• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接种根内球囊霉提高氮素向甘薯块根转移和再分配的机理

张树海 李欢 刘庆 向丹

引用本文:
Citation:

接种根内球囊霉提高氮素向甘薯块根转移和再分配的机理

    作者简介: 张树海 E-mail:zsh1995@yeah.net;
    通讯作者: 向丹, E-mail:smilingxiangdan@163.com

Inoculation of Glomus intraradices BEG141 to increase transfer and redistribution of nitrogen to tuber of sweet potato

    Corresponding author: XIANG Dan, E-mail:smilingxiangdan@163.com
  • 摘要: 【目的】研究接种丛枝菌根真菌 (arbuscular mycorrhiza, AM) 对甘薯 (Ipomoea batatas L.) 的侵染率及叶片氮代谢酶活性的影响,探索甘薯氮素吸收后在植株体内的转移和分配规律,以期为全面了解菌根真菌促进氮代谢的过程提供理论依据。【方法】采用盆栽试验方法,供试菌种为一种根内球囊霉Glomus intraradices BEG141。土壤灭菌后,以不接种菌根 (–AM) 为对照,在8 kg土中接种100 g菌剂 (+AM)。于甘薯幼苗移栽后30天、60天和90天,从甘薯茎蔓顶部往下数第5片完全展开叶的叶柄与茎蔓交叉处定量注射99% (15NH4)2SO4溶液,15N总施用量为199.5 μg/plant。每次注射后三天取植株样,分为茎、叶、纤维根和块根4部分,测定生物量干重、根系菌根侵染率、15N丰度、氮代谢酶活性。【结果】接种AM处理显著增加了甘薯根部真菌侵染率及泡囊丰度、根内菌丝丰度和丛枝丰度。随着移栽天数的增加,侵染率显著增加,最高达到67%。移栽后30天接种和不接种菌根真菌处理间甘薯生物量和氮素吸收量差异不显著,移栽后60天和90天,接种AM真菌处理的甘薯生物量和氮素吸收量显著高于不接种AM处理 (P < 0.05)。与CK相比,同一生育期接种AM处理显著提高了甘薯叶片谷氨酸脱氢酶 (GDH)、谷氨酰胺合成酶 (GS) 和谷氨酸合成酶 (GOGAT) 的活性,对硝酸还原酶 (NR) 活性无显著影响。双因素分析表明,接种菌根与接种后时间对提高甘薯生物量干重、氮素累积量及GDH和GS活性的正交互效应显著 (P < 0.05)。移栽后30天,接种AM处理显著提高了甘薯茎蔓和叶片15N积累量和分配率;移栽后60天,叶片中15N积累量较前一时期显著增加。接种AM处理的叶片和茎蔓中15N积累量在30 d和60 d显著高于不接种AM处理 (P < 0.05),而在移栽后90天显著低于不接种AM处理,说明接种AM处理显著促进15N向块根的转移和分配。【结论】接种AM真菌可提高GDH、GS和GOGAT的代谢活性,促进无机氮向有机氮的转化。接种AM菌剂可促进生育前期氮素在叶片中的分配,有利于地上部的生长,而后期促进地上部积累氮素向地下部转运,进而增加甘薯块根中的干物质积累,提高甘薯的经济产量。
  • 图 1  不同取样期接种AM真菌后甘薯各器官中15N的积累量

    Figure 1.  15N accumulations in sweet potato organs in different days affected by AM inoculation

    图 2  接种AM真菌后不同取样时期甘薯各器官中15N的分配率

    Figure 2.  15N allocation rate in sweet potato organs in different days affected by AM fungi inoculation

    表 1  接种AM真菌后各时期甘薯的侵染率、泡囊丰度、丛枝丰度和菌丝丰度 (%)

    Table 1.  Root colonization rate, vesicle frequency, arbuscular frequency and hyphae density of sweet potato plants at different growing stages after arbuscular mycorrhiza inoculation

