-
化学磷肥的大量使用和畜禽粪便的不合理堆放导致磷在土壤中大量积累[1],大量的磷在自然降雨、农田灌溉排水等作用下向水体迁移,不仅影响农业可持续发展,也威胁到生态环境的安全[2-4]。磷富集植物对磷具有较好的吸收、积累能力,植物修复技术利用磷富集植物自身的生长和磷积累能力将土壤中的磷转移至植物中,是一种较为有效的治理措施[5]。目前,筛选出的磷富集植物多花黑麦草 (Lolium multiflorum) 体内磷含量可达1%,具有较强的磷积累特性[6-7];向日葵 (Helianthus annuus)[8]、黄瓜 (Cucumis sativus)[9]、西葫芦 (Cucurbita pepo)[9]和矿山生态型水蓼 (Polygonum hydropiper)[10]等磷富集植物也可以较好地吸收积累磷。但大多数富磷植物对高磷环境耐受能力差,磷含量不高、生物量小,导致植物在高磷环境下修复效果不佳。
目前,关于提高植物磷吸收积累能力的研究较多,例如在植物根系接种丛枝菌根真菌能帮助植物有效吸收更大空间的磷,获取更多有效磷[11];培育转基因品种,可以从分子机制上调控植物磷吸收转运途径[12]。间作种植豆科植物,大豆自身的根瘤固氮作用提高了氮的供应量,也促进了植物对磷的吸收积累[13]。研究发现,适宜施氮可促进枫香种源 (Liquidambar formosana) 幼苗对磷的吸收,增加植株的磷吸收量[14]。郭瑀等[15]指出,适宜施氮还可增加磷富集植物矿山生态型水蓼的生物量和磷含量,促进植物对磷的积累。适宜施氮也可有效提高牧草百喜草 (Paspalum notatum) 和扁穗牛鞭草 (Hemarthria altissima) 的生物量和磷吸收量[16]。
粗齿冷水花 (Pilea sinofasciata) 是前期研究筛选出的磷富集植物,具有环境适应力强、地上部生物量大、磷含量高等优点[17-19]。矿山生态型粗齿冷水花地上部磷积累量在施磷400 mg/kg时最大可达142 mg/株,是不施磷处理下的16.8倍[19],对磷表现出很强的富集能力。施氮可进一步增强植株的磷富集能力,余红梅等[18]研究表明,140 mg/kg为粗齿冷水花的适宜施氮浓度,该条件下植株地上部磷积累量可达224 mg/株。然而,粗齿冷水花在适宜施氮下的高磷耐受能力还有待深入研究。因此,本研究在此基础上以粗齿冷水花为研究对象,探讨了施氮条件下,两种生态型粗齿冷水花在不同磷水平下的磷耐受能力和富磷能力,为其合理利用提供依据。
-
供试植物:粗齿冷水花 (Pilea sinofasciata),矿山生态型 (mining ecotype,ME) 采自四川省什邡市磷矿区 (104°50′E,30°25′N),非矿山生态型 (non-mining ecotype,NME) 采自雅安市雨城区 (102°59′E,29°58′N)。
供试土壤为灰潮土,采自四川省都江堰市蒲阳镇双柏村,其基本理化性质为:pH 6.76、有机质27.3 g/kg、全氮1.31 g/kg、碱解氮34.0 mg/kg、速效钾47.8 mg/kg、有效磷16.1 mg/kg。
供试肥料:尿素 (N 46.7%)、磷酸二氢钾 (P2O5 52.1%,K2O 34.6%)、硫酸钾 (K2O 54.0%),均为分析纯。
-
试验设置0 (CK)、400、600、800 mg/kg共4个磷 (P) 处理,每处理重复4次,种植两种生态型植株,共32盆,完全随机排列。采用土培盆栽试验,土壤风干后,粉碎过2 mm筛混匀,每盆 (8 L) 装土8 kg。除磷外,每盆配施纯氮140 mg/kg和相应量的K2SO4以平衡土壤中因施入KH2PO4而带入的钾。磷、钾配成溶液一次性施入土壤,充分混匀,陈化8周后将尿素配成溶液加入土壤。
粗齿冷水花幼苗于2017年4月下旬采集。幼苗的扦插管理采用刘霜等[19]的方法。待幼苗于蛭石中生根培养30 d后,选择长势一致的幼苗移栽至塑料盆中,每盆种2株。每周浇水3次,按田间持水量的70%确定灌水量,及时除草、防治病虫害,并记录植株生长状况。试验采用自然光照,于2017年6—10月在四川农业大学教学科研院区有防雨设施的网室中进行。
于移栽后9周采样。植物样品先用自来水冲洗再用蒸馏水润洗,洗净后用吸水纸擦干,将其分为地上部和地下部,装袋后于105℃杀青30 min,75℃烘干至恒重,粉碎后过1 mm筛用于磷含量测定。
-
植株地上部生物量 (干重) 采用烘干称重法测定;
植株磷含量采用H2SO4–H2O2消煮—钒钼黄比色法测定[20]。
-
富集系数 = 植株地上部磷含量/土壤速效磷含量[21];
转移率 = 地上部磷积累量/整株磷积累量 × 100%[21];
磷提取率 = 地上部磷积累量/土壤速效磷总量 × 100%[22];
磷移除量 = 地上部磷积累量/土壤质量[22]。
采用DPS (11.0) 进行统计分析,选择LSD法进行多重比较,图表制作采用Excel (2016) 和Origin 8.1。
-
两种生态型粗齿冷水花地上部生物量均明显高于地下部 (图1)。随施磷量的增加,两种生态型地上部、地下部生物量在施磷600 mg/kg时达最大,其中矿山生态型地上部、地下部生物量最大分别可达28.6 g/株和7.78 g/株,是其对照处理下的2.37和3.69倍;非矿山生态型地上部、地下部生物量最大分别为31.9 g/株和6.33 g/株,是其对照处理下的4.63和7.36倍。可见在适宜施氮条件下,施磷600 mg/kg促进了两种生态型粗齿冷水花的生长,并未对其生长发育造成毒害。此外,矿山生态型粗齿冷水花生物量在不施磷和施磷400 mg/kg时显著高于非矿山生态型,地上部分别为非矿山生态型的1.75和1.22倍,地下部分别为非矿山生态型的2.46和1.51倍。而在施磷600 mg/kg和800 mg/kg时,两生态型间则无显著差异。
-
两种生态型粗齿冷水花地上部、地下部磷含量在施磷处理下均显著高于不施磷处理 (表1)。随施磷量增加,两种生态型地上部磷含量均表现为先升高后降低,在施磷800 mg/kg时明显下降。而两种生态型地下部磷含量变化趋势相反,随施磷量增加,矿山生态型地下部磷含量逐渐降低,在800 mg/kg时最低;非矿山生态型地下部磷含量逐渐升高,在800 mg/kg时最大。此外,相同磷处理下,矿山生态型地上部磷含量均高于非矿山生态型,为非矿山生态型的1.11~1.27倍,但矿山生态型地下部磷含量在施磷600、800 mg/kg时均低于非矿山生态型,仅为非矿山生态型的63.5%和66.6%。
表 1 不同磷处理水平下两种生态型粗齿冷水花磷含量 [g/kg,DW]
