553–559.
    [20] Liu D, Ye D, Li T, et al. Practicability of using Polygonum japonicum, as a P accumulator for P phytoextraction from soil amended with swine manure[J]. Applied Soil Ecology, 2017, 112(112): 11–17.
    [21] 区惠平, 周柳强, 黄美福, 等. 不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估[J]. 植物营养与肥料学报, 2016, 22(1): 40–47. Ou H P, Zhou L Q, Huang M F, et al. Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 40–47. doi: 10.11674/zwyf.14298
    [22] Yan Y, Cheng H L, Feng M X, et al. Relationship between phosphorus fractions in paddy soil and phosphorus release to runoff amended with manure[J]. CLEAN-Soil Air Water, 2018, 17(2): 81–92.
    [23] Yang Y, Zhang H, Qian X, et al. Excessive application of pig manure increases the risk of P loss in calcic cinnamon soil in China[J]. Science of the Total Environment, 2017, 609(17): 102–108.
    [24] Faridullah F, Hafeez S, Ahmed T, et al. Characterization of phosphorus in fresh and composted manures of different livestock[J]. Polish Journal of Environmental Studies, 2018, 27(2): 615–622. doi: 10.15244/pjoes/68883
    [25] Missaoui A M, Young J. Genetic gain from selection and potential for improving alfalfa phosphorus uptake and removal from soils heavily amended with poultry litter[J]. Euphytica, 2016, 209(2): 495–506. doi: 10.1007/s10681-016-1677-3
    [26] Xiao G L, Li T X, Zhang X Z, et al. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area[J]. Journal of Hazardous Materials, 2009, 171(1): 542–550.
    [27] Ye D, Li T, Chen G, et al. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper[J]. Chemosphere, 2014, 105(3): 139–145.
    [28] Ye D, Li T, Yu H, et al. P accumulation of Polygonum hydropiper, soil P fractions and phosphatase activity as affected by swine manure[J]. Applied Soil Ecology, 2015, 86(86): 10–18.
    [29] Ye D, Li T, Zhang X, et al. Rhizosphere P composition, phosphatase and phytase activities of Polygonum hydropiper grown in excess P soils[J]. Biology and Fertility of Soils, 2017, 53(8): 823–836. doi: 10.1007/s00374-017-1218-9
    [30] 鲁如坤. 土壤农业化学分析[M]. 北京: 中国农业科技出版社, 2000.
    Lu R K. Analytical methods of soil and agricultural chemistry[M]. Beijing: China Agricultural Scientech Press, 2000.
    [31] Kuligowski K, Gilkes R J, Poulsen T G, et al. Ash from the thermal gasification of pig manure―effects on ryegrass yield, element uptake, and soil properties[J]. Soil Research, 2012, 50(5): 406–415. doi: 10.1071/SR12075
    [32] Sharma N C, Starnes D L, Sahi S V. Phytoextraction of excess soil phosphorus[J]. Environmental Pollution, 2007, 146(1): 120–127. doi: 10.1016/j.envpol.2006.06.006
    [33] Sharma N C, Sahi S V, Jain J C, et al. Enhanced accumulation of phosphate by Lolium multiflorum cultivars grown in phosphate-enriched medium[J]. Environmental Science and Technology, 2004, 38(8): 2443–2448. doi: 10.1021/es030466s
    [34] Padmanabhan P, Starnes D L, Sahi S V. Differential responses of duo grass (Lolium×Festuca), a phosphorus hyperaccumulator to high phosphorus and poultry manure treatments[J]. African Journal of Biotechnology, 2013, 12(21): 3191–3195.
    [35] Starnes D L, Padmanabhan P, Sahi S V. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass (Lolium multiflorum)[J]. Plant Physiology and Biochemistry, 2008, 46(5): 580–589.
    [36] Gotcher M J, Zhang H, Schroder J L, et al. Phytoremediation of soil phosphorus with crabgrass[J]. Agronomy Journal, 2012, 106(2): 528–539.
    [37] Yan K, Wong M H G, Zhang L, et al. Is phytoextraction efficient for remediating phosphorus-enriched soils in mountainous region? A case study of lake Dianchi watershed of southwestern China[J]. Applied Mechanics and Materials, 2014, 448(48): 488–493.
