• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮胁迫与非胁迫条件下玉米叶形相关性状的QTL分析

郭向阳 陈建军 卫晓轶 吴迅 祝云芳 王安贵 刘鹏飞 汤继华 陈泽辉 罗红兵

引用本文:
Citation:

氮胁迫与非胁迫条件下玉米叶形相关性状的QTL分析

    作者简介: 郭向阳 E-mail:xyguo0372@163.com;
    通讯作者: 汤继华, E-mail:tangjihua1@163.com ; 陈泽辉, E-mail:chenzh907@sina.com
  • 基金项目: 国家重点研发计划(2018YFD0100104);黔科合平台人才项目(〔2018〕5629);贵州省科技支撑计划项目(黔科合支撑〔2016〕2605、2549号)。

QTL mapping of leaf related traits of maize with or without nitrogen stress

    Corresponding author: TANG Ji-hua, E-mail:tangjihua1@163.com ;CHEN Ze-hui, E-mail:chenzh907@sina.com ;
  • 摘要: 【目的】叶片是植物光合作用的重要器官,也是蒸腾作用和抗逆的主要器官。在施氮 (N+) 与不施氮 (N–) 条件下鉴定玉米叶片相关性状的QTL,为高光效玉米新品种选育提供重要的理论依据。【方法】利用玉米骨干系综3为供体,许178为受体,通过杂交、回交和分子标记辅助选择的方法,构建了一套以许178为背景的综3单片段代换系 (SSSLs) 群体,其中包含160个单片段代换系。以这套SSSLs以及许178为材料,在施氮和不施氮条件下,通过一年三点 (贵州贵阳、德江和云南罗平) 的表型评价,利用复合区间作图法对叶面积、叶绿素含量和穗下绿叶数3个叶片相关性状进行QTL定位。【结果】在基因组范围内,两种氮处理条件下共检测到42个主要叶片相关性状QTLs,分布于10条染色体上。N+条件下,在3个地点共检测出8个叶面积的QTLs,5个穗下绿叶数的QTLs,8个叶绿素QTLs。其中,qLAI1b在3个环境中同时被检测到;qLAI1b在德江、贵阳和罗平点对叶面积的贡献率分别为14.41%、14.47%和16.38%,来自于综3的等位基因起增效作用。同时,穗下绿叶数QTL (qLN7aqLN7b) 在3个环境中均被检测到。在氮胁迫 (N–) 条件下,3个环境中共检测出9个叶面积QTLs,7个穗下绿叶数QTLs,8个叶绿素QTLs;其中,位于bin3.08的叶面积QTL qLAI3b,片段大小为120.48 cM,在德江、贵阳和罗平的贡献率分别为20.4%、12.8%和13.2%,来自于许178的等位基因起增效作用;玉米穗下绿叶数QTL,位于bin9.01区的穗下绿叶数QTL qLN9 (umc1957~umc1867~umc2078),片段大小为62.7 cM。位于bin4.08的叶绿素含量QTL qCHL4a,片段大小为18.69 cM,在德江、贵阳和罗平点对叶绿素含量的贡献率分别为17.6%、10.6%和11.4%,且来自于亲本综3的等位基因起减效作用。【结论】不同氮素处理下,检测出一些共有的玉米氮响应的主效 QTLs,如qLAI3b (umc1844~umc1320~bnlg1182)、qLN7a (umc1642~umc2160~umc1929)、qLN7b (phi328175)。这些区段可能在玉米氮素吸收、转运和利用过程中起重要作用,可作为下一步精细定位和图位克隆玉米叶片相关基因的重要候选区域。
  • 图 1  两种施氮条件下检测到的玉米叶片相关性状QTL

    Figure 1.  The QTL identified for leaf traits in different developing stages under N+ and N– conditions

    表 1  供试土壤表层基础肥力

    Table 1.  Basic fertility of tested soils in 0–20 cm depth

    地点Experimental site 全氮Total N (g/kg) 有效磷Avail. P (mg/kg) 速效钾Avail. K (mg/kg) 有机质OM (g/kg)
    贵阳市Guiyang 1.69 47.1 333 29.0
    罗平县Luoping 2.45 38.4 303 55.1
    德江县Dejiang 1.96 52.7 162 22.5
    下载: 导出CSV