Table 1. P concentration in two ecotypes of P. sinmfasciata under different P addition levels
施磷量 (mg/kg)
P level地上部Shoot 地下部Root 矿山生态型
Mining ecotype非矿山生态型
Non-mining ecotype矿山生态型
Mining ecotype非矿山生态型
Non-mining ecotype0 5.16 ± 0.24 c* 4.06 ± 0.22 c 2.96 ± 0.20 d 3.32 ± 0.23 d 400 6.72 ± 0.31 a* 6.03 ± 0.06 a 5.89 ± 0.14 a 6.39 ± 0.06 c 600 6.68 ± 0.14 a* 5.85 ± 0.25 a 5.56 ± 0.17 ab 7.18 ± 0.67 b* 800 5.77 ± 0.03 b* 5.19 ± 0.34 b 5.22 ± 0.25 b 7.84 ± 0.22 a* 注(Note):同列数据后不同小写字母表示不同施磷量间差异显著 Different letters in the same column mean significantly different among P treatments (P < 0.05);*表示相同磷处理不同生态型间差异显著Significantly different between ecotypes at the same P treatment (P < 0.05). -
各施磷处理下,两种生态型地上部磷积累量明显高于地下部 (图2),表明植株将大部分的磷积累在地上部分。随着施磷量增加,两种生态型地上部、地下部磷积累量在施磷600 mg/kg时达最大,矿山与非矿山生态型地上部磷积累量最高分别可达195 mg/株和182 mg/株,是其对照处理下的3.13和6.55倍,地下部磷积累量最高分别可达38.1 mg/株和43.0 mg/株,是其对照处理下的6.22和15.3倍。此外,两种生态型地上部、地下部磷积累量差异随施磷量增加逐渐减小,在不施磷和施磷400 mg/kg时矿山生态型地上部、地下部磷积累量显著高于非矿山生态型,地上部分别为非矿山生态型的2.24和1.36倍,地下部分别为非矿山生态型的2.18和1.47倍;但在施磷600、800 mg/kg时两种生态型地上部、地下部磷积累量均无明显差异。
-
富集系数反映了植物对磷的吸收能力。由表2可知,两种生态型磷富集系数随施磷量增加而降低,矿山与非矿山生态型降低幅度分别为83.7%和81.4%。相同磷处理下,矿山生态型富集系数均高于非矿山生态型,为非矿山生态型的1.11~1.14倍,表明矿山生态型粗齿冷水花对磷的吸收能力较强。转移率可反映植物向地上部转移磷的能力。两种生态型磷转移率在施磷处理下低于不施磷处理,均高于80%,但在施磷处理间和生态型间差异不大。
表 2 不同磷处理水平下两种生态型粗齿冷水花磷富集系数和转移率
Table 2. Bioaccumulation coefficient and translocation rate of P in two ecotypes of P. sinmfasciata under different P addition levels
施磷量
P level
(mg/kg)富集系数
Bioaccumulation
coefficient转移率
Translocation rate
(%)ME NME ME NME 0 297.8 234.4 91.1 90.8 400 120.5 108.1 82.2 83.3 600 96.8 84.8 83.2 80.9 800 48.6 43.7 83.2 84.8 注(Note):ME—矿山生态型 Mining ecotype; NME—非矿山生态型 Non-mining ecotype;富集系数 = 植株地上部磷含量/土壤速效磷含量; 转移率 = 地上部磷积累量/整株磷积累量 × 100%。Bioaccumulation coefficient = shoot P concentration/soil available P concentration;translocation rate = shoot P accumulation/plant P accumulation × 100%. -
由表3可知,随施磷量增加,矿山生态型地上部磷提取率呈下降趋势,非矿山生态型地上部磷提取率则表现为先增加后减少,但两种生态型地上部磷提取率在施磷800 mg/kg时均大幅降低,表明在800 mg/kg时两种生态型的磷提取能力均受到明显抑制。对比两种生态型,在不施磷和施磷400 mg/kg时矿山生态型磷提取率显著大于非矿山生态型,分别为非矿山生态型的2.24和1.36倍;但随着施磷量增加,两种生态型间磷提取率差异逐渐减小,在600、800 mg/kg时无明显差异。
表 3 不同磷处理水平下两种生态型粗齿冷水花地上部磷的提取率和移除量
Table 3. P extraction rate and removing amount of P from soil by two ecotypes of P. sinmfasciata under different P addition levels
施磷量 (mg/kg)
P level磷提取率 P extraction (%) 磷移除量 P removed from the soil (mg/kg) ME NME ME NME 0 45.1 ± 2.7 a* 20.1 ± 1.6 b 7.81 ± 2.1 b* 3.48 ± 0.3 d 400 41.4 ± 0.8 a* 30.4 ± 1.6 a 23.1 ± 0.5 a* 16.9 ± 0.9 b 600 35.4 ± 1.5 b 33.1 ± 1.7 a 24.4 ± 1.1 a 22.8 ± 1.2 a 800 8.3 ± 0.6 c 8.2 ± 0.6 c 9.9 ± 0.7 b 9.8 ± 0.7 c 注(Note):ME—矿山生态型 Mining-ecotype;NME—非矿山生态型 Non-mining ecotype;磷提取率 = 地上部磷积累量/土壤速效磷总量 × 100%;磷移除量 = 地上部磷积累量/土壤质量。P extraction = shoot P accumulation/total soil available P amount × 100%;P removed from the soil = shoot P accumulation/soil quantity. 随施磷量增加,两种生态型地上部磷移除量均在600 mg/kg时达最大 (表3)。各施磷处理下,矿山与非矿山生态型地上部磷移除量分别是其对照处理的2.96、3.13、1.26倍和4.86、6.55、2.81倍。不施磷和施磷400 mg/kg时,矿山生态型地上部磷移除量显著大于非矿山生态型,分别为非矿山生态型的2.24和1.36倍,表明此时矿山生态型粗齿冷水花磷移除能力较强;但在施磷600、800 mg/kg时两种生态型植株磷移除量无明显差异。
