• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杉木林物质生产中养分利用特征分析

陈日升 康文星 吕中诚 黄志宏 赵仲辉 邓湘雯

引用本文:
Citation:

杉木林物质生产中养分利用特征分析

    作者简介: 陈日升 E-mail:chenrisheng85@126.com;
    通讯作者: 康文星, E-mail:kwx1218@126.com
  • 基金项目: 国家林业公益性行业科研专项(201404361);科技部公益性研究项目(2007-4-15);国家野外科学观测研究站项目(20080615)。

Nutrient utilization characteristics in biomass production in plantation of Cunninghamia lanceolata (Lamb.) Hook

    Corresponding author: KANG Wen-xing, E-mail:kwx1218@126.com ;
  • 摘要: 【目的】探讨杉木 [Cunninghamia lanceolata ( Lamb. ) Hook] 林物质生产中养分利用特征,为其人工林经营管理提供科学依据。【方法】本研究在湖南会同杉木林生态系统研究站 (国家野外科学观测研究站) 进行。供试林分7年生时,在林内设立了4 块固定观测样地,并在林分7、11、16、20、25年生5个林龄时,测定林分生物量,测定树木中K、Ca、Mg、N和P含量。根据枝叶枯死前后养分浓度差异和枝叶枯死量,估算枝叶枯死前的养分转移量。用某林龄段首尾两次测定的养分浓度差值,估算某林龄段以前生长且在该林龄段仍存活的生物质中新补充或转移出的养分量。将这些养分与从土壤吸收的养分结合一起,综合分析林分物质生产中的养分利用特征。【结果】林分物质生产利用的总养分中,土壤养分比例占79.3%~96.5%,随林龄增加持续下降;枝叶枯死前转移的养分占3.52%~17.6%,随林龄增加持续上升;林分12年生后,积累在某林龄段开始前林分生产的,在某林龄段结朿时仍存活的器官物质中迁移出的养分再利用占3.11%~3.40%,随林龄增加呈下降趋势,但变化幅度不大。树干高生长阶段以前,养分利用效率随林龄增加而下降,进入树干高生长阶段以后,养分利用效率随林龄增加而上升。【结论】林分用于物质生产的养分来自土壤、枝叶枯死前转移和植物活组织转移3个方面的养分。只要有枝叶枯死发生,枝叶枯死前就有养分迁移出来用于物质再生产。只有杉木林郁闭后,才发生某林龄段以前林分生产的,且在该林龄段仍存活的生物质中有部分养分被迁移出来再利用。林分养分利用的年变化受不同生长阶段对养分需求量的制约,同时杉木体内养分再分配及贮备机制、杉木生长规律和不同生育阶段对养分的利用效率等共同调控着养分利用过程。
  • 表 1  不同林龄杉木林的林分特征

    Table 1.  Stand characteristics of Chinese fir forest at different stand ages

    林龄
    Stand age
    (a)
    密度
    Density
    (tree/hm2)
    平均胸径
    DBH
    (cm)
    平均高
    Average height
    (m)
    现存生物量Existing biomass (t/hm2n = 24)合汁
    Total
    (t/hm2)
    枝Twig叶Needle干Stem皮Bark根Root
    72130 8.2 ± 0.51 6.51 ± 0.38 4.90 ± 0.26 7.78 ± 0.45 18.41 ± 0.97 3.79 ± 0.24 5.18 ± 0.33 40.06
    11208011.7 ± 0.70 9.83 ± 0.7012.60 ± 0.7911.99 ± 0.59 32.09 ± 1.96 7.70 ± 0.4411.27 ± 0.68 75.65
    16204613.4 ± 0.9112.74 ± 0.8118.99 ± 1.0415.76 ± 1.03 51.19 ± 3.1912.48 ± 0.7718.25 ± 1.06116.67
    20201616.3 ± 1.0814.62 ± 1.0420.05 ± 1.3316.60 ± 0.95 82.39 ± 5.5319.60 ± 1.2924.45 ± 1.52163.09
    25200517.5 ± 1.1416.33 ± 1.0919.99 ± 1.3412.75 ± 0.64111.48 ± 6.9528.88 ± 1.7232.64 ± 2.19205.74
    注(Note):平均值 ± 标准误 Mean ± SD; †—n = 588; DBH—The diameter at the breast height.
    下载: 导出CSV