    表 2  不同品种及SSSLs群体叶片相关性状平均值

    Table 2.  Phenotypic value of SSSLs population in three experimental sites

    处理
    Treatment
    性状
    Trait
    地点
    Site
    许178 Xu178 综3 Zong3 SSSLs群体Population
    平均值Mean 平均值Mean 范围Range 平均值Mean ± SD
    N+ 叶面积
    Leaf area
    (cm2)
    贵阳Guiyang 524 266 292~599 471 ± 60
    德江Dejiang 584 150 307~621 499 ± 53
    罗平Luoping 526 376 354~648 524 ± 47
    叶绿素含量
    Chl. content
    (mg/g)
    贵阳Guiyang 39.3 33.1 32.9~46.1 40.4 ± 2.18
    德江Dejiang 40.4 35.2 32.8~51.7 42.4 ± 3.23
    罗平Luoping 46.5 37.8 39.8~54.7 48.2 ± 2.78
    穗下绿叶数
    GLUE
    贵阳Guiyang 3.87 2.46 1.47~5.35 3.39 ± 0.75
    德江Dejiang 2.01 0.33 0.60~4.11 2.30 ± 0.70
    罗平Luoping 2.47 2.64 1.36~4.61 3.12 ± 0.70
    N– 叶面积
    Leaf area
    (cm2)
    贵阳Guiyang 434 345.0 252~504 378 ± 47
    德江Dejiang 402 187.6 166~480 322 ± 64
    罗平Luoping 480 268.0 212~572 424 ± 61
    叶绿素含量
    Chl. content
    (mg/g)
    贵阳Guiyang 36.4 34.7 26.6~45.2 34.3 ± 3.15
    德江Dejiang 41.8 31.5 21.1~49.2 37.4 ± 4.4
    罗平Luoping 43.8 34.3 27.9~50.5 42.5 ± 3.7
    穗下绿叶数
    GLUE
    贵阳Guiyang 2.03 2.40 1.15~5.14 2.69 ± 0.89
    德江Dejiang 1.11 0.20 0.15~3.61 1.70 ± 0.75
    罗平Luoping 2.09 2.45 0.98~4.40 2.62 ± 0.70
    注(Note):GLUE—Number of green leaves under ear.
    下载: 导出CSV

    表 3  施氮处理叶片相关性状的QTLs

    Table 3.  The leaf traits related QTLs under nitrogen application

    性状
    Trait
    QTL Bin 位点
    Position
    (cM)
    代换片段
    Substitution segment
    加性效应值(A)
    Additive effect
    贡献率(R%)
    Contribution
    德江
    Dejiang
    贵阳
    Guiyang
    罗平
    Luoping
    德江
    Dejiang
    贵阳
    Guiyang
    罗平
    Luoping
    叶面积
    Leaf area
    qLAI1a 1.03 272–341.75 phi001~phi095~bnlg182~umc2217 –85.41 –16.31
    qLAI1b 1.03 283.27–398.2 phi095~bnlg182~umc2217~bnlg2295 –84.19 –75.77 –86.13 –14.41 –14.47 –16.38
    qLAI1c 1.06 532.8–782.35 bnlg1598~umc1122~umc2396~umc1013~dupssr12 –92.22 –17.61
    qLAI3a 3.04 165–344.28 umc1425~umc2000~umc1307~umc1954 –138.63 –84.54 –23.72 –16.15
    qLAI3b 3.08 608.17–728.65 umc1844~umc1320~bnlg1182 –91.53 –17.48
    qLAI4a 4.03 81–252.52 phi074~umc1550~umc1117~umc1662 55.61 10.58
    qLAI4b 4.11 687.8–737.8 umc1109~phi076~umc1058 –135.56 –23.19
    qLAI8 8.06 412.9–571.5 umc2356~umc1724~phi080 57.97 11.03
    穗下绿叶数
    Number of green leaves under ear
    qLN1 1.02 138.415–259.3 phi427913~bnlg1007~bnlg1203 0.92 0.61 15.77 15.76
    qLN2 2.06 323.3–376.39 umc1485~bnlg1831~bnlg1396 –1.20 –31.01
    qLN7a 7.01 27.2–249.1 umc1642~umc2160~umc1929 1.05 0.74 0.89 22.24 19.12 25.83
    qLN7b 7.05 392.1–545.2 phi328175 0.98 0.56 0.98 18.76 14.47 19.47
    qLN9 9.01 0–62.7 umc1957~umc1867~umc2078 0.78 0.92 28.56 27.04
    叶绿素
    Chlorophyll content
    qCHL3a 3.06 344.28–538.2 umc1954~umc1266~umc2050 4.95 2.89 12.25 6.20
    qCHL3b 3.09 789.78–806.9 umc1052~umc1641~末端 5.23 3.84 12.93 8.24
    qCHL5 5.05 156.9–434.8 umc1587~mmc0081~umc2072 5.65 13.99
    qCHL7 7.02 118.5–264.83 umc2160~umc1929~umc1585 5.16 2.66 12.77 6.76
    qCHL10 10.04 253.3–283.5 umc1077~umc1053~umc2350 –3.19 –8.12
    下载: 导出CSV