-
目前,对磷富集植物的筛选和磷积累特性等方面的研究较多[23-24],但对植物在高磷环境中磷耐受能力的研究相对较少。植物的生长情况可反映其在胁迫环境下的耐受能力[25],前期研究发现,两种生态型粗齿冷水花在施磷400 mg/kg时长势最佳,矿山与非矿山生态型地上部生物量分别为11.1 g/株和7.23 g/株 [19]。而在本研究中,适宜施氮量下的矿山与非矿山生态型粗齿冷水花在施磷400 mg/kg时生物量分别可达27.5 g/株和22.5 g/株,适宜施氮显著增加了两种生态型粗齿冷水花的生物量。高磷条件下,植物体内活性氧过度积累,植物净光合作用下降,适宜施氮可提高叶片光合作用,促进光合产物积累,进而增加植株生物量[25-26]。郭瑀等[15]也发现,施氮能促进水蓼地上部生物量的增加,在施氮量为100 mg/kg时植株生物量达最大;施氮亦可增加种植在高磷土壤上的富磷植物黑麦草和狗牙草的生物量[27]。不施氮条件下,粗齿冷水花在施磷600 mg/kg时生长明显受抑制[19],但本研究发现在适宜施氮条件下,植株在600 mg/kg时生长状态良好,并未表现出生长受抑症状,适宜施氮可提高粗齿冷水花对高磷环境的耐受能力,使其在磷浓度更高的环境下正常生长。但在800 mg/kg时,两种生态型粗齿冷水花生物量均显著降低。类似的现象在黑花珊瑚豆 (Kennedia nigricans) 和紫花苜蓿 (Medicago sativa) 的研究中也有发现,随施磷量增加,两种植物生物量先增大后减小[28]。Suriyagoda等[28]发现,供磷水平过高,植物总根长和根际羧化物总量也出现下降趋势,高磷下植株根系的变化影响其对养分的吸收,进而影响其正常生长。Ye等 [29]认为,高磷条件下非矿山生态型水蓼生物量降低,主要是由于植物叶片表皮细胞结构被破坏,栅栏组织和海绵组织变形、排布散乱影响了叶片的光合作用,进而影响光合产物积累所致。磷富集能力较好的矿山生态型水蓼在高浓度猪粪处理下生物量为16.4 g/株[30];种植在高磷土壤上的向日葵 (Helianthus annuus) 和南瓜 (Cucurbita moschata) 地上部最大干重分别为16.4 g/株和14.9 g/株[8];在高磷环境下正常生长且磷含量较高的澳洲狐尾 (Ptilotuspolystachyus) 地上部干重仅8 g/株[31]。本研究中,粗齿冷水花在施磷600 mg/kg时地上部生物量可达31.9 g/株,远高于其它已报道的磷富集植物,表现出较强的高磷适应能力和磷积累潜力。
土壤磷含量影响植物生长的同时,也决定植物对磷的吸收积累[32]。本研究中,施磷处理下土壤有效磷含量丰富 (> 50 mg/kg),粗齿冷水花地上部磷含量可达6.72 g/kg,低于Duo grass和黑麦草等磷富集植物[6-7],但高于芦苇 (Phragmites australis)、蒲草 (Typha angustifolia) 和黑三棱 (Sparganium stoloniferum) 等湿地修复植物以及大部分普通植物[33]。此外,相同磷处理下,矿山生态型粗齿冷水花地上部磷含量显著高于非矿山生态型,而地下部磷含量却低于非矿山生态型,表明矿山生态型具有更强的向地上部转移磷的能力。植物从土壤中获取磷,需要通过“磷转运蛋白”完成吸收和转运过程,更高的磷酸盐转运蛋白合成量可促进磷从植物根系向地上部运输,增加地上部磷含量[32,34]。矿山生态型地上部磷含量更高而地下部磷含量更低,可能是由于其体内更高的磷酸盐转运蛋白所致。将更多的磷转移至地上部有利于提高植株地上部磷积累量,植物磷富集的高效率主要通过地上部积累磷的总量反应[35]。有研究发现磷富集植物矿山生态型水蓼地上部磷积累量仅为65.9 mg/株[30];污水修复植物凤眼莲 (Eichhornia crassipes)、粉绿狐尾藻 (Myriophyllum aquaticum) 和水浮莲 (Pistia stratiotes) 体内磷积累量最高也仅达80.1 mg/株、38.7 mg/株和31.7 mg/株[35],均低于本研究中粗齿冷水花地上部磷积累量,说明粗齿冷水花对磷的吸收积累能力较强。相关研究表明,增加施氮量能进一步提高植物对磷的吸收积累[16]。Dodd等研究发现,氮肥的施用提高了牧草磷积累量,降低了土壤中可溶性磷的含量[36]。本研究中,矿山与非矿山生态型粗齿冷水花在适宜施氮条件下,地上部磷积累量分别可达185 mg/株和136 mg/株,是相同磷处理和同一采样时期下植株地上部磷积累量的3.99和6.92倍[19],适宜施氮可提高两种生态型粗齿冷水花的磷积累能力。与前期研究相比,适宜施氮增加了粗齿冷水花地上部、地下部生物量,但对植株磷含量影响不大;且随着磷处理浓度增加,两种生态型植株磷积累量与其生物量变化一致,表明适宜施氮主要通过促进粗齿冷水花生长,增加其生物量,进而提高其磷积累量。
磷提取率和移除量是评价植物提取环境中过量磷的重要指标,可反映植物的磷富集潜力。本研究中,粗齿冷水花磷提取率可达8.24%~45.1%;相比紫花苜蓿 (Medicago sativa)[37]、水蓼[26]等富磷植物3%和6%的整株磷提取率,粗齿冷水花具有明显的富磷优势。本研究中,矿山生态型粗齿冷水花磷提取率随施磷量增加明显降低,与磷富集植物矿山生态型水蓼的变化趋势一致[31],其原因主要是土壤有效磷含量急剧增加。此外,本研究中,在适宜施氮条件下,矿山与非矿山生态型地上部磷移除量分别为23.1 mg/kg和16.9 mg/kg,显著高于不施氮、相同磷浓度下的矿山生态型 (6.16 mg/kg) 与非矿山生态型 (2.61 mg/kg) 磷移除量[19]。因此,适宜施氮还可促进粗齿冷水花对土壤中过量磷的移除,增强其富磷潜力。
-
适宜施氮量促进了两种生态型粗齿冷水花的生长和对磷的吸收积累,提高了植株在高磷条件下的耐受能力和富磷能力。适宜施氮条件下粗齿冷水花在施磷600 mg/kg时长势和磷积累能力均最佳,其地上部磷积累量最高为195 mg/株。与非矿山生态型相比,矿山生态型在不施磷和施磷400 mg/kg时具有更强的磷富集能力。