    [38] 李青军, 张炎, 哈丽哈什·依巴提, 等. 棉花高产和磷高效的磷肥基施追施配合技术研究[J]. 植物营养与肥料学报, 2018, 24(1): 146–153. Li Q J, Zhang Y, Harlhax Y B T, et al. Basal and topdressing application technology of phosphate fertilizer for high cotton yield and high phosphorous efficiency in Xinjiang[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(1): 146–153. doi: 10.11674/zwyf.17156
    [39] Wienhold B J, Gilley J E. Runoff losses of N and P after low phosphorus swine slurry application to no-tillage sorghum[J]. Soil Science, 2010, 175(5): 201–206. doi: 10.1097/SS.0b013e3181e055cd
    [40] Liang X, Jin Y, He M, et al. Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates[J]. Agriculture Ecosystems and Environment, 2017, 237(237): 173–180.
    [41] 樊红柱, 陈庆瑞, 郭松, 等. 长期不同施肥紫色水稻土磷的盈亏及有效性[J]. 植物营养与肥料学报, 2018, 24(1): 154–162. Pan H Z, Zhen Q R, Guo S, et al. Phosphorus balance and availability in a purple paddy soil under long-term different fertilization[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(1): 154–162. doi: 10.11674/zwyf.17141
    [42] Dadson R B, Javaid I, Hashem F M, et al. Phytoremediation of poultry manure-enriched soils for phosphorus using cowpea genotypes[J]. Journal of Crop Improvement, 2012, 26(6): 835–841. doi: 10.1080/15427528.2012.724528
  • [1] 李帆钱坤武际万水霞蒋光月朱宏斌 . 过磷酸钙用量对猪粪堆肥过程及磷形态变化的影响. 植物营养与肥料学报, 2017, 23(4): 1037-1044. doi: 10.11674/zwyf.16284
    [2] 张健关连珠 . 猪粪中3种四环素类抗生素在土壤中的动态变化及降解途径. 植物营养与肥料学报, 2013, 19(3): 727-732. doi: 10.11674/zwyf.2013.0324
    [3] 王岩张莹沈其荣史瑞和黄东迈 . 施用有机、无机肥后土壤微生物量、固定态铵的变化及其有效性研究. 植物营养与肥料学报, 1997, 3(4): 307-314. doi: 10.11674/zwyf.1997.0404
    [4] 张亚丽沈其荣王兴兵孙兆海 . 猪粪和稻草对铬污染黄泥土生物活性的影响. 植物营养与肥料学报, 2002, 8(4): 488-492. doi: 10.11674/zwyf.2002.0421
    [5] 荣勤雷梁国庆周卫刘东海王秀斌孙静文李双来胡诚 . 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响. 植物营养与肥料学报, 2014, 20(5): 1168-1177. doi: 10.11674/zwyf.2014.0513
    [6] 陕红刘荣乐李书田 . 施用有机物料对土壤镉形态的影响. 植物营养与肥料学报, 2010, 16(1): 136-144. doi: 10.11674/zwyf.2010.0120
    [7] 郭瑀李廷轩张锡洲 . 施氮提高矿山生态型水蓼富集土壤磷能力研究. 植物营养与肥料学报, 2018, 24(5): 1313-1320. doi: 10.11674/zwyf.17480
    [8] 叶代桦李廷轩*张锡洲郑子成余海英 . 高磷对矿山生态型水蓼磷富集特性的影响. 植物营养与肥料学报, 2014, 20(1): 186-194. doi: 10.11674/zwyf.2014.0121
    [9] 陈梅陈亚华沈振国沈其荣 . 猪粪对红壤铝毒的缓解效应. 植物营养与肥料学报, 2002, 8(2): 173-176. doi: 10.11674/zwyf.2002.0208
    [10] 倪治华薛智勇 . 猪粪堆制过程中主要酶活性变化. 植物营养与肥料学报, 2005, 11(3): 406-411. doi: 10.11674/zwyf.2005.0321
    [11] 张晋京窦森 . 施用猪粪对棕壤富里酸结构特征的影响. 植物营养与肥料学报, 2003, 9(1): 75-80. doi: 10.11674/zwyf.2003.0114
    [12] 尹晓明王荣江徐潇潇曹云 . 猪粪堆肥过程中养分和重金属含量的动态变化. 植物营养与肥料学报, 2019, 25(2): 254-263. doi: 10.11674/zwyf.18044
    [13] 戴文颖李廷轩 . 矿山生态型和非矿山生态型粗齿冷水花富磷能力的比较. 植物营养与肥料学报, 2019, 25(10): 1719-1726. doi: 10.11674/zwyf.18422
    [14] 董艳芳黄景李伏生王楷方泽涛刘靖雯黄忠华罗维钢 . 不同灌溉模式和施氮处理下稻田 CH4 和 N2O 排放. 植物营养与肥料学报, 2017, 23(3): 578-588. doi: 10.11674/zwyf.16437
    [15] 樊琳柴如山刘立娟黄利东章永松 . 稻草和猪粪发酵残渣配施菌剂对大棚连作土壤的改良作用. 植物营养与肥料学报, 2013, 19(2): 437-444. doi: 10.11674/zwyf.2013.0221
    [16] 孙国峰盛婧张丽萍周炜陈留根郑建初 . 基于稻麦轮作农田土壤锌累积的猪粪安全施用量. 植物营养与肥料学报, 2017, 23(1): 174-180. doi: 10.11674/zwyf.16257
    [17] 王砚李念念朱端卫周文兵陈焰鑫伍玉鹏 . 水稻秸秆预处理对猪粪高温堆肥过程中磷素形态变化的影响. 植物营养与肥料学报, 2019, 25(6): 963-971. doi: 10.11674/zwyf.18279
    [18] 孙晓华罗安程仇丹 . 微生物接种对猪粪堆肥发酵过程的影响. 植物营养与肥料学报, 2004, 10(5): 557-560. doi: 10.11674/zwyf.2004.0521
    [19] 陆文静何振立许建平黄昌勇马国瑞 . 石灰性土壤难溶态磷的微生物转化和利用. 植物营养与肥料学报, 1999, 5(4): 377-383. doi: 10.11674/zwyf.1999.0413
    [20] 苏倩侯振安赵靓茹思博翟勇董天宇 . 生物碳对土壤磷素和棉花养分吸收的影响. 植物营养与肥料学报, 2014, 20(3): 642-650. doi: 10.11674/zwyf.2014.0316
  • 加载中
图(3)
计量
  • 文章访问数:  639
  • HTML全文浏览量:  179
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-13
  • 网络出版日期:  2019-06-29
  • 刊出日期:  2019-07-01