    表 4  不施氮处理叶片相关性状的QTLs

    Table 4.  The leaf traits related QTLs under no N supply

    性状
    Trait
    QTL Bin 位点
    Position
    (cM)
    代换片段
    Substitution segment
    加性效应值(A)
    Additive effect
    贡献率(R%)
    Contribution
    德江
    Dejiang
    贵阳
    Guiyang
    罗平
    Luoping
    德江
    Dejiang
    贵阳
    Guiyang
    罗平
    Luoping
    叶面积
    Leaf area
    qLAI1a 1.01 86.3–190.53 umc1269~phi427913~bnlg1007 –82.30 –20.47
    qLAI1b 1.03 283.27–398.2 phi095~bnlg182~umc2217~bnlg2295 –66.38 –73.06 –15.28 –15.22
    qLAI1c 1.06 457–599.89 umc1703~umc1754~bnlg1598~umc1122 –78.21 –19.45
    qLAI2a 2.04 294.2–323.3 bnlg1018~umc2079~umc1485 –134.10 –27.94
    qLAI2b 2.06 323.3–376.39 umc1485~bnlg1831~bnlg1396 –84.12 –17.53
    qLAI3a 3.04 165–344.28 umc1425~umc2000~umc1307~umc1954 –87.48 –92.66 –21.76 –19.31
    qLAI3b 3.08 608.17–728.65 umc1844~umc1320~bnlg1182 –82.00 –55.68 –63.29 –20.40 –12.82 –13.19
    qLAI4 4.11 687.8–737.8 umc1109~phi076~umc1058 –118.01 –57.57 –19.35 –13.25
    qLAI9 9.04 317.08–321.6 umc1771~umc1990~umc1519 –80.54 –16.78
    穗下绿叶数
    Number of green leaves under ear
    qLN1 1.01 0–86.3 末端~phi097~umc1106~umc1269 1.05 0.86 24.59 22.36
    qLN2 2.04 294.2–368.8 bnlg1018~umc2079~umc1485~bnlg1831 1.50 0.78 23.65 23.32
    qLN3 3.02 77–165 bnlg1144~bnlg1647~umc1425 1.02 28.56
    qLN6 6.05 244.75–335.45 umc1614~umc1020~umc1462 1.25 12.61
    qLN7a 7.01 27.2–249.1 umc1642~umc2160~umc1929 1.06 1.01 1.02 25.50 29.75 28.56
    qLN7b 7.05 392.1–545.2 phi328175 0.78 1.35 20.27 26.26
    qLN9 9.01 0–62.7 umc1957~umc1867~umc2078 0.94 1.16 1.06 14.68 17.14 20.72
    叶绿素
    Chlorophyll content
    qCHL1a 1.05 438.8–457 umc1461~umc1689~umc1124 –6.74 –16.13
    qCHL1b 1.08 604.41–842.3 umc2396~umc1013~dupssr12~umc2047 –7.46 –17.84
    qCHL2 2.06 294.2–408.89 bnlg1018~umc2079~umc1485~bnlg1831~bnlg1396~umc1637 –4.18 –11.49
    qCHL3 3.04 165–344.28 umc1425~umc2000~umc1307~umc1954 –4.29 –11.80
    qCHL4a 4.08 462.5–481.19 bnlg1444~phi066~umc2041 –7.37 –3.86 –4.98 –17.64 –10.61 –11.37
    qCHL4b 4.11 687.8–737.8 umc1109~phi076~umc1058 –10.33 –24.71
    qCHL9 9.06 415.05–520.76 umc2345~umc2207~bnlg292 –7.92 –18.10
    qCHL10 10.04 253.3–283.5 umc1077~umc1053~umc2350 –4.86 –13.38
    下载: 导出CSV
  • [1] HvistendahI M. China’s push to add by subtracting fertilizer[J]. Science, 2010, 327: 801. doi: 10.1126/science.327.5967.801
    [2] Humbert S, Subedi S, Cohn J, et al. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses[J]. BMC Genomic, 2013, 14: 3. doi: 10.1186/1471-2164-14-3
    [3] 刘纪麟. 玉米遗传育种学[M]. 北京: 中国农业出版社, 2000.
    Liu J L. Maize genetics and breeding[M]. Beijing: China Agricultural Press, 2000.
    [4] 田清震, 谢传晓, 李新海, 等. 玉米基因组学研究进展[J]. 玉米科学, 2006, 14(3): 1–5, 9. Tian Q Z, Xie C X, Li X H, et al. Progress of the maize genomics[J]. Journal of maize sciences, 2006, 14(3): 1–5, 9. doi: 10.3969/j.issn.1005-0906.2006.03.001
    [5] 周晶, 姜昕, 马鸣超, 等. 长期施氮对土壤肥力及土壤微生物的影响[J]. 中国土壤与肥料, 2016, (6): 8–13. Zhou J, Jiang X, Ma M C, et al. Effects of long-term nitrogen fertilization on soil fertility and microorganism: A review[J]. Soil and Fertilizer Sciences in China, 2016, (6): 8–13.
    [6] 王艳, 孙杰, 王荣萍, 等. 玉米自交系吸收利用磷素的差异及其相关性[J]. 应用与环境生物学报, 2003, 9(5): 479–481. Wang Y, Sun J, Wang R P, et al. Differences in uptake and utilization efficiency for phosphorus and correlation in maize inbred lines[J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(5): 479–481. doi: 10.3321/j.issn:1006-687X.2003.05.007
    [7] 米国华, 陈范骏, 张福锁. 作物养分高效的生理基础与遗传改良[M]. 北京: 中国农业大学出版社, 2012.
    Mi G H, Chen F J, Zhang F S. Physiological basis and genetic improvement of crop nutrient efficiency[M]. Beijing: China Agricultural University Press, 2012.