矿山生态型和非矿山生态型粗齿冷水花富磷能力的比较
Comparison of phosphorus accumulation capacity in Pilea sinofasciata between mining ecotype and non-mining ecotype
-
摘要:
【目的】研究适宜施氮条件下磷富集植物粗齿冷水花的磷积累能力,可为有效利用该植物提取土壤中过剩的磷、减少磷的面源污染提供理论依据。 【方法】以两种生态型粗齿冷水花 (Pilea sinofasciata) 为研究对象,进行土培盆栽试验,供试土壤为灰潮土,每盆 (8 L) 装土8 kg。分别施磷0、400、600、800 mg/kg,陈化8周。幼苗种植前,每盆施入140 mg/kg尿素。移栽9周后收获,测定植株生物量、磷含量,分析了土壤速效磷含量。 【结果】1) 在供试施磷量范围内,两种生态型粗齿冷水花地上部、地下部生物量在施磷600 mg/kg时达最大,此时矿山生态型地上部、地下部生物量分别是其不施磷对照的2.37和3.69倍,非矿山生态型地上部、地下部生物量是其不施磷对照的4.63和7.36倍,矿山与非矿山生态型地上部生物量最大值分别可达28.6 g/株和31.9 g/株。矿山生态型生物量在不施磷和施磷400 mg/kg时显著大于非矿山生态型,在施磷600、800 mg/kg时两生态型间无明显差异。2) 随施磷量增加,两种生态型粗齿冷水花地上部磷含量和矿山生态型地下部磷含量均表现为先升高后降低,在施磷800 mg/kg时显著降低,而非矿山生态型地下部磷含量随施磷量增加而增加,在施磷800 mg/kg时达最高。各磷处理下,矿山生态型地上部磷含量均显著高于非矿山生态型,而地下部磷含量低于非矿山生态型。3) 高磷处理显著增加了两种生态型粗齿冷水花地上部、地下部磷积累量,且在施磷600 mg/kg时植株磷积累量最大,矿山生态型与非矿山生态型地上部磷积累量最高分别可达195 mg/株和182 mg/株。在不施磷和施磷400 mg/kg时,矿山生态型地上部磷积累量显著高于非矿山生态型,在施磷600、800 mg/kg时两生态型间无明显差异。4) 不同磷处理下,两种生态型磷富集系数远大于1,磷转移率大于80%;矿山生态型的磷提取率和移除量在不施磷和施磷400 mg/kg时均大于非矿山生态型,在施磷600、800 mg/kg时两生态型间无明显差异。 【结论】适宜施氮条件下,粗齿冷水花在施磷600 mg/kg时表现出较强的磷富集能力。与非矿山生态型相比,矿山生态型在不施磷和施磷400 mg/kg时对磷的积累能力和富磷潜力更强;在施磷600、800 mg/kg时两生态型植株对土壤磷的富集能力无明显差异。 Abstract:【Objectives】The accumulation ability of phosphorus (P) in Pilea sinofasciata, a P-enrichment plant, was investigated to provide a theoretical basis for extracting excess P in soil. 【Methods】The seedlings of P. sinofasciata were cultured in the pots in a greenhouse under natural light at Sichuan Agricultural University, Sichuan Province, China in 2017. The responsive effects of high phosphorus treatments including 400, 600, 800 mg/kg were analyzed by profiling the high-P tolerance and accumulation capability in P. sinofasciata under application of optimum nitrogen (N 140 mg/kg). The used soil was a typical calcareous alluvial soil containing various concentrations of phosphorus (P 0, 400, 600, 800 mg/kg) and cultured for 8 weeks, and total of 140 mg/kg of nitrogen was applied. After continuously culturing for another 9 weeks, the plants were harvested. Both the biomass and the phosphorus accumulation in plant were determined, and the available-P concentration in soil was analyzed. 【Results】1) The biomass of shoot and root in both ecotypes significantly increased when supply of phosphorus was P 600 mg/kg, and then decreased under supply of P 800 mg/kg. Biomass of shoot and root in mining ecotype (ME) were increased 2.37 and 3.69 folds compared with the control under supply of P 600 mg/kg, respectively. And biomass of shoot and root in non-mining ecotype (NME) were increased 4.63 and 7.36 folds compared with the control under supply of P 600 mg/kg, respectively. The maximum shoot biomass in both the ME and NME were observed under supply of P 600 mg/kg, and were 28.6 g per plant and 31.9 g per