    表 2  不同林龄段杉木林年均生产的生物量[t/(hm2·a),n = 24]

    Table 2.  Annual biomass of Chinese fir plantations in different stand ages

    林龄 Stand age (a)枝Twig叶Needle干Stem皮Stem bark根Root合计Total
    1~70.70 ± 0.051 dE1.56 ± 0.120 bD2.63 ± 0.139 aE0.54 ± 0.035 eE0.74 ± 0.046 cE 6.17 E
    8~112.10 ± 0.145 cA2.61 ± 0.215 bC3.42 ± 0.210 aD0.98 ± 0.060 eC1.52 ± 0.105 dC10.63 D
    12~161.98 ± 0.149 cD3.15 ± 0.240 bB3.82 ± 0.236 aC0.96 ± 0.062 eD1.40 ± 0.095 dD11.31 C
    17~202.02 ± 0.153 cB3.36 ± 0.231 bA7.80 ± 0.466 aA1.78 ± 0.103 dB1.55 ± 0.111 eB16.51 A
    21~251.99 ± 0.135 cC3.15 ± 0.234 bB5.82 ± 0.281 aB1.85 ± 0.110 dA1.64 ± 0.098 eA14.45 B
    注(Note):平均值 ± 标准误 Mean ± SD,同行数值后不同小写字母表示同一林龄段不同部位间生物量差异显著,同列不同大写字母表示同一部位不同林龄段间生物量差异显著。Different lowercase letters in a row mean significant difference among the different organs in the same stand ages (P < 0.05) and different capital letters in a column mean significant difference among the different stand ages in the same organs (P < 0.05).
    下载: 导出CSV

    表 3  不同林龄段杉木林年均枝叶枯死量[t/(hm2·a),n = 24]

    Table 3.  Average annual dead branches and leaves of Chinese fir plantations at different ages

    林龄Stand age (a) 枝Twig叶Needle合计Total
    1~700.444 ± 0.028 E 0.444 E
    8~110.175 ± 0.011 bD1.555 ± 0.112 aD1.730 D
    12~160.700 ± 0.051 bC2.398 ± 0.162 aC3.098 C
    17~201.750 ± 0.112 bB3.153 ± 0.187 aB4.903 B
    21~252.004 ± 0.136 bA3.320 ± 0.205 aA5.324 A
    注(Note):平均值 ± 标准误 Mean ± SD,同行数值后不同小写字母表示同一林龄段不同部位间差异显著,同列不同大写字母表示同一部位不同林龄段间差异显著。Different lowercase letters in a row mean significant difference between the different organs in the same stand ages (P < 0.05) and different capital letters in a column mean significant difference among the different stand ages in the same organs (P < 0.05).
    下载: 导出CSV

    表 4  不同林龄杉木林活组织内的年均养分转移量[kg/(hm2·a)]

    Table 4.  Annual average nutrient transfer in the living tissues of Chinese fir forests of different stand ages

    林龄Stand age (a) NPKCaMg合计Total
    8~11+3.11 aA+0.37 eD+1.36 cB+1.96 bB+1.03 dA+7.83 A
    12~16–1.41 bC–0.43 eB–1.27 cC–1.90 aC–0.82 dC–5.83 C
    17~20–1.66 bB–0.53 eA–1.40 cA–2.26 aA–0.90 dB–6.75 B
    21~25–1.30 bD–0.40 eC–1.06 cD–1.77 aD–0.65 dD–5.18 D
    注(Note):“–” 为前阶段生长的植物体内养分中输送到本阶段新生植物体中,“+” 为本阶段新吸收的养分流向前生育阶段现存生物体内。同行数值后不同小写字母表示同一林龄段不同养分间差异显著,同列不同大写字母表示同一养分不同林龄段间差异显著。“–” represents the nutrients flow in from the organs developed in previous stages,and “+” represents the flow out ones from the newly grown parts to the existing part of the organs grown in previous stages. Different lowercase letters in a row mean significant difference among different nutrients in the same stand ages (P < 0.05) and different capital letters in a column mean significant difference among the different stand ages for the same nutrient (P < 0.05).
    下载: 导出CSV

    表 5  不同林龄杉木活组织内的年均养分转移量[kg/(hm2·a)]