    [8] 关义新, 林葆, 凌碧莹. 光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J]. 作物学报, 2000, 26(6): 806–813. Guan Y X, Lin B, Ling B Y. The interactive effects of growth light condition and nitrogen supply on maize (Zea mays L.) seedling photosynthetic traits and metabolism of carbon and nitrogen[J]. Acta Agronomica Sinica, 2000, 26(6): 806–813. doi: 10.3321/j.issn:0496-3490.2000.06.026
    [9] Steduto P, Hsiao T C, Raes D, Fereres E. AquaCrop-the FAO crop model to simulate yield response to water: I. Concepts and underlying principles[J]. Agronomy Journal, 2009, 101(3): 426–437. doi: 10.2134/agronj2008.0139s
    [10] Peng S B, Buresh R J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field crops Research, 2006, 96: 37–47. doi: 10.1016/j.fcr.2005.05.004
    [11] 刘建超, 米国华, 陈范骏. 两种供氮水平下玉米穗部性状的QTL定位[J]. 玉米科学, 2011, 19(2): 17–20. Liu J C, Mi G H, Chen F J. QTL mapping of ear traits in maize grown under two nitrogen applications[J]. Journal of Maize Sciences, 2011, 19(2): 17–20.
    [12] 唐江云, 张涛, 蒋开锋, 等. 利用基础导入系群体定位氮胁迫下水稻产量性状QTL[J]. 农业生物技术学报, 2011, 19(6): 996–1002. Tang J Y, Zhang T, Jiang K F, et al. Identification of QTL for yield traits of low nitrogen stress by using introgression lines of rice[J]. Journal of Agricultural Biotechnology, 2011, 19(6): 996–1002. doi: 10.3969/j.issn.1674-7968.2011.06.003
    [13] Rogerio P S, Eduardo V L, Tiago R B. Nitrogen fertilization of fall panicum cultivars (Panicumdicho to miflorum Michx.): Biochemical and agronomical aspects[J]. Science. Agriculture, 2004, 61(1): 82–87.
    [14] Miklos P, Janos N, Sandorne S. Fertilization effects on the color of corn (Zea mays L.) genotypes[J]. Timisoara, Romania, 2003, 11: 20–22.
    [15] 刘宗华, 汤继华, 王春丽, 等. 氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位[J]. 作物学报, 2007, 33(5): 782–789. Liu Z H, Tang J H, Wang C L, et al. QTL analysis of plant height under N-stress and N-input at different stages in maize[J]. Acta Agronomica Sinica, 2007, 33(5): 782–789. doi: 10.3321/j.issn:0496-3490.2007.05.014
    [16] Hirel B, Bertin P, Quillere I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize[J]. Plant Physiology, 2001, 125(3): 1258–1270. doi: 10.1104/pp.125.3.1258
    [17] Yan J B, Tang H, Huang Y Q, et al. Dynamic QTL analysis for plant height in different developing stages in maize[J]. Science Bulletin, 2003, 48(18): 1959–1964.
    [18] Kant S, Bi Y M, Rothstein S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency[J]. Journal of Experimental Botany, 2011, 62(4): 1499–1509. doi: 10.1093/jxb/erq297
    [19] Abolhassan M, Herbert S J, Putnam D H. Yield response of corn to crowding stress[J]. Agronomy Journal, 2005, 97: 839–846. doi: 10.2134/agronj2003.0241
    [20] Agrama H A S, Zakaria A G, Said F B, Tuinstra M. Identification of quantitative trait loci for nitrogen use efficiency in maize[J]. Molecular Breeding, 1999, 5: 187–195. doi: 10.1023/A:1009669507144
    [21] Reymond M, Muller B, Tardieu F. Dealing with the genotype×environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters[J]. Journal of Experimental Botany, 2004, 55: 2461–2472. doi: 10.1093/jxb/erh200
    [22] Wei X Y, Wang B, Peng Q, et al. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population[J]. Molecular Breeding, 2015, 35: 2–13. doi: 10.1007/s11032-015-0218-4
    [23] 安允权, 张君, 席章营, 等. 玉米不同叶位叶面积的QTL定位[J]. 分子植物育种, 2016, 14(8): 2113–2120. An Y Q, Zhang J, Xi Z Y, et al. QTL mapping of leaf area for different leaf position in maize (Zea mays L.)[J]. Molecular Plant Breeding, 2016, 14(8): 2113–2120.
    [24] Guo S L, Ku L X, Qi J S, et al. Genetic analysis and major quantitative trait locus mapping of leaf widths at different positions in multiple populations[J]. PLoS ONE, 2015, 10: e0119095. doi: 10.1371/journal.pone.0119095
    [25] 张姿丽, 蒋锋, 刘鹏飞, 等. 甜玉米穗位叶面积QTL定位[J]. 湖北农业科学, 2014, 53(7): 1502–1505. Zhang Z L, Jiang F, Liu P F, et al. QTL mapping of ear leaf area in sweet corn[J]. Hubei Agricultural Sciences, 2014, 53(7): 1502–1505. doi: 10.3969/j.issn.0439-8114.2014.07.005