矿山生态型水蓼对施用猪粪土壤中磷的吸取净化效果

    作者简介:魏文静 E-mail: 2671082428@qq.com
    通讯作者: 李廷轩, litinx@263.net
  • 四川农业大学资源学院,四川成都 611130
  • 基金项目: 国家自然科学基金项目(41671323)。
  • 摘要:  【目的】 针对猪粪不合理利用导致土壤中磷过剩和磷流失的突出问题,明确磷富集植物矿山生态型水蓼 (Polygonum hydropiper) 对施用猪粪土壤磷的吸取净化效果,为高效提取施用猪粪土壤中的过量磷,降低磷素的流失风险提供科学依据。 【方法】 采用微区模拟试验,根据农田磷肥安全用量 (< 200 kg/hm2),设1、2、3 kg/m2共3个猪粪用量,以不施猪粪为对照 (CK),共4个处理,每处理3次重复。在矿山生态型水蓼收获期 (移栽后3个月) 采集植物地上部,采用微波消解仪 (CEM MARS5, USA) 消解—全自动间断化学分析仪 (AQ2, UK) 测定植株磷含量,分析矿山生态型水蓼对猪粪处理土壤中磷的富集能力。在矿山生态型水蓼移栽前和收获后按5点采样法分别采取0—20 cm和20—40 cm土层土壤样品,测定土壤样品中的水溶性磷和有效磷含量,分析种植矿山生态型水蓼前后猪粪处理土壤中易溶性磷含量的变化情况。 【结果】 不同用量猪粪处理下,矿山生态型水蓼地上部生物量较不施猪粪处理分别显著增加了18.4、24.6和42.0 g/株,最大时高达不施猪粪处理的2.16倍。各猪粪处理矿山生态型水蓼地上部磷含量显著高于不施猪粪处理,较不施猪粪处理分别增高了0.60、0.91和1.49 g/kg,最高为施猪粪处理的1.53倍。矿山生态型水蓼地上部磷积累量随猪粪用量的增加而显著增大,较不施猪粪处理分别增加了P 84.0、124和236 mg/株,最高为不施猪粪处理的3.32倍。各处理下,种植矿山生态型水蓼后0—20 cm土层中的水溶性磷和有效磷含量与种植前相比均显著降低,水溶性磷含量降低了74.9%~81.5%,有效磷含量降低了48.9%~60.0%;20—40 cm土层的水溶性磷和有效磷含量均无明显变化。 【结论】 种植矿山生态型水蓼能显著减少表层土壤中水溶性磷和有效磷量,高效吸取净化猪粪带入土壤中磷。因此,在高磷含量的土壤上种植、收获矿山生态型水蓼,是降低土壤磷素流失风险的有效生物手段。