    Table 5.  Average annual nutrient transfer within tissues of Chinese fir in different ages

    林龄Stand age (a) 枝Twig叶Needle干Stem wood皮Stem bark根Root合计Total
    8~11+2.10 bA+2.92 aA+1.01 dD+1.21 cA+0.59 eD+7.83 A
    12~16–1.46 bC–1.57 aB–1.09 cC–0.64 eD–1.07 dB–5.83 C
    17~20–1.63 bB–1.18 dC–1.79 aA–0.87 eB–1.28 cA–6.75 B
    21~25–1.08 bD–0.86 dD–1.63 aB–0.71 eC–0.88 cC–5.18 D
    注(Note):“–” 为前阶段生长的植物体内养分中输送到本阶段新生植物体中,“+” 为本阶段新吸收的养分流向前生育阶段现存生物体内。同行数值后不同小写字母表示同一林龄段不同部位间差异显著,同列不同大写字母表示同一部位不同林龄段间差异显著。“–” represents the nutrients flow in from the organs developed in previous stages,and “+” represents the flow out ones from the newly grown parts to the existing part of the organs grown in previous stages. Values followed by different lowercase letters in a row mean significant difference among the different organs in the same stand ages (P < 0.05) and different capital letters in a column mean significant difference among the different stand ages in the same organs (P < 0.05).
    下载: 导出CSV

    表 6  不同林龄段杉木林枝叶枯死前的养分转移量[kg/(hm2·a)]

    Table 6.  Amount of nutrient transfer before the death of branches and leaves of Chinese fir forests with different ages

    林龄Stand age (a) 器官OrganPKNCaMg合计Total
    1~7枝Twig 000000
    叶Needle0.18 dR1.30 aT1.25 bS0.19 cN0.12 eM3.04 T
    合计Total0.18 dR1.30 aT1.25 bS0.19 cN0.12 eM3.04 T
    8~11枝Twig 0.04 cT0.42 aW0.24 bW0.03 dS0.03 dR0.77 W
    叶Needle0.62 dW4.62 bM5.24 aM0.86 cF0.38 eD11.72 M
    合计Total0.66 dG5.04 bG5.48 aG0.89 cF0.41 eC12.48 G
    12~16枝Twig 0.15 dS1.49 aS1.04 bT0.16 cR0.09 eN2.93 S
    叶Needle1.03 dF6.76 bF8.47 aF1.44 cE0.43 eC18.13 F
    合计Total1.18 dE8.25 bD9.51 aE1.60 cD0.52 eB21.06 D
    17~20枝Twig 0.39 dN3.47 aR2.87 bR0.45 cM0.18 eF7.36 R
    叶Needle1.52 dD8.51 bC11.98 aC2.11 cC0.41 eC24.53 C
    合计Total1.91 dA11.98 bA14.85 aA2.56 cB0.59 eA31.89 A
    21~25枝Twig 0.41 dN3.71 aN3.57 bN0.57 cG0.14 eG8.40 N
    叶Needle1.34 dC6.94 bE10.30 aD2.02 cC0.28 eE20.88 E
    合计Total1.75 dB10.65 bB13.87 aB2.59 cA0.42 eC29.28 B
    注(Note):同行数值后不同小写字母表示同一林龄段同一部位不同养分间差异显著,同列不同大写字母表示同一养分不同林龄段间差异显著 Values followed by different lowercase letters in a row mean significant difference among the different nutrients in the same organ at the same stand ages (P < 0.05) and different capital letters in a column mean significant difference among the different stand ages for the same nutrient (P < 0.05).
    下载: 导出CSV

    表 7  杉木林在不同林龄阶段年均吸收的土壤养分

    Table 7.  Annual absorbed soil nutrients by Chinese fir plantation in different stand ages