    [26] Cai H G, Chu Q, Yuan L X, et al. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply[J]. Molecular Breeding, 2012, 30: 251–266. doi: 10.1007/s11032-011-9615-5
    [27] Ku L X, Zhao W M, Zhang J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.)[J]. Theoretical and Applied Genetics, 2010, 121: 951–959. doi: 10.1007/s00122-010-1364-z
    [28] Lian X M, Wang S P, Zhang J W, et al. Expression profiles of 10422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray[J]. Plant Molecular Biology, 2006, 60: 617–631. doi: 10.1007/s11103-005-5441-7
    [29] 赵明辉, 孙建, 王嘉宇, 等. 全基因组分析低氮胁迫下水稻剑叶光合相关基因表达变化[J]. 中国农业科学, 2011, 44(1): 1–8. Zhao M H, Sun J, Wang J Y, et al. Global genome expression analysis of photosynthesis-related genes under low nitrogen stress in rice flag leaf[J]. Scientia Agricultura Sinica, 2011, 44(1): 1–8. doi: 10.3864/j.issn.0578-1752.2011.01.001
    [30] 郭书磊, 张君, 齐建双, 等. 玉米叶形相关性状的Meta-QTL及候选基因分析[J]. 植物学报, 2018, 53(4): 487–501. Guo S L, Zhang J, Qi J S, et al. Analysis of Meta-quantitative trait loci and their candidate genes related to leaf shape in maize[J]. Chinese Bulletin of Botany, 2018, 53(4): 487–501. doi: 10.11983/CBB17082
    [31] 曹浩飞, 王彬, 毛克举, 等. 利用单片段代换系对玉米开花期相关性状的QTL定位[J]. 河南农业大学学报, 2014, 48(1): 6–10. Cao H F, Wang B, Mao K J, et al. Mapping of the QTL for flowering related traits in maize using a series of single segment substitution lines[J]. Journal of Henan Agricultural University, 2014, 48(1): 6–10.
    [32] Guo X, Guo Y P, Ma J, et al. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton[J]. Journal of Integrative Plant Biology, 2013, 55(8): 759–774. doi: 10.1111/jipb.12054
    [33] 郭向阳, 陈建军, 卫晓轶, 等. 施氮与不施氮条件下玉米开花期相关性状的 QTL定位[J]. 植物营养与肥料学报, 2017, 23(2): 297–303. Guo X Y, Chen J J, Wei X Y, et al. QTL mapping of flowering related traits of maize with and without nitrogen application[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 297–303. doi: 10.11674/zwyf.16282
    [34] Coque M, Gallais A. Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize[J]. Theoretical and Applied Genetics, 2006, 112: 1205–1220. doi: 10.1007/s00122-006-0222-5
    [35] Olivier L, Sylvain C, Patricia M, et al. Quantitative trait Loci analysis of nitrogen use efficiency in Arabidopsis[J]. Plant Physiology, 2003, 131: 345–358. doi: 10.1104/pp.102.010785
    [36] 刘宗华, 谢惠玲, 王春丽, 等. 氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析[J]. 植物营养与肥料学报, 2008, 14(5): 845–851. Liu Z H, Xie H L, Wang C L, et al. QTL analysis of chlorophyll content of maize under N-stress and no N-stress at different development stages[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(5): 845–851. doi: 10.3321/j.issn:1008-505X.2008.05.005
    [37] Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize[J]. Journal of Experimental Botany, 2004, 55(396): 295–306. doi: 10.1093/jxb/erh006
    [38] 许诚, 王彬, 毛克举, 等. 利用单片段代换系群体定位玉米株型性状QTL[J]. 玉米科学, 2014, 22(2): 28–34. Xu C, Wang B, Mao K J, et al. QTL mapping for plant-type related traits using single segment substitution lines in maize[J]. Journal of Maize Sciences, 2014, 22(2): 28–34. doi: 10.3969/j.issn.1005-0906.2014.02.007
    [39] 张书红, 张世煌, 李新海, 等. 玉米抗病基因一致性图谱的构建[J]. 中国农学通报, 2007, 23(6): 601–606. Zhang S H, Zhang S H, Li X H, et al. Construction of consensus map of gene in maize[J]. Chinese Agricultural Science Bulletin, 2007, 23(6): 601–606. doi: 10.3969/j.issn.1000-6850.2007.06.130
    [40] 马骏, 王延波, 刘欣芳, 等. 玉米大斑病感、抗近等基因系SNP基因芯片分析[J]. 玉米科学, 2014, 22(5): 153–158. Ma J, Wang Y B, Liu X F, et al. SNP gene chip analysis of near-isogenic lines to north corn leaf blight[J]. Journal of Maize Sciences, 2014, 22(5): 153–158. doi: 10.3969/j.issn.1005-0906.2014.05.029