    English Abstract

    • 近年来,随着我国养猪业迅速发展,猪粪排放量不断增加。据统计,2015年我国猪粪排放量高达16.4亿t,且成逐年增加的趋势[1]。由于猪粪中磷养分含量丰富[2-3],合理施用有助于土壤养分循环和维持土壤肥力,是一种理想的肥料[4-5]。然而,在农业生产中,通常将猪粪作为有机肥长期不合理还田,施入土壤的磷远超过作物所需,导致磷在土壤中不断累积,进而加剧磷素的流失风险[6-8]。研究表明,长期施用或堆积猪粪的土壤中总磷超标20倍以上,是渗漏或淋溶流失磷素的主要来源[9-10]。据报道,每年全球大约有30~40万t的土壤磷迁移至受纳水体[2],该面源污染造成对水体总污染的贡献率高达93%[11]。因此,找到一种切实有效的方法提取猪粪处理土壤中过量的磷,降低磷对环境的威胁具有重要的现实意义。

      利用磷富集植物提取土壤中的过量磷具有经济、环境友好、避免二次污染等优点,是降低磷素流失风险的一种切实有效措施[12-13]。已有研究表明,室内土培条件下,黑麦草在高浓度猪粪处理下,体内磷含量能达到10 g/kg,对猪粪处理土壤中磷的积累能力较强[14]。与南瓜 (Cucurbita moschata) 和苏丹草 (Sorghum sudanense) 相比,向日葵 (Helianthus annuus) 对土壤中磷的富集能力最强,是一种潜在的磷修复植物[15]。Priya和Sahi[16]选育出一种杂交草 (Duo festulolium) 对猪粪处理土壤中磷的磷富集特性较强。其他磷富集植物如象草 (Pennisetum purpureum Schum)[17]、澳洲狐尾 (Ptilotus polystachyus)[18]、矿山生态型粗齿冷水花 (Pilea sinofasciata)[19]、蚕茧蓼 (Polygonum japonicum)[20]对施用猪粪土壤中磷也具有较好的吸收积累能力。可见,目前对磷富集植物的相关研究主要是在室内土培条件下研究它们对土壤中磷的富集特征,极少或忽略了它们在大田应用中对土壤中磷的吸取净化效果研究。

      由于施入土壤中的磷易被固定、移动性较差,短期内淋溶流失磷的量很小[21-22],相对于植物磷积累量可忽略不计。因此,磷富集植物对土壤中磷的吸取净化效果可通过种植磷富集植物后土壤中易溶性磷含量的变化反映。土壤中的易溶性磷主要以水溶性磷和有效磷的形式存在[23-24],种植磷富集植物后水溶性磷和有效磷降低幅度越大,表明磷富集植物对土壤中磷的吸取净化效果越好[25]。前期筛选出对磷富集能力较强的水蓼[26],在室内土培条件下对猪粪处理土壤中磷的积累能力也很强[27-28]。由于生态型差异,矿山生态型水蓼对磷的积累能力显著强于非矿山生态型,其地上部磷积累量最大时达211 mg/株[29]。因此,本研究在此基础上通过微区模拟试验,结合猪粪处理土壤中易溶性磷含量变化,明确矿山生态型水蓼对猪粪处理土壤中磷的吸取净化效果,为后期合理利用矿山生态型水蓼提取猪粪处理土壤中的过量磷、降低磷素的流失风险提供科学依据。

      • 供试植物:矿山生态型水蓼 (Polygonum hydropiper),种子源自四川省什邡市磷矿区 (104°01′ E, 31°25′ N)。

        供试土壤:灰潮土,采自四川省都江堰市蒲阳镇双柏村,其基本理化性质为pH 7.18、有机质22.5 g/kg、全氮2.54 g/kg、碱解氮52.5 mg/kg、速效钾25.8 mg/kg、有效磷14.6 mg/kg和水溶性磷5.26 mg/kg。