    林龄 (a)
    Stand age
    生产力[t/(hm2·a)]
    Productivity
    养分来源
    Source of nutrient
    养分量 Nutrient [kg/(hm2·a)]合计
    Total
    PNKCaMg
    1~76.17 存留养分Nutrients remained2.7029.2317.8724.42 6.5780.59
    本林龄段生长枝叶枯死回流养分B0.18 1.25 1.30 0.19 0.12 3.04
    本林龄段生长枝叶枯死归还养分C0.22 1.20 3.57 4.24 0.9710.20
    土壤养分Soil nutrients2.7429.1820.1428.47 7.4287.75
    8~1110.63存留养分Nutrients remained5.6057.3036.4550.2614.47164.08
    前林龄段生长枝叶枯死回流养分A0.66 5.48 5.04 0.89 0.4112.48
    本林龄段生长枝叶枯死归还养分C0 0 0 0 0 0
    “仍存活物质”中的养分D0.37 3.11 1.36 1.96 1.03 7.83
    土壤养分Soil nutrients5.3154.9332.7751.3315.09159.43
    12~1611.31存留养分Nutrients remained5.7961.0937.7953.1015.35173.12
    前林龄段生长枝叶枯死回流养分A1.18 9.51 8.25 1.60 0.5421.08
    本林龄段生长枝叶枯死归还养分C0 0 0 0 0 0
    活组织转移出的养分E0.43 1.41 1.27 1.90 0.82 5.83
    土壤养分Soil nutrients4.1850.1728.2749.6013.99146.21
    17~2016.51存留养分Nutrients remained6.7273.3044.6958.2416.41199.36
    前林龄段生长枝叶枯死回流养分A1.9114.8511.98 2.56 0.5931.89
    本林龄段生长枝叶枯死归还养分C0 0 0 0 0 0
    活组织转移出的养分E0.53 1.66 1.40 2.26 0.90 6.75
    土壤养分Soil nutrients4.2856.7931.3153.4214.92160.72
    21~2514.45存留养分Nutrients remained5.6160.7738.4648.6613.70167.20
    前林龄段生长枝叶枯死回流养分A1.7613.8710.65 2.59 0.4229.28
    本林龄段生长枝叶枯死归还养分C0 0 0 0 0 0
    活组织转移出的养分E0.40 1.30 1.06 1.77 0.65 5.18
    土壤养分Soil nutrients3.4545.6026.7544.3012.63132.73
    注(Note):A—Nutrients back flow from branches and leaves born in previous stand ages before died;B—Nutrients back flow from twigs and leaves born in this stand age before died;C—Nutrients returned to soil by the dead twigs and leaves growing in this stand age;D—Nutrients transported into previously born and still survived tissues in this stand age;E—Nutrients transferred out of living tissues.
    下载: 导出CSV

    表 8  单位重量杉木干物质生产所需养分及来源

    Table 8.  Nutrient requirements and sources for producing one of whole trunk material in Chinese fir