    [41] 杨晓军, 路明, 张世煌, 等. 玉米株高和穗位高的QTL定位[J]. 遗传, 2008, 30(11): 1477–1486. Yang X J, Lu M, Zhang S H, et al. QTL mapping of plant height and ear position in maize (Zea mays L.)[J]. Hereditas, 2008, 30(11): 1477–1486. doi: 10.3321/j.issn:0253-9772.2008.11.016
    [42] 库丽霞. 玉米株型相关性状分子遗传机理研究[D]. 郑州: 河南农业大学博士论文, 2010.
    Ku L X. Studies on the molecular genetic mechanism of plant architecture traits in maize (Zea mays L.)[D]. Zhengzhou: PhD Dissertation of Henan Agricultural University, 2010.
    [43] 李庭锋. 玉米RILs群体产量相关性状的表型分析及QTL定位[D]. 哈尔滨: 东北农业大学硕士论文, 2010.
    Li T F. Phenotype analysis and QTL location of yield related characters in RILs population of maize[D]. Harbin: MS Thesis of Northeast Agricultural University, 2010.
    [44] 陈岩. Opaque-2玉米近等基因系构建与opaque-2突变基因的功能研究[D]. 北京: 中国农业科学院硕士论文, 2013.
    Chen Y. Construction of maize opaque-2 near-isogenic lines and function analysis of opaque-2 mutant gene[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2013.
    [45] Tian Q Y, Chen F J, Zhang F S, Mi G H. Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of leaf and root growth[J]. Journal of Plant Nutrition, 2006, 29: 317–330. doi: 10.1080/01904160500476905
    [46] Bertin P, Gallais A. Genetie variation for nitrogen use efficiency in a set of recombinant maize inbred lines.Ⅰ. Agrophysiological results[J]. Maydica, 2000, 45: 53–66.
  • [1] 王祎汤继华付延磊许恒谭金芳韩燕来 . 不同氮水平下玉米苗期根系形态和氮吸收量的 QTL 定位. 植物营养与肥料学报, 2017, 23(4): 942-956. doi: 10.11674/zwyf.16461
    [2] 何坤辉常立国李亚楠渠建洲崔婷婷徐淑兔薛吉全刘建超 . 供氮和不供氮条件下玉米穗部性状的QTL定位. 植物营养与肥料学报, 2017, 23(1): 91-100. doi: 10.11674/zwyf.16159
    [3] 刘宗华谢惠玲王春丽田国伟卫晓轶胡彦民崔党群 . 氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析 . 植物营养与肥料学报, 2008, 14(5): 845-851. doi: 10.11674/zwyf.2008.0505
    [4] 蔡红光刘建超米国华袁力行陈晓辉陈范骏张福锁 . 田间条件下控制玉米开花前后根系性状的QTL定位. 植物营养与肥料学报, 2011, 17(2): 317-324. doi: 10.11674/zwyf.2011.0179
    [5] 赵艳艳袁亚培梁雪宫晓平吴春红周秀文郭营赵岩李斯深孔凡美 . 不同磷、钾处理小麦苗期氮营养性状的QTL分析. 植物营养与肥料学报, 2016, 22(6): 1523-1537. doi: 10.11674/zwyf.16030
    [6] 春亮陈范骏米国华张福锁 . 玉米苗期根系对氮胁迫反应的配合力分析. 植物营养与肥料学报, 2005, 11(6): 750-756. doi: 10.11674/zwyf.2005.0607
    [7] 郭向阳陈建军卫晓轶祝云芳王安贵刘鹏飞汤继华陈泽辉 . 施氮与不施氮条件下玉米开花期相关性状的 QTL 定位. 植物营养与肥料学报, 2017, 23(2): 297-303. doi: 10.11674/zwyf.16282
    [8] 李东亚王祎汤继华许恒谭金芳韩燕来 . 高氮和低氮条件下玉米穗位叶持绿性状的QTL定位. 植物营养与肥料学报, 2019, 25(1): 115-122. doi: 10.11674/zwyf.18080
    [9] 刘宗华王艳朋田国伟王春丽胡彦民汤继华 . 施氮和不施氮对玉米子粒品质性状的影响及QTL分析 . 植物营养与肥料学报, 2009, 15(4): 778-785. doi: 10.11674/zwyf.2009.0407
    [10] 杨峰黄山崔亮王小春雍太文刘卫国杨文钰 . 玉米/大豆套作下作物叶片氮、磷动态特征及其相关性分析. 植物营养与肥料学报, 2013, 19(4): 781-789. doi: 10.11674/zwyf.2013.0402
    [11] 季天委方萍邢永忠贾小明 . 水稻幼苗根际联合固氮能力的QTL定位. 植物营养与肥料学报, 2005, 11(3): 394-398. doi: 10.11674/zwyf.2005.0319
    [12] 吴春红梁雪李斯深李絮花宫晓平孔凡美 . 小麦苗期钾、钠吸收相关性状及其QTL分析. 植物营养与肥料学报, 2013, 19(5): 1025-1036. doi: 10.11674/zwyf.2013.0501
    [13] 吴雅薇李强豆攀孔凡磊马晓君程秋博袁继超 . 低氮胁迫对不同耐低氮玉米品种苗期伤流液性状及根系活力的影响. 植物营养与肥料学报, 2017, 23(2): 278-288. doi: 10.11674/zwyf.16103
    [14] 刘慧迪杨克军李佐同王玉凤张翼飞王智慧付健谷英楠杨系玲吴琼 . 松嫩平原西部膜下滴灌玉米基于叶龄指数的适宜追氮量研究. 植物营养与肥料学报, 2016, 22(3): 811-820. doi: 10.11674/zwyf.14564
    [15] 曹卫东贾继增金继运 . 不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究. 植物营养与肥料学报, 2004, 10(5): 473-478. doi: 10.11674/zwyf.2004.0505
    [16] 关义新林葆凌碧莹 . 光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响. 植物营养与肥料学报, 2000, 6(2): 152-158. doi: 10.11674/zwyf.2000.0205
    [17] 李秧秧曹翠兰邵明安 . 氮胁迫对玉米单根径、轴向水力导度的影响. 植物营养与肥料学报, 2002, 8(2): 192-196. doi: 10.11674/zwyf.2002.0212
    [18] 刘金鑫田秋英陈范骏米国华 . 玉米硝酸盐累积及其在适应持续低氮胁迫中的作用 . 植物营养与肥料学报, 2009, 15(3): 501-508. doi: 10.11674/zwyf.2009.0302
    [19] 米国华陈范骏春亮郭亚芬田秋英张福锁 . 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13(1): 155-159. doi: 10.11674/zwyf.2007.0126
    [20] 张丽娟巨晓棠高强张福锁 . 玉米对土壤深层标记硝态氮的利用. 植物营养与肥料学报, 2004, 10(5): 455-461. doi: 10.11674/zwyf.2004.0502
  • 加载中
图(1)表(4)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  69
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 网络出版日期:  2019-11-25
  • 刊出日期:  2019-11-01