plant, respectively. The biomass of shoot and root in the ME were significantly higher than those in the NME under supply of P 0 or 400 mg/kg. However, no difference was found under supply of P 600 or 800 mg/kg. 2)The phosphorus concentration in the shoot of both ecotypes and in the root of the ME significantly increased when supply of phosphorus was P 600 mg/kg, and decreased under supply of P 800 mg/kg. However, the phosphorus concentration in the root of the NME was increased when supply of phosphorus was increased to P 800 mg/kg. The phosphorus concentration in the shoot of the ME was significantly higher than that of the NME, but the phosphorus concentration in the root of the ME was lower than that of the NME. 3) The high phosphorus treatment significantly improved phosphorus accumulation in the shoot and root of two ecotypes. The maximum phosphorus accumulation in the shoot of the ME and NME occurred at supply levels of P 600 mg/kg, and were 195 mg per plant and 182 mg per plant, respectively. The phosphorus accumulation in the shoot of the ME was significantly higher than that of the NME under supply of P 0 or 400 mg/kg. However, no difference was found under supply of P 600 or 800 mg/kg. 4) Under the condition of phosphorus treatment, the bioaccumulation coefficient in both ecotypes was more than 1, while its translocation rate was higher than 80%. Moreover, the extraction rate and the removed phosphorus in the ME were higher than those in the NME under supply of P 0 or 400 mg/kg. However, no difference was found under supply of P 600 or 800 mg/kg. 【Conclusions】Under condition of optimum N dosage, P. sinofasciata showed great P accumulation potentials under supply of P 600 mg/kg. The phosphorus accumulation capacity of the ME was higher than the NME under supply of P 0 or 400 mg/kg, however, no difference was found under supply of P 600 or 800 mg/kg. -
Key words:
- phosphorus accumulation /
- optimum N application /
- Pilea sinofasciata /
- ecotypes
-
表 1 不同磷处理水平下两种生态型粗齿冷水花磷含量 [g/kg,DW]
Table 1. P concentration in two ecotypes of P. sinmfasciata under different P addition levels
施磷量 (mg/kg)
P level地上部Shoot 地下部Root 矿山生态型
Mining ecotype非矿山生态型
Non-mining ecotype矿山生态型
Mining ecotype非矿山生态型
Non-mining ecotype0 5.16 ± 0.24 c* 4.06 ± 0.22 c 2.96 ± 0.20 d 3.32 ± 0.23 d 400 6.72 ± 0.31 a* 6.03 ± 0.06 a 5.89 ± 0.14 a 6.39 ± 0.06 c 600 6.68 ± 0.14 a* 5.85 ± 0.25 a 5.56 ± 0.17 ab 7.18 ± 0.67 b* 800 5.77 ± 0.03 b* 5.19 ± 0.34 b 5.22 ± 0.25 b 7.84 ± 0.22 a* 注(Note):同列数据后不同小写字母表示不同施磷量间差异显著 Different letters in the same column mean significantly different among P treatments (P < 0.05);*表示相同磷处理不同生态型间差异显著Significantly different between ecotypes at the same P treatment (P < 0.05). 表 2 不同磷处理水平下两种生态型粗齿冷水花磷富集系数和转移率
Table 2. Bioaccumulation coefficient and translocation rate of P in two ecotypes of P. sinmfasciata under different P addition levels