    林龄 (a)
    Stand age
    养分来源
    Source of nutrient
    养分量 Nutrient (kg/t,DW)合计
    Total
    PNKCaMg
    1~7从土壤中吸收Absorbed from soil0.444.733.264.621.2014.25
    从衰老枝叶回流Backflow from senescent twig & leaf0.030.210.230.030.020.52
    从现存器官转入Inflow from existing tissues0 0 0 0 0 0
    合计Total0.474.943.494.651.2214.77
    8~11ASNAPGM0.505.173.084.831.4215.00
    从衰老枝叶回流Backflow from senescent twig & leaf0.060.520.470.080.041.17
    从现存器官转入Inflow from existing tissues0 0 0 0 0 0
    合计Total0.565.693.554.911.4616.17
    12~16从土壤中吸收Absorbed from soil0.374.442.504.391.2312.93
    从衰老枝叶回流Backflow from senescent twig & leaf0.100.840.730.140.051.86
    从现存器官转入Inflow from existing tissues0.050.100.130.140.100.52
    合计Total0.525.383.364.671.3815.31
    17~20从土壤中吸收Absorbed from soil0.263.441.903.230.909.73
    从衰老枝叶回流Backflow from senescent twig & leaf0.120.890.720.160.041.93
    从现存器官转入Inflow from existing tissues0.050.110.100.070.080.41
    合计Total0.434.442.723.461.0212.07
    21~25从土壤中吸收Absorbed from soil0.243.161.853.060.879.18
    从衰老枝叶回流Backflow from senescent twig & leaf0.120.960.740.180.032.03
    从现存器官转入Inflow from existing tissues0.030.090.070.120.050.36
    合计Total0.394.212.663.360.9511.57
    注(Note):ASNAPGM—从土壤中吸收的养分 (包括补充到 8 年以前生长的且在此林龄段内仍存活的物质中的部分) Nutrients absorbed from soil including the portion supplemented into the materials born before 8 years and still alive in this stand age.
    下载: 导出CSV
  • [1] Vitousek P M. Litter fall nutrient cycling and nutrient limitation in tropical forest[J]. Ecology, 1984, 65(1): 295–298.
    [2] Kost J A, Boemer R E J. Foliar nutrient dynamics and nutrient use efficiency in Cornus florida[J]. Oecologia, 1985, (66): 602–606.
    [3] Pastor J, Birdgham S D. Nutrient efficiency along nutrient availability gradients[J]. Oecologia, 1999, (118): 50–58.
    [4] Shaver G R, Melillo J M. Nutrient budgets of marsh plants: efficiency concepts and relation to availability[J]. Ecology, 1984, 65: 1491–1510. doi:  10.2307/1939129
    [5] Chapin III F S, Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves[J]. Ecology, 1991, 72: 709–715. doi:  10.2307/2937210
    [6] Vitousek P. Nutrient cycling and nutrient use efficiency[J]. The American Naturalist, 1982, 119(4): 553–572. doi:  10.1086/283931
    [7] 邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述[J]. 应用生态学报, 2000, 11(5): 785–790. Xing X R, Han X G, Chen L Z. A review on research of plant nutrient use efficiency[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 785–790. doi:  10.3321/j.issn:1001-9332.2000.05.033
    [8] Bridgham S D, Pastor J, McClaugherty C A, et al. Nutrient-use efficiency: a litter fall index, a model, and a test along a nutrient availability gradient in North Carolina peatlands[J]. America Naturalist, 1995, 145: 1–21. doi:  10.1086/285725
    [9] Alongi D M, Clough B F, Robertson A I. Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina[J]. Aquatic Botany, 2005, 82(2): 121–131. doi:  10.1016/j.aquabot.2005.04.005