氮胁迫与非胁迫条件下玉米叶形相关性状的QTL分析

    作者简介:郭向阳 E-mail:xyguo0372@163.com
    通讯作者: 汤继华, tangjihua1@163.com
    通讯作者: 陈泽辉, chenzh907@sina.com
  • 1. 湖南农业大学农学院,湖南长沙 410128
  • 2. 贵州省农业科学院旱粮研究所,贵阳 550006
  • 3. 河南省新乡市农业科学院,河南新乡 453002
  • 4. 河南农业大学农学院,河南郑州 450002
  • 基金项目: 国家重点研发计划(2018YFD0100104);黔科合平台人才项目(〔2018〕5629);贵州省科技支撑计划项目(黔科合支撑〔2016〕2605、2549号)。
  • 摘要: 【目的】叶片是植物光合作用的重要器官,也是蒸腾作用和抗逆的主要器官。在施氮 (N+) 与不施氮 (N–) 条件下鉴定玉米叶片相关性状的QTL,为高光效玉米新品种选育提供重要的理论依据。【方法】利用玉米骨干系综3为供体,许178为受体,通过杂交、回交和分子标记辅助选择的方法,构建了一套以许178为背景的综3单片段代换系 (SSSLs) 群体,其中包含160个单片段代换系。以这套SSSLs以及许178为材料,在施氮和不施氮条件下,通过一年三点 (贵州贵阳、德江和云南罗平) 的表型评价,利用复合区间作图法对叶面积、叶绿素含量和穗下绿叶数3个叶片相关性状进行QTL定位。【结果】在基因组范围内,两种氮处理条件下共检测到42个主要叶片相关性状QTLs,分布于10条染色体上。N+条件下,在3个地点共检测出8个叶面积的QTLs,5个穗下绿叶数的QTLs,8个叶绿素QTLs。其中,qLAI1b在3个环境中同时被检测到;qLAI1b在德江、贵阳和罗平点对叶面积的贡献率分别为14.41%、14.47%和16.38%,来自于综3的等位基因起增效作用。同时,穗下绿叶数QTL (qLN7aqLN7b) 在3个环境中均被检测到。在氮胁迫 (N–) 条件下,3个环境中共检测出9个叶面积QTLs,7个穗下绿叶数QTLs,8个叶绿素QTLs;其中,位于bin3.08的叶面积QTL qLAI3b,片段大小为120.48 cM,在德江、贵阳和罗平的贡献率分别为20.4%、12.8%和13.2%,来自于许178的等位基因起增效作用;玉米穗下绿叶数QTL,位于bin9.01区的穗下绿叶数QTL qLN9 (umc1957~umc1867~umc2078),片段大小为62.7 cM。位于bin4.08的叶绿素含量QTL qCHL4a,片段大小为18.69 cM,在德江、贵阳和罗平点对叶绿素含量的贡献率分别为17.6%、10.6%和11.4%,且来自于亲本综3的等位基因起减效作用。【结论】不同氮素处理下,检测出一些共有的玉米氮响应的主效 QTLs,如qLAI3b (umc1844~umc1320~bnlg1182)、qLN7a (umc1642~umc2160~umc1929)、qLN7b (phi328175)。这些区段可能在玉米氮素吸收、转运和利用过程中起重要作用,可作为下一步精细定位和图位克隆玉米叶片相关基因的重要候选区域。

    English Abstract

    • 玉米是我国三大主要粮食作物之一,保障玉米安全生产关系到我国粮食安全[1-2]。随着世界人口的不断增长,全球范围内对玉米的需求量也日益增加[3-4]。在玉米的诸多增产因素中,除选育高产品种外,增施氮肥也是提高玉米产量最关键的措施之一[5-6]。然而,大量氮肥的施用在获得玉米高产的同时,对环境造成了严重污染,如水体富营养化等[7]。在许多地区玉米生产中的实际施氮量已远远超过最佳经济施肥量,由于施肥方法不当、环境胁迫等原因严重降低了氮肥的利用效率,净效益比下降[8]。因此,根据土壤养分状况,最大限度地发挥氮肥利用效率,选育氮高效吸收利用的玉米品种,从而减少田间氮肥施用量已成为玉米育种的重要目标之一。玉米的氮素利用效率 (nitrogen use efficiency,NUE) 受品种、氮肥施用量、氮肥施用方法和土壤含氮量等多种因素的影响[9]。目前,玉米的氮肥利用效率平均在30%以下[10]。因此,提高玉米氮肥利用效率是一项非常迫切而重要的研究课题。利用现代生物技术,挖掘与氮高效基因位点紧密关联的分子标记,分析其遗传效应,可促进玉米耐低氮分子标记辅助选择体系的建立,是培育耐低氮玉米新品种的有效途径之一[11-12],其显著的经济效益和生态效益,已逐渐成为玉米育种的方向。