施磷量
P level
(mg/kg)富集系数
Bioaccumulation
coefficient转移率
Translocation rate
(%)ME NME ME NME 0 297.8 234.4 91.1 90.8 400 120.5 108.1 82.2 83.3 600 96.8 84.8 83.2 80.9 800 48.6 43.7 83.2 84.8 注(Note):ME—矿山生态型 Mining ecotype; NME—非矿山生态型 Non-mining ecotype;富集系数 = 植株地上部磷含量/土壤速效磷含量; 转移率 = 地上部磷积累量/整株磷积累量 × 100%。Bioaccumulation coefficient = shoot P concentration/soil available P concentration;translocation rate = shoot P accumulation/plant P accumulation × 100%. 表 3 不同磷处理水平下两种生态型粗齿冷水花地上部磷的提取率和移除量
Table 3. P extraction rate and removing amount of P from soil by two ecotypes of P. sinmfasciata under different P addition levels
施磷量 (mg/kg)
P level磷提取率 P extraction (%) 磷移除量 P removed from the soil (mg/kg) ME NME ME NME 0 45.1 ± 2.7 a* 20.1 ± 1.6 b 7.81 ± 2.1 b* 3.48 ± 0.3 d 400 41.4 ± 0.8 a* 30.4 ± 1.6 a 23.1 ± 0.5 a* 16.9 ± 0.9 b 600 35.4 ± 1.5 b 33.1 ± 1.7 a 24.4 ± 1.1 a 22.8 ± 1.2 a 800 8.3 ± 0.6 c 8.2 ± 0.6 c 9.9 ± 0.7 b 9.8 ± 0.7 c 注(Note):ME—矿山生态型 Mining-ecotype;NME—非矿山生态型 Non-mining ecotype;磷提取率 = 地上部磷积累量/土壤速效磷总量 × 100%;磷移除量 = 地上部磷积累量/土壤质量。P extraction = shoot P accumulation/total soil available P amount × 100%;P removed from the soil = shoot P accumulation/soil quantity. -
[1] Li L, Liang X, Ye Y, et al. Effects of repeated swine manure applications on legacy phosphorus and phosphomonoesterase activities in a paddy soil[J]. Biology and Fertility of Soils, 2015, 51(2): 167–181. doi: 10.1007/s00374-014-0956-1 [2] Xue Q Y, Shamsi I H, Sun D S, et al. Impact of manure application on forms and quantities of phosphorus in a Chinese Cambisol under different land use[J]. Journal of Soils and Sediments, 2013, 13(5): 837–845. doi: 10.1007/s11368-012-0627-5 [3] Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil, 2011, 349(1–2): 157–167. doi: 10.1007/s11104-011-0909-5 [4] 区惠平, 周柳强, 黄美福, 等. 不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估[J]. 植物营养与肥料学报, 2016, 22(1): 40–47. Ou H P, Zhou L Q, Huang M F, et al. Phosphorus balance in paddy soil and its environmental effect under different phosohorus application rates[J]. Journal of Plant Nutrition Fertilizer, 2016, 22(1): 40–47. doi: 10.11674/zwyf.14298
[5] 刘霜, 李廷轩, 戢林, 等. 不同磷处理下两种生态型粗齿冷水花的富磷特征及根系形态差异[J]. 草业学报, 2013, 22(3): 211–217. Liu S, Li T X, Ji L, et al. Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments[J]. Acta Prataculturae Sinica, 2013, 22(3): 211–217. doi: 10.11686/cyxb20130328
[6] Sharma N C, Sahi S V. Characterization of phosphate accumulation in Lolium multiflorum for remediation of phosphorus-enriched soils[J]. Environmental Science and Technology, 2005, 39(14): 5475–5480. doi: 10.1021/es050198t [7] Sharma N C, Sahi S V. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions[J]. Environmental Science and Technology, 2011, 45(24): 10531–10537. doi: 10.1021/es200942v [8] 吴浩, 卢志军, 黄汉东, 等. 三种植物对土壤磷吸收和富集能力的比较[J]. 植物生态学报, 2015, 39(1): 63–71. Wu H, Lu Z J, Huang H D, et al. Comparison of phosphorus uptake and accumulation capacity among three plant species[J]. Chinese Journal of Plant Ecology, 2015, 39(1): 63–71. doi: 10.17521/cjpe.2015.0007