        供试猪粪采自都江堰市规模化养殖场,其基本理化性质为pH 6.89、有机质196 g/kg、全氮15.0 g/kg、全钾10.3 g/kg、全磷23.0 g/kg、无机磷13.8 g/kg、有机磷9.17 g/kg、有效磷6.31 g/kg和水溶性总磷4.31 g/kg。

      • 采用随机区组设计,根据农田磷肥安全用量 (<200 kg/hm2),设1、2和3 kg/m2共3个猪粪用量 (相当于200、400和600 kg/hm2的磷肥施用量),以不施猪粪为对照,共4个处理,每处理重复3次。通过微区模拟试验,微区面积1.5 m2 (1.5 m×1.0 m)。猪粪于4月份一次性施入,并将其混入0―20 cm土层中,陈化一个月后移栽矿山生态型水蓼幼苗。

        矿山生态型水蓼经选种育苗,待植株生长至10 cm左右时选择生长状况良好长势一致的幼苗,按每微区56穴 (间距20 cm×15 cm),每穴1株进行移栽。植株生长期间按常规管理,并记录其生长状况。

      • 于初花期 (移栽后3个月) 收获植株地上部,先采用棋盘法每小区采集9株,每3株作为1个混合样,称鲜重后先用自来水冲洗,再用蒸馏水润洗,洗净后用吸水纸擦干,装到信封袋中105°C杀青30 min,75°C烘干至恒重,称重,然后粉碎过筛用于地上部磷含量测定。

        分别于矿山生态型水蓼移栽和收获当天按“S”型5点采样法分别采取0―20和20―40 cm土层土壤,土壤风干、磨碎、过筛后,测定土壤水溶性磷、有效磷含量。

      • 土壤基本理化性质的测定采用常规分析方法[30];植株地上部生物量 (干重) 采用烘干称重法测定;植株地上部磷含量采用微波消解仪 (CEM MARS5, USA) 消解—全自动间断化学分析仪 (AQ2, UK) 测定[29];土壤水溶性磷采用去离子水浸提—钼锑抗比色法测定[30];土壤有效磷采用0.5 mol/L NaHCO3浸提—钼锑抗比色法测定[30];全磷采用NaOH熔融—钼锑抗比色法测定[30];无机磷采用0.5 mol/L (1/2 H2SO4) 浸提—钼锑抗比色法测定[30];有机磷的含量为全磷和无机磷的差值。

      • 地上部磷积累量 (mg/株) = 地上部生物量×地上部磷含量;

        采用SPSS (20.0) 进行统计分析,用LSD法进行多重比较,采用Origin (8.0)制图。

      • 随着猪粪用量的增加,矿山生态型水蓼地上部生物量逐渐增大,增幅在11.3%~51.1%之间。各猪粪处理下,矿山生态型水蓼地上部生物量显著大于不施猪粪处理,1、2和3 kg/m2猪粪处理下矿山生态型水蓼地上部生物量分别由不施猪粪处理的36.2 g/株 增加到54.6、60.8和78.2 g/株,分别增加了18.4、24.6和42.0 g/株,分别是不施猪粪处理的1.51、1.68和2.16倍。说明施用猪粪有利于矿山生态型水蓼吸取净化土壤中的过量磷 (图1)。

        图  1  不同猪粪用量下矿山生态型水蓼地上部生物量

        Figure 1.  Biomass of shoot in mine ecotype Polygonum hydropiper grown under different swine manure dosages

      • 矿山生态型水蓼地上部磷含量随着猪粪用量的增加而增大,增幅在9.11%~21.3%之间。与不施猪粪处理相比,各猪粪处理下矿山生态型水蓼地上部磷含量显著增大,1、2和3 kg/m2猪粪处理下矿山生态型水蓼地上部磷含量分别由不施猪粪处理的2.82 g/kg增加到3.42、3.73和4.31 g/kg,分别增高了0.60、0.91和1.49 g/kg,分别为不施猪粪处理的1.21、1.32和1.53倍 (图2)。

        图  2  不同猪粪用量下矿山生态型水蓼地上部磷含量和积累量

        Figure 2.  Concentrations and accumulation of P in shoots of mine ecotype Polygonum hydropiper grown under different swine manure dosages