    移栽后天数
    Days after transplanting
    处理
    Treatment
    菌根侵染率
    Root colonization rate
    丛枝丰度
    Arbuscular frequency
    泡囊丰度
    Vesicle frequency
    菌丝丰度
    Hyphal density
    30–AM 1.42 b 0.07 b 0.17 b 0.43 b
    +AM38.91 a16.43 a 9.57 a37.09 a
    60–AM 1.53 b 0.27 b 0.75 b 0.94 b
    +AM52.99 a13.78 a12.86 a39.37 a
    90–AM 2.26 b 1.33 b 1.11 b 0.56 b
    +AM67.17 a18.25 a23.24 a47.97 a
    显著性Significance
    接种Inoculation (AM)************
    时期Time (T) **NS***
    AM × T **NS**
    注(Note):数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters mean significant differences between –AM and +AM treatments at the 0.05 level. *—P < 0.05;**—P < 0.01;***—P < 0.001; NS —不显著 Not significant.
    下载: 导出CSV

    表 2  接种AM真菌处理后不同时期甘薯的生物量、氮素含量及氮素积累量

    Table 2.  Biomass, nitrogen content and nitrogen accumulation of sweet potato at different growing stages after arbuscular mycorrhiza inoculation

    移栽后天数
    Days after transplanting
    接种
    Inoculation
    生物量Biomass (g)氮素含量N content (%)氮素积累量N accumulation (g)
    地上部Shoot地下部Root地上部Shoot地下部Root地上部Shoot地下部Root
    30–AM13.24 a12.61 a3.7 a3.6 a0.49 a0.46 a
    +AM14.14 a12.72 a3.9 a4.0 a0.56 a0.51 a
    60–AM18.83 b16.58 b3.4 b3.8 b0.65 b0.64 b
    +AM20.34 a18.33 a4.1 a4.4 a0.84 a0.82 a
    90–AM30.15 b30.52 b2.8 a3.3 b0.85 b1.03 b
    +AM36.87 a38.46 a2.9 a3.5 a1.08 a1.38 a
    显著性Significance
    接种Inoculation (AM)**NS***
    时期Time (T)******NSNS****
    AM × T**NSNS**
    注(Note):数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters mean significant differences between –AM and +AM treatments at the 0.05 level. *—P < 0.05;**—P < 0.01;***—P < 0.001;NS —不显著 Not significant.
    下载: 导出CSV

    表 3  接种AM真菌后甘薯叶片不同生长时期NR、GDH、GS、GOGAT酶活性

    Table 3.  Activity of NR, GDH, GS and GOGAT in sweet potato leaves at different growing stages affected by AM inoculation