    [10] 潘维俦, 田大伦, 李利村, 等. 杉木人工林养分循环的研究— (一)不同生育阶段杉木林产量结构和养分动态[J]. 中南林学院学报, 1981, (1): 1–21. Pan W C, Tia D L, Li L C, et al. Studies on the nutrient cycling in the Chinese fir plantations (I) Yield structure and nutrient dynamics of Chinese fir plantations at different growth stages[J]. Journal of Central South Forestry University, 1981, (1): 1–21.
    [11] 冯宗炜, 陈楚莹, 王开平, 等. 亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究[J]. 植物生态学报, 1985, 9(4): 245–263. Feng Z W, Chen C Y, Wang K P, et al. Accumulation, distribution and cycling of nutrient elements in a subtropical Chinese fir stand[J]. Acta Phytoecologicaet Geobotanica Sinica, 1985, 9(4): 245–263.
    [12] 沈善敏, 宇万太, 张璐, 等. 杨树主要营养元素内循环及外循环研究. II. 落叶前后养分在植株体内外的迁移和循环[J]. 应用生态学报, 1993, 4(1): 27–31. Shen S M, Yu W T, Zhang L, et al. Internal and external nutrient cycling of poplar tree. II. Transferring and cycling of nutrients in and out of the tree before and after leaf fallen[J]. Chinese Journal of Applied Ecology, 1993, 4(1): 27–31.
    [13] 肖兴翠, 李志辉, 唐作钧, 等. 林分密度对湿地松人工林养分循环速率和利用效率的影响[J]. 生态学杂志, 2013, 32(11): 2871–2880. Xiao X C, Li Z H, Tang Z J, et al. Effects of stand density on nutrient cycling rate and use efficiency of Pinus elliottii plantation[J]. Chinese Journal of Ecology, 2013, 32(11): 2871–2880.
    [14] 何斌, 秦武明, 余浩光, 等. 不同年龄阶段马占相思(Acacia mangium)人工林营养元素的生物循环[J]. 生态学报, 2007, 27(12): 5158–5167. He B, Qin W M, Wu H G, et al. Biological cycling of nutrients in different ages classes of Acacia mangium plantation[J]. Acta Ecologica Sinica, 2007, 27(12): 5158–5167. doi:  10.3321/j.issn:1000-0933.2007.12.025
    [15] 林德喜, 刘开汉, 罗水发. 尾叶桉营养元素动态和循环分析[J]. 应用与环境生物学报, 2002, 8(2): 148–153. Lin D X, Liu K H, Luo S F. Dynamics and cycling analysis of nutrient elements in Eucalyptus urophylla[J]. Journal of Applied and Environmental Biology, 2002, 8(2): 148–153. doi:  10.3321/j.issn:1006-687X.2002.02.007
    [16] 项文化, 田大伦. 不同年龄阶段马尾松人工林养分循环的研究[J]. 植物生态学报, 2002, 26(1): 89–95. Xiang W H, Tian D L. Nutrient cycling Pinus massoniana stands of different age classes[J]. Acta Phytoecologica Sinica, 2002, 26(1): 89–95. doi:  10.3321/j.issn:1005-264X.2002.01.015
    [17] 赵春梅, 曹建华, 蒋菊生, 等. 橡胶人工林生态系统养分积累、分配与生物循环[J]. 中国农学通报, 2008, 24(10): 467–470. Zhan C M, Cao J H, Jiang J S, et al. Nutrient accumulation, distribution and biological cycling in rubber plantation ecosystem[J]. Chinese Agricultural Science Bulletin, 2008, 24(10): 467–470.
    [18] 曹建华, 陶忠良, 蒋菊生, 等. 不同年龄橡胶树PR107养分利用效率研究[J]. 热带作物学报, 2010, 31(12): 2091–2097. Cao J H, Tao Z L, Jiang J S, et al. Nutrient Use Efficiency of Clone PR107 at various age[J]. Chinese Journal of Tropical Crops, 2010, 31(12): 2091–2097. doi:  10.3969/j.issn.1000-2561.2010.12.002
    [19] Aerts R. Nutrient use efficiency in evergreen and deciduous species from heath lands[J]. Oecologia, 1990, 84: 391–397. doi:  10.1007/BF00329765
    [20] Killingbeck K T. The terminological jungle revisited: making a case for use of the term resorption[J]. Oikos, 1986, 46: 263–264. doi:  10.2307/3565477
    [21] Miller H G. Dynamics of nutrient cycling in plantation ecosystems [M]. London: Nutrition of Plantation Forests Academic Press, 1984.
    [22] 周丽丽. 不同发育阶段杉木人工林养分内循环与周转利用效率的研究[D]. 福州: 福建农林大学博士学位论文, 2014.