        随着猪粪用量的增加,矿山生态型水蓼地上部磷积累量显著增大,增幅在21.9%~81.5%之间。各猪粪处理下,矿山生态型水蓼地上部生物量显著大于不施猪粪处理,1、2和3 kg/m2猪粪处理下矿山生态型水蓼地上部磷积累量分别由不施猪粪处理的102 mg/株 增加到了186、226和338 mg/株,分别增加了84.0、124和236 mg/株,分别是不施猪粪的1.45、2.22和3.32倍。说明种植矿山生态型水蓼能有效吸取土壤中的过量磷 (图2)。

      • 随着猪粪用量的增加,种植矿山生态型水蓼前0—20 cm土层中的水溶性磷含量显著增大,种植矿山生态型水蓼后除3 kg/m2猪粪处理外,0—20 cm土层中的水溶性磷含量均无明显变化;种植矿山生态型水蓼前后20—40 cm土层中的水溶性磷含量均无明显变化。种植矿山生态型水蓼后各处理0—20 cm土层中的水溶性磷含量与种植前相比显著降低,分别由种植前的5.62、16.4、26.1和35.9 mg/kg降低到了2.64、3.73、4.82和9.01 mg/kg,分别降低了2.98、12.7、21.3和26.9 mg/kg。其中,猪粪处理下0—20 cm土层中的水溶性磷含量降低了74.9%~81.5%,远大于不施猪粪处理的53.0%。各处理下,种植矿山生态型水蓼后20—40 cm土层中的水溶性磷含量较种植前均无明显变化 (图3)。

        图  3  矿山生态型水蓼种植前后0—20、20—40cm土层中水溶性磷和有效磷含量

        Figure 3.  Contents of water-soluble and available P in 0–20 and 20–40 cm soil layers before and after mine ecotype Polygonum hydropiper planting

        种植矿山生态型水蓼前后,0—20 cm土层中的有效磷含量均随猪粪用量的增加而显著增大,20—40 cm土层中无明显变化。各处理下种植矿山生态型水蓼后0—20 cm土层中的有效磷含量与种植前相比显著降低,分别由种植前的14.6、35.1、54.1和74.6 mg/kg降低到了6.48、14.0、27.6和37.3 mg/kg,分别降低8.12、21.1、26.5和37.3 mg/kg,降幅分别为55.6%、60.0%、48.9%和50.0%。各处理下,种植矿山生态型水蓼后20—40 cm土层中的有效磷含量较种植前均无明显变化 (图3)。

      • 目前,有关磷富集植物提取土壤中磷的研究较多,但是对于磷富集植物在实际应用中对土壤中磷提取效果的研究还很缺乏。前期通过室内土培实验研究发现,矿山生态型水蓼对土壤中磷的耐性、活化能力和积累能力均很强,显著强于非矿山生态型[27-28]。因此,本研究在前期研究的基础上通过微区模拟试验,结合土壤中易溶性磷含量的变化,探讨矿山生态型水蓼对土壤中磷的吸取净化效果。

        相关研究表明,猪粪中养分含量丰富[2-3],合理施用猪粪有助于土壤养分循环和磷富集植物的生长,从而有利于磷富集植物提取土壤中的过量磷[18,29]。对土壤中磷吸取净化效果较好的磷富集植物如杂交草 (Duo festulolium)[16]、黑麦草 (Lolium rigidumGaudin)[31]等地上部干重均随着猪粪用量的增加而增大,最大时分别为51.0和46.2 g/株。

        本研究中,各猪粪处理下,矿山生态型水蓼地上部生物量显著大于不施猪粪处理,最大时高达78.2 g/株,远大于以上磷富集植物。磷富集植物要有效地提取土壤中的过剩磷,除了有较大的地上部生物量外,其地上部磷含量也应较高,至少应达10 g/kg[13, 32]。虽然本研究中矿山生态型水蓼地上部磷含量随猪粪用量的增加而增大,但最大时仍不足10 g/kg。

        相关研究发现,植物对磷的吸收在很大程度上受根际磷素有效性的影响,土壤中有机磷占总磷的百分比越高植物体内磷含量越低[33-34]。即使是同种植物,在无机磷处理下其体内磷含量也显著大于有机磷及鸡粪处理[14, 20]