    移栽后天数
    Days after transplanting
    处理
    Treatment
    NRGDHGSGOGAT
    30–AM20.27 ± 2.2 a56.71 ± 2.4 b30.34 ± 2.1 b 9.95 ± 1.1 a
    +AM22.29 ± 0.8 a64.46 ± 3.0 a33.45 ± 1.0 a10.28 ± 1.3 a
    60–AM21.85 ± 3.5 a72.75 ± 2.5 a42.61 ± 2.3 a14.13 ± 0.5 a
    +AM20.52 ± 2.1 a62.25 ± 3.1 b33.07 ± 2.7 b10.45 ± 0.3 b
    90–AM20.65 ± 0.6 b 63 ± 1.1 b38.33 ± 2.6 b 8.79 ± 0.3 b
    +AM21.98 ± 1.1 a78.75 ± 2.4 a45.08 ± 1.4 a10.96 ± 0.3 a
    显著性Significance
    接种Inoculation (AM)NS********
    时期Time (T)NS******
    AM × TNS**NS
    注(Note):NR—硝酸还原酶 Nitrate reductase;GDH—谷氨酸脱氢酶 Glutamic dehydrogenase;GS—谷氨酰胺合酶 Glutamine synthase;GOGAT—谷氨酸合酶 Glutamate synthase. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters mean significant differences between –AM and +AM treatments at the 0.05 level.*— P < 0.05;**— P < 0.01;***— P < 0.001; NS —不显著 Not significant.
    下载: 导出CSV
  • [1] 马代夫, 李强, 曹清河, 等. 中国甘薯产业及产业技术的发展与展望[J]. 江苏农业学报, 2012, 28(5): 969–973. Ma D F, Li Q, Cao Q H, et al. Development and prospect of sweet potato industry and industrial technology in China[J]. Journal of Jiangsu Agricultural Sciences, 2012, 28(5): 969–973.
    [2] 吕长文, 赵勇, 唐道彬, 等. 不同类型甘薯品种氮、钾积累分配及其与产量性状的关系[J]. 植物营养与肥料学报, 2012, 18(2): 475–482. Lv C W, Zhao Y, Tang D B, et al. Nitrogen and potassium accumulation and distribution in different types of sweet potato varieties and their relationship with yield traits[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 475–482. doi: 10.11674/zwyf.2012.11217
    [3] 李俊, 姜昕, 李力, 等. 微生物肥料的发展与土壤生物肥力的维持[J]. 中国土壤与肥料, 2006, 22(4): 1–5. Li J, Jiang X, Li L, et al. Development of microbial fertilizer and maintenance of soil biological fertility[J]. Soil and Fertilizer Sciences in China, 2006, 22(4): 1–5. doi: 10.3969/j.issn.1673-6257.2006.04.001
    [4] 王健, 刁治民, 张静, 马寿福. 土壤微生物在促进植物生长方面的作用与发展前景[J]. 青海草业, 2006, 15(4): 20–26. Wang J, Diao Z M; Zhang J, Ma S F. The role and development prospect of soil microbes in promoting plant growth[J]. Qinghai Grass Industry, 2006, 15(4): 20–26. doi: 10.3969/j.issn.1008-1445.2006.04.006
    [5] Smith S E, Read D J. Mycorrhizal symbiosis[M]. London: Academic Press, 1997. 9–11.
    [6] 戴梅, 王洪娴, 殷元元, 等. 丛枝菌根真菌与根围促生细菌相互作用的效应与机制[J]. 生态学报, 2008, 28(6): 2854–2860. Dai M, Wang H X, Yin Y Y, et al. Effect and mechanism of interaction between arbuscular mycorrhizal fungi and root-promoting bacteria[J]. Acta Ecologica Sinica, 2008, 28(6): 2854–2860. doi: 10.3321/j.issn:1000-0933.2008.06.050
    [7] 盖京苹, 冯固, 李晓林. 接种丛枝菌根真菌对甘薯生长的影响研究[J]. 中国生态农业学报, 2004, 12(1): 111–113. Gai J P, Feng G, Li X L. Effects of arbuscular mycorrhizal fungi on the growth of sweet potato[J]. Chinese Journal of Eco-Agriculture, 2004, 12(1): 111–113.
    [8] 刘文科, 冯固, 李晓林. 三种土壤上六种丛枝菌根真菌生长特征和接种效应[J]. 植物营养与肥料学报, 2006, 12(4): 530–536. Liu W K, Feng G, Li X L. Growth characteristics and inoculation effects of six arbuscular mycorrhizal fungi on three soils[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 530–536. doi: 10.3321/j.issn:1008-505X.2006.04.012
    [9] Jackson L E, Burger M, Cavagnaro T R. Roots, nitrogen transformations, and ecosystem services[J]. Annual Review of Plant Biology, 2008, 59: 341–363. doi: 10.1146/annurev.arplant.59.032607.092932
    [10] 刘洁, 刘静, 金海如. 丛枝菌根真菌N代谢与C代谢研究进展[J]. 微生物学杂志, 2011, 31(6): 70–75. Liu J, Liu J, Jin H R. Advances in N metabolism and C metabolism of arbuscular mycorrhizal fungi[J]. Journal of Microbiology, 2011, 31(6): 70–75. doi: 10.3969/j.issn.1005-7021.2011.06.016