[9] Sharma N C, Starnes D L, Sahi S V. Phytoextraction of excess soil phosphorus[J]. Environmental Pollution, 2007, 146(1): 120–127. doi: 10.1016/j.envpol.2006.06.006 [10] Priya P, Sahi S V. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium)[J]. Plant Physiology & Biochemistry, 2009, 47(1): 31–36. [11] Cardoso I M, Kuyper T W. Mycorrhizas and tropical soil fertility[J]. Agriculture Ecosystems & Environment, 2006, 116(1): 72–84. [12] 刘于, 孔玉珠, 刘慧丽, 等. 转基因改良水稻磷吸收效率的策略[J]. 植物生理学报, 2015, 51(8): 1235–1240. Liu Y, Kong Y Z, Liu H L, et al. The strategies on engineering improvement of phosphorus uptake efficiency in rice[J]. Chinese Journal of Plant Physiology, 2015, 51(8): 1235–1240.
[13] 邓小燕, 王小春, 杨文钰, 等. 玉米/大豆和玉米/甘薯模式下玉米磷素吸收特征及种间相互作用[J]. 作物学报, 2013, 39(10): 1891–1898. Deng X Y, Wang X C, Yang W Y, et al. Phosphorus uptake and utilization of maize and inter-species interactions in maize/soybean and maize/sweet potato relay intercropping systems[J]. Acta Agronomica Sinica, 2013, 39(10): 1891–1898.
[14] 冷华妮, 陈益泰, 饶龙兵, 等. 供氮水平对枫香种源幼苗生长及氮、磷吸收利用的影响[J]. 水土保持学报, 2009, 23(6): 79–84. Len H N, Chen Y T, Rao L B, et al. Effects of N rate on seedling growth and uptake and utilization of nitrogen and phosphorus in different provenances of Liquidambar formosana Hance[J]. Journal of Soil and Water Conservation, 2009, 23(6): 79–84. doi: 10.3321/j.issn:1009-2242.2009.06.019
[15] 郭瑀, 李廷轩, 张锡洲. 施氮提高矿山生态型水蓼富集土壤磷能力研究[J]. 植物营养与肥料学报, 2018, 24(5): 1313–1320. Guo Y, Li T X, Zhang X Z, et al. Application of nitrogen to increase phosphorus accumulation of Polygonum hydropiper with mining ecotype[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(5): 1313–1320. doi: 10.11674/zwyf.17480
[16] Newman Y C, Agyinbirikorang S, Adjei M B, et al. Enhancing phosphorus phytoremedation potential of two warm-season perennial grasses with nitrogen fertilization[J]. Agronomy Journal, 2009, 101(6): 1345–1351. doi: 10.2134/agronj2009.0163 [17] 陈静, 黄有胜, 李廷轩. 猪粪有机肥施用下两种生态型粗齿冷水花磷积累特征变化[J]. 草业学报, 2017, 26(11): 139–146. Chen J, Huang Y S, Li T X. Phosphorous accumulation characteristics of two ecopypes of Pilea sinofasciata grown in soils amended with swine manure[J]. Acta Prataculturae Sinica, 2017, 26(11): 139–146. doi: 10.11686/cyxb2017044
[18] 余红梅, 李廷轩, 张锡洲, 等. 施氮量对矿山生态型粗齿冷水花磷富集特性的影响[J]. 草业学报, 2015, 24(8): 85–92. Yu H M, Li T X, Zhang X Z, et al. Effect of different levels of N supply on P accumulation characteristics of a ‘mining ecotype’ of Pilea sinofasciata[J]. Acta Prataculturae Sinica, 2015, 24(8): 85–92.