        本研究中施用的猪粪,有机磷占总磷的39.9%,施入土壤后这部分磷需经磷酸酶矿化分解为无机磷才能被矿山生态型水蓼吸收利用。一些磷提取效果较好的富磷植物如一年生黑麦草 (Lolium multiflorum)[35]、马唐 (Digitaria ciliaris)[36]在猪粪处理下其地上部磷含量也不足10 g/kg。磷富集植物吸取净化土壤中磷的高效率主要通过地上部带走磷的总量反映。本研究中,矿山生态型水蓼地上部磷积累量随猪粪用量增加显著增大,最大时可高达P 338 mg/株,相比黑麦草等更有利于富集土壤中的过量磷。而用于修复污水的凤眼莲 (Eichhornia crassipes)、粉绿狐尾藻 (Myriophyllum aquaticum)和水浮莲 (Pistia stratiotes) 地上部磷积累量最高也仅为80.1、38.7和31.7 mg/株[37]。另外,本研究还发现,在1 kg/m2猪粪处理下矿山生态型水蓼地上部生物量、磷含量和磷积累量的增幅均最大,这与李青军等对棉花的研究结果相似[38],可能与植物在苗期吸磷量较多有关,若苗期缺磷,会影响植物后期生长。可见,猪粪处理下矿山生态型水蓼对土壤中磷的富集能力很强。

      • 土壤中的易溶性磷主要以水溶性磷和有效磷的形式存在,其含量越高,磷素流失的风险越大[23-24]。相关研究表明,猪粪中的磷养分含量丰富,当猪粪作为有机肥不合理还田时,土壤中的水溶性磷和有效磷含量迅速增加[39-40]

        本研究中,随着猪粪用量的增加,种植矿山生态型水蓼前,0—20 cm土层中的水溶性磷和有效磷含量显著增加,与上述研究结果一致。种植矿山生态型水蓼后,除3 kg/m2猪粪处理外,0—20 cm土层中的水溶性磷含量均无明显变化,这主要与水溶性磷是土壤中活性最高的磷组分,能被植物直接吸收利用有关[28]。0—20 cm土层中的有效磷含量随猪粪用量增加而显著增加,这主要是因为施用猪粪后土壤有效磷的增加量明显大于植物吸收利用的磷含量。20—40 cm土层中的水溶性磷和有效磷含量均无明显变化,这主要是由于施入土壤中的磷易被固定、移动性较差,短期内淋溶流失磷的量很小[21-22]

        已有研究表明,利用磷富集植物提取土壤中的过量磷是降低磷素流失风险的一种切实有效措施[12-13]。磷富集植物对土壤中磷的吸取净化效果,主要通过磷富集植物对土壤中水溶性磷和有效磷的吸取净化效果反映[25, 33, 41]

        本研究中,各猪粪处理下种植矿山生态型水蓼后0—20 cm土层中的水溶性磷含量较种植前显著降低,降幅高达74.9%~81.5%,远大于不施猪粪处理的53.0%。相比牧草 (Herbage)、紫花苜蓿 (Alfalfa) 等磷富集植物的30.6%~60.1%和40.3%~56.8%,矿山生态型水蓼对土壤水溶性磷的吸取净化效果明显更好[25, 33]。同时,种植矿山生态型水蓼后,本研究各处理0—20 cm土层中的有效磷含量较种植前均显著降低,降幅为48.9%~60.0%,远大于种植不同作物和不同基因型豇豆后有效磷最大降幅34.5%和22.1%[42]。另外,本研究中种植矿山生态型水蓼后,20—40 cm土层中的水溶性磷和有效磷含量均无明显变化,这主要是因为水蓼是须根系植物,根系主要生长在0—20 cm土层中。可见,矿山生态型水蓼较其他磷富集植物对土壤中磷的吸取净化效果明显更好。因此,可通过收获矿山生态型水蓼地上部,有效降低土壤中的过量磷,减少磷素流失对环境的威胁。

      • 1) 矿山生态型水蓼对土壤中的磷具有很强的富集能力,且随着猪粪用量的增加其对土壤中磷的富集能力显著增强,在3 kg/m2时其地上部磷积累量最大,高达P 338 mg/株。

        2) 种植并收获矿山生态型水蓼可显著降低0—20 cm土层中的水溶性磷和有效磷含量,水溶性磷含量最大可降低81.5%,有效磷含量最大可降低60.0%。可见,矿山生态型水蓼是净化猪粪带入土壤中过量磷的高效植物。

    参考文献 (42)

    目录

      /

      返回文章
      返回