    Zhou L L. Study on nutrient retranslocation and nutrient use efficiency in different developmental–staged Chinese fir Plantations [D]. Fuzhou: PhD Dissertation of Fujian Agriculture and Forestry University, 2014
    [23] 林业部科技司. 森林生态系统研究方法[M]. 北京: 中国科学技术出社, 1994.

    Department of Science and Technology, Ministry of Forestry. Forest ecosystem research method [M]. Beijing: Chinese Science and Technology Press, 1994.
    [24] 陈日升, 康文星, 周玉泉, 等. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173–184. Chen R S, Kang W X, Zhou Y Q, et al. Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest[J]. Chinese Journal of Plant Ecology, 2018, 42(2): 173–184.
    [25] 周玉泉, 康文星, 陈日升, 等. 不同栽植代数杉木林养分吸收、积累和利用效率的比较[J]. 生态学报, 2018, 38(11): 3868–3878. Zhou Y Q, Kang W X, Chen R S, et al. Nutrient uptake, accumulation and utilization efficiency comparisons in plantations containing different generations of Chinese fir[J]. Acta Ecologica Sinica, 2018, 38(11): 3868–3878.
    [26] 马祥庆, 刘爱琴, 马壮, 等. 不同代数杉木林养分积累和分布的比较研究[J]. 应用生态学报, 2000, 11(4): 501–506. Ma X Q, Liu A Q, Ma Z, et al. A comparative study on nutrient accumulation and distribution of different generations of Chinese fir plantations[J]. Chinese Journal of Applied Ecology, 2000, 11(4): 501–506. doi:  10.3321/j.issn:1001-9332.2000.04.006
    [27] 田大伦, 沈燕, 康文星, 等. 连栽第1和第2代杉木人工林养分循环的比较[J]. 生态学报, 2011, 31(17): 5025–5032. Tian D L, Shen Y, Kang W X, et al. Characteristics of nutrient cycling in first and second rotations of Chinese fir plantations[J]. Acta Ecologica Sinica, 2011, 31(17): 5025–5032.
    [28] Chen Han Y H, Brassard Brian W. Intrinsic and extrinsic controls of fine root life span[J]. Critical Reviews in Plant Sciences, 2013, 32(3): 151–161. doi:  10.1080/07352689.2012.734742
    [29] Sardans J, Penuelas J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood[J]. Global Ecology and Biogeography, 2012, 22(4): 494–507.
    [30] Stephenson N L, Das A J, Condit R, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507(7490): 90–93. doi:  10.1038/nature12914
    [31] Costa T L, Sampaioev S B, Sales M F, et al. Root and shoot biomasses in the tropical dry forest of semiarid Northeast Brazil[J]. Plant Soil, 2014, 378(1): 113–123.
    [32] Yuan Z Y, Chen H Y H. Fine root dynamics stand development in the boreal forest[J]. Functional Ecology, 2012, 26(4): 991–998. doi:  10.1111/fec.2012.26.issue-4
    [33] Yuan Z Y, Chen H Y H. Decoupling nitrogen and phosphorus in terrestrial plants associated with global changes[J]. Nature Climate Change, 2015, 5(5): 465–469. doi:  10.1038/nclimate2549
    [34] Li Y, Chen J, Cui J, et al. Nutrient resorption in Caragana microphylla along a chronosequence of plantations: implications for desertified land restoration in North China[J]. Ecological Engineering, 2013, 53: 299–305. doi:  10.1016/j.ecoleng.2012.12.061
    [35] Mayor J R, Wright S J, Turner B L. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest[J]. Journal Ecology, 2013, 102(1): 36–44.
    [36] Lim M T, Cousens J F. The internal transfer of nutrients in Scot pine stand 2. The patterns of transfer and the effects of nitrogen availability[J]. Forestry, 1986, 59(1): 17–21. doi:  10.1093/forestry/59.1.17
    [37] 邱岭军, 胡欢甜, 林宝平, 等. 不同林龄杉木养分重吸收率及其C∶N∶P化学计量特征[J]. 西北林学院学报, 2017, 32(4): 22–27. Qiu L J, Hu H T, Lin B P, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry of Cunninghamia Lanceolata plantations with different ages[J]. Journal of Northwest Forestry University, 2017, 32(4): 22–27. doi:  10.3969/j.issn.1001-7461.2017.04.04