[19] 刘霜. 粗齿冷水花(Pilea sinofasciata)磷富集特性及部分生理生化特征研究[D]. 雅安: 四川农业大学硕士学位论文, 2013.
Liu S. Characteristics on P accumulation and part of physiological and biochemical mechanism of Pilea sinofasciata[D]. Ya’an: MS Thesis of Sichuan Agricultural University, 2013.[20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
Lu R K. Analytical methods of soil and agriculural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.[21] Ye D H, Li T X, Zhang X Z, et al. Effect of high phosphate supply on P accumulation characteristics of mining ecotype of Polygonum hydropiper[J]. Journal of Plant Nutrition & Fertilizer, 2014, 20(1): 186–194. [22] Yu H M, Li T X, Zheng Z C, et al. Enhanced P accumulation characteristics and P removal potentials of Pilea sinofasciata grown under P enriched soils supplied with nitrogen[J]. Ecological Engineering, 2016, 91: 44–49. doi: 10.1016/j.ecoleng.2016.02.002 [23] 叶代桦, 李廷轩, 张锡洲, 等. 高磷对矿山生态型水蓼磷富集特性的影响[J]. 植物营养与肥料学报, 2014, 20(1): 186–194. Ye D H, Li T X, Zhang X Z, et al. Effect of high phosphate supply on P accumulation characteristics of mining ecotype of Polygonum hydropiper[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 186–194. doi: 10.11674/zwyf.2014.0121
[24] 肖光莉. 磷富集植物筛选及其吸收机理研究[D]. 雅安: 四川农业大学硕士学位论文, 2009.
Xiao G L. Screening of phosphorus enrichment plants and study on their absorption mechanism[D]. Ya’an: MS Thesis of Sichuan Agricultural University, 2009.[25] 康彩霞, 戴星照, 刘艳. 高浓度氨氮或磷胁迫对亚洲苦草生理特性的影响[J]. 安全与环境工程, 2018, 25(3): 73–77. Kang C X, Dai X Z, Liu Y. Physiological responses of Vallisneria asiatica to the stress of high concentrations of ammonia N or P[J]. Safety and Environmental Engineering, 2018, 25(3): 73–77.
[26] Naidoo G. Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves[J]. Aquatic Botany, 2009, 90(2): 184–190. doi: 10.1016/j.aquabot.2008.10.001 [27] Soons M B, Hefting M M, Dorland E, et al. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus[J]. Biological Conservation, 2017, 212(11): 390–397. [28] Suriyagoda L D B, Lambers H, Renton M, et al. Growth, carboxylate exudates and nutrient dynamics in three herbaceous perennial plant species under low, moderate and high phosphorus supply[J]. Plant & Soil, 2012, 358(1–2): 105–117. [29] Ye D H, Li T X, Zhang X Z, et al. Subcellular distribution and chemical form of phosphorus involved in alleviating phosphorus toxicity of the phosphorus-accumulator Polygonum hydropiper[J]. Chemosphere, 2018, 194: 570–578. [30] Ye D H, Li T X, Chen G D, et al. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper[J]. Chemosphere, 2014, 105(3): 139–145. [31] Aziz T, Lambers H, Nicol D, et al. Mechanisms for tolerance of very high tissue phosphorus concentrations in Ptilotus polystachyus[J]. Plant Cell & Environment, 2015, 38(4): 790–799. [32] 袁硕, 李春俭, 彭正萍, 等. 磷对不同玉米品种生长、体内磷循环和分配的影响[J]. 植物营养与肥料学报, 2011, 17(2): 310–316. Yuan S, Li C J, Peng Z P, et al. Effects of phosphorus on the plant growth, phosphorus cycling and distribution in different maize cultivars[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 310–316. doi: 10.11674/zwyf.2011.0133
[33] Liu X, Huang S, Tang T, et al. Growth characteristics and nutrient removal capability of plants in subsurface vertical flow constructed wetlands[J]. Ecological Engineering, 2012, 44(7): 189–198. [34] Ai P, Sun S J, Fan X, et al. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation[J]. Plant Journal, 2009, 57(5): 798–809. doi: 10.1111/j.1365-313X.2008.03726.x [35] Yan K, Wong M H G, Zhang L, et al. Is phytoextraction efficient for remediating phosphorus-enriched soils in mountainous region? A case study of lake dianchi watershed of southwestern China[J]. Applied Mechanics and Materials, 2014, 448(48): 488–493. [36] Dodd R J, Mcdowell R W, Condron L M. Manipulation of fertilizer regimes in phosphorus enriched soils can reduce phosphorus loss to leachate through an increase in pasture and microbial biomass production[J]. Agriculture Ecosystems and Environment, 2014, 185(3): 65–76. [37] Delorme T A, Angle J S, Coale F J, et al. Phytoremediation of phosphorus-enriched soils[J]. International Journal of Phytoremediation, 2000, 2(2): 173–181. doi: 10.1080/15226510008500038 -