    [11] 李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体的氮代谢运输及其生态作用[J]. 应用生态学报, 2013, 24(3): 861–868. Li Y J, Liu Z L, He X Y, et al. Nitrogen metabolism transport and ecological role of arbuscular mycorrhizal symbiosis[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 861–868.
    [12] 宁运旺, 张永春, 朱绿丹, 等. 甘薯的氮磷钾养分吸收及分配特性[J]. 江苏农业学报, 2011, 27(1): 71–74. Ning Y W, Zhang Y C, Zhu L D, et al. Nutrient absorption and distribution characteristics of NPK in sweet potato[J]. Journal of Jiangsu Agricultural Sciences, 2011, 27(1): 71–74. doi: 10.3969/j.issn.1000-4440.2011.01.013
    [13] 李元敬, 何兴元, 田春杰. 丛枝菌根共生体中碳、氮代谢及其相互关系[J]. 应用生态学报, 2014, 25(3): 903–910. Li Y J, He X Y, Tian C J. Carbon and nitrogen metabolism in arbuscular mycorrhizal symbiosis and their relationship[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 903–910.
    [14] 宁运旺, 马洪波, 许仙菊, 等. 氮磷钾缺乏对甘薯前期生长和养分吸收的影响[J]. 中国农业科学, 2013, 46(3): 486–495. Ning Y W, Ma H B, Xu X J, et al. Effects of NPK deficiency on pre-growth and nutrient uptake of sweet potato[J]. Scientia Agricultura Sinica, 2013, 46(3): 486–495. doi: 10.3864/j.issn.0578-1752.2013.03.005
    [15] 徐聪, 李欢, 史衍玺. 不同施氮量对甘薯氮素吸收与分配的影响[J]. 水土保持学报, 2014, 28(2): 149–153. Xu C, Li H, Shi Y X. Effects of different nitrogen application rates on nitrogen absorption and distribution in sweet potato[J]. Journal of Soil and Water Conservation, 2014, 28(2): 149–153.
    [16] 李永旗, 董合林, 李鹏程, 等. 叶施15N-尿素增加棉花苗期氮素吸收利用的生理生化机制研究[J]. 植物营养与肥料学报, 2014, 20(6): 1553–1559. Li Y Q, Dong H L, Li P C, et al. Physiological and biochemical mechanisms of nitrogen application in wheat seedling stage by 15N-urea[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1553–1559. doi: 10.11674/zwyf.2014.0626
    [17] 汪顺义, 刘庆, 史衍玺, 等. 施钾对甘薯氮素转移分配及氮代谢酶活性的影响[J]. 应用生态学报, 2016, 27(11): 3569–3576. Wang S Y, Liu Q, Shi Y X, et al. Effects of potassium application on nitrogen transfer and distribution and nitrogen metabolism enzyme activities in sweet potato[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3569–3576.
    [18] 金樑, 孙莉, 王强, 等. AM真菌在草原生态系统中的功能[J]. 生态学报, 2016, 36(3): 873–882. Jin L, Sun L, Wang Q, et al. Functions of AM fungi in grassland ecosystems[J]. Acta Ecologica Sinica, 2016, 36(3): 873–882.
    [19] Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques[J]. Plant and Soil, 2004, 262: 45–54. doi: 10.1023/B:PLSO.0000037019.34719.0d
    [20] Smith S E, Read D J. Mycorrhizal symbiosis[M]. San Diego: Academic Press, 1997. 11–60.
    [21] Lin C C, Kao C H. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl[J]. Plant Growth Regulation, 1996, 18: 233–238. doi: 10.1007/BF00024387
    [22] Zhang C F, Peng S B, Peng X X, et al. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots[J]. Plant Science, 1997, 125: 163–170. doi: 10.1016/S0168-9452(97)00075-7
    [23] 史春余, 张晓冬, 张超, 等. 甘薯对不同形态氮素的吸收与利用[J]. 植物营养与肥料学报, 2010, 16(2): 389–394. Shi C Y, Zhang X D, Zhang C, et al. Sweet potato absorption and utilization of different forms of nitrogen[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 389–394. doi: 10.11674/zwyf.2010.0219
    [24] 宁运旺, 马洪波, 张辉, 等. 甘薯源库关系建立、发展和平衡对氮肥用量的响应[J]. 作物学报, 2015, 41(3): 432–439. Ning Y W, Ma H B, Zhang H, et al. Responses of establishment, development and balance of sweet potato source-sink relationship to nitrogen application[J]. Acta Agronomica Sinica, 2015, 41(3): 432–439.
    [25] 李侠, 张俊伶. 丛枝菌根根外菌丝对铵态氮和硝态氮吸收能力的比较[J]. 植物营养与肥料学报, 2009, 15(3): 683–689. Li X, Zhang J L. Comparison of absorption capacity of ammonium nitrogen and nitrate nitrogen by arbuscular mycorrhizal fungi[J]. Plant Nutrition and Fertilizer Science, 2009, 15(3): 683–689. doi: 10.3321/j.issn:1008-505X.2009.03.029
    [26] 李忠武,