    [38] Moghaddas E E Y, Stephens S L. Thinning, burning, and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed-conifer forests[J]. Forest Ecology and Management, 2007, 250: 156–166. doi:  10.1016/j.foreco.2007.05.011
    [39] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 37: 1–67.
    [40] Del Arco J M, Esucdero A, Garrido M V. Effects of site characteristics on nitrogen retrains location from senescing leaves[J]. Ecology, 1991, 58: 701–708.
    [41] Eckstein R L, Karlsson P S. Above-ground growth and nitrogen use by plant in a subarctic environment: effects of habitat life-form and species[J]. Oikos, 1997: 311–324.
    [42] Hosseini S M, Rouhi-Moghaddam E, Ebrahimi E. Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran[J]. Forest Ecology and Management, 2008, 240: 126–148.
    [43] Kobe R K, Lepcryk C A, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J]. Ecology, 2005, 86: 2780–2792. doi:  10.1890/04-1830
    [44] Huang J J, Wang X H. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China[J]. Forest Ecology and Management, 2007, 239: 150–158. doi:  10.1016/j.foreco.2006.11.019
    [45] Marschner H, Kirkby E A, Engels C. Importance of cycling and recycling of mineral nutrients within plants for growth and development[J]. Botanica Acta, 1997, 110: 265–273.
  • [1] 王鹏祝丽香陈香香冯惠孙文帅秦宁 . 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响. 植物营养与肥料学报, 2018, 24(3): 668-675. doi: 10.11674/zwyf.17325
    [2] 李丽王雪艳田彦芳王耀生李贵桐林启美赵小蓉 . 生物质炭对土壤养分及设施蔬菜产量与品质的影响. 植物营养与肥料学报, 2018, 24(5): 1237-1244. doi: 10.11674/zwyf.17483
    [3] 王昕李海港程凌云王宝兰申建波 . 磷与水分互作的根土界面效应及其高效利用机制研究进展. 植物营养与肥料学报, 2017, 23(4): 1054-1064. doi: 10.11674/zwyf.16454
    [4] 郭腾飞梁国庆周卫刘东海王秀斌孙静文李双来胡诚 . 施肥对稻田温室气体排放及土壤养分的影响. 植物营养与肥料学报, 2016, 22(2): 337-345. doi: 10.11674/zwyf.14557
    [5] 于钦民徐福利王渭玲 . 氮、磷肥对杉木幼苗生物量及养分分配的影响. 植物营养与肥料学报, 2014, 20(1): 118-128. doi: 10.11674/zwyf.2014.0113
    [6] 李孟华王朝辉王建伟毛晖戴健李强邹春琴 . 低锌旱地施锌方式对小麦产量和锌利用的影响. 植物营养与肥料学报, 2013, 19(6): 1346-1355. doi: 10.11674/zwyf.2013.0608
    [7] 张鹏贾志宽路文涛张晓芳孙红霞杨保平 . 不同有机肥施用量对宁南旱区土壤养分、酶活性及作物生产力的影响. 植物营养与肥料学报, 2011, 17(5): 1122-1130. doi: 10.11674/zwyf.2011.1105
    [8] 刘飞张民诸葛玉平*李倩刘东雪王建 . 马铃薯玉米套作下控释肥对土壤养分垂直分布及养分利用率的影响. 植物营养与肥料学报, 2011, 17(6): 1351-1358. doi: 10.11674/zwyf.2011.1019
    [9] 邓阳春黄建国 . 长期连作对烤烟产量和土壤养分的影响. 植物营养与肥料学报, 2010, 16(4): 840-845. doi: 10.11674/zwyf.2010.0409
    [10] . 黄土塬面果园土壤养分特征及演变. 植物营养与肥料学报, 2010, 16(5): 1170-1175. doi: 10.11674/zwyf.2010.0518
    [11] 向达兵郭凯杨文钰雷婷张静罗庆明 . 磷、钾营养对套作大豆钾素积累及利用效率的影响. 植物营养与肥料学报, 2010, 16(3): 668-674. doi: 10.11674/zwyf.2010.0322
    [12] 安慧韦兰英刘勇上官周平 . 黄土丘陵区油松人工林和白桦天然林细根垂直分布及其与土壤养分的关系. 植物营养与肥料学报, 2007, 13(4): 611-619. doi: 10.11674/zwyf.2007.0412
    [13] 吕卫光沈其荣余廷园诸海涛 . 酚酸化合物对土壤酶活性和土壤养分的影响. 植物营养与肥料学报, 2006, 12(6): 845-849. doi: 10.11674/zwyf.2006.0615
    [14] 许红卫高克异王珂周斌 . 稻田土壤养分空间变异与合理取样数研究. 植物营养与肥料学报, 2006, 12(1): 37-40. doi: 10.11674/zwyf.2006.0107
    [15] 郭晓敏牛德奎郭熙陈防张过师张斌胡冬南 . 奉新毛竹林土壤养分空间变异性研究. 植物营养与肥料学报, 2006, 12(3): 420-425. doi: 10.11674/zwyf.2006.0322
    [16] 熊汉锋王运华 . 梁子湖湿地土壤养分的空间异质性. 植物营养与肥料学报, 2005, 11(5): 584-589. doi: 10.11674/zwyf.2005.0503
    [17] 焦峰温仲明焦菊英李锐 . 黄土丘陵区退耕地土壤养分变异特征. 植物营养与肥料学报, 2005, 11(6): 724-730. doi: 10.11674/zwyf.2005.0603
    [18] 刘爱琴范少辉林开敏马祥庆盛炜彤 . 不同栽植代数杉木林养分循环的比较研究. 植物营养与肥料学报, 2005, 11(2): 273-278. doi: 10.11674/zwyf.2005.0224
    [19] 许明祥刘国彬 . 黄土丘陵区刺槐人工林土壤养分特征及演变. 植物营养与肥料学报, 2004, 10(1): 40-46. doi: 10.11674/zwyf.2004.0108
    [20] 张军董晓霞张漱茗闫华王月明江丽华刘兆辉 . 土壤速效养分的吸附特征与生物有效性. 植物营养与肥料学报, 1996, 2(2): 116-124. doi: 10.11674/zwyf.1996.0204
  • 加载中