      前人曾利用不同的技术手段对植物株型性状在氮高效利用方面的评价做了大量研究。Rogerio等[13]研究指出,提高施氮水平将增加叶绿素含量、氨基酸总量、植物干物质中氮含量、株高、分蘖和子粒产量,降低植物干物质中糖含量。Miklos等[14]认为,玉米叶色的深浅取决于叶绿素的积累,不同的施肥水平和基因型的差异都会明显影响叶绿素的含量。刘宗华等[15] 以农大108的203个F2:3家系为材料,在施氮 (N+) 和不施氮 (N–) 2种条件下对拔节期到灌浆期的株高变化进行了动态QTL分析。在N–条件下拔节期至喇叭口期、开花期至灌浆期分别定位了1和5个条件QTL;在N+条件下的相应时期分别定位1和4个条件QTL。近年来,前人同时通过玉米氮响应相关突变体的研究和QTL定位等方法鉴定了多个与NUE相关的基因及位点[16-18]

      叶片是光合作用的重要器官,玉米吐丝前同化物对籽粒产量的贡献率小于10%,吐丝后叶片光合同化产物是玉米产量的主要来源[19]。因此,研究作物光合特性对低氮胁迫的响应机理,通过提高叶片的光合作用提高作物在低氮胁迫下的产量,改善土壤中氮肥的吸收利用效率,在经济效益和环境效益上都具有非常重大的意义。前人通过植物形态学、生理生化和分子生物学等方法对玉米叶片相关性状进行了大量研究。Agrama等[20]首次报道了玉米叶面积QTL。随后,Reymond等[21]利用RFLP标记定位了玉米叶长和叶宽的QTL,并发现不同环境下叶夹角和叶长比叶宽更容易受环境影响。在随后的研究中,科研工作者利用不同群体在不同环境下检测到大量叶形相关性状的QTL[22-27]。Lian等[28]利用表达谱芯片全基因组分析水稻苗期低氮胁迫基因表达,结果表明,在低氮胁迫下水稻根系光合相关基因的表达水平被下调了,而在叶片中的表达水平变化很小,推测可能是由于胁迫时间或胁迫程度还未影响叶片基因的表达。赵明辉等[29]研究表明,在低氮胁迫下,2 个水稻剑叶的叶绿素含量和净光合速率都受到了影响,但影响程度在 2 个水稻中有显著的不同,超绿水稻剑叶的这 2 个指标对低氮胁迫的反应较微弱。郭书磊等[30]通过对620个叶形QTL进行整合,利用元分析发掘出22个叶长、22个叶宽、12个叶面积以及17个叶夹角mQTL;进一步确定了44个与叶片发育密切相关的候选基因。然而,以叶形相关性状作为研究目标,探究氮素胁迫条件的遗传机制则少有报道。以玉米单片段代换系为材料,采用施氮和不施氮两种处理,鉴定不同施氮水平下的叶片相关性状变异情况,并利用复合区间作图法定位控制叶形相关性状的QTL。通过对两种施氮条件下的玉米叶形相关性状进行QTL定位,发掘控制玉米叶形相关的遗传区段,借助不同条件下的定位结果一致性分析,鉴定出与氮素吸收利用显著相关的候选遗传区段,为揭示玉米氮素效率利用差异以及分子辅助的提高玉米氮利用效率育种提供分子遗传学依据。

      • 本研究所用的160份玉米单片段代换系由河南农业大学汤继华教授课题组提供。该群体是以优良玉米自交系综3为供体亲本、许178为受体亲本,通过杂交、回交、自交,结合SSR分子标记辅助选择的方法构建而成。综3和许178作为中国玉米育种中的骨干自交系材料,以这两个材料为亲本之一的玉米杂交种豫玉22号 (综3 × 87-1) 和农大108 (黄C × 许178) 先后在我国玉米生产上得到了大面积推广应用。

      • 试验采用裂区设计,不同氮处理水平作为主区,设施氮 (N+) 和不施氮 (N–) 两个水平,单片段代换系群体 (SSSLs) 作为副区。2015 年分别在贵州省德江县 (北纬28°15′51″、东经108°06′39″)、贵阳市 (北纬26°34′13″、东经106°42′39″) 和云南省罗平县 (北纬24°31′、东经103°57′) 进行田间试验。小区行长4.0 m,宽行0.7 m,单行区,每行17 株,株距0.235 m,密度为52500 plant/hm2,每个处理2次重复。对代表叶片相关性状叶面积 (cm2)、叶绿素含量 (mg/g) 和穗下绿叶数 (片) 进行田间测定。每个试点的表层土壤基础肥力状况见表1

        表 1  供试土壤表层基础肥力

        Table 1.  Basic fertility of tested soils in 0–20 cm depth

        地点Experimental site 全氮Total N (g/kg) 有效磷Avail. P (mg/kg) 速效钾Avail. K (mg/kg) 有机质OM (g/kg)
        贵阳市Guiyang 1.69 47.1 333 29.0
        罗平县Luoping 2.45 38.4 303 55.1
        德江县Dejiang 1.96 52.7 162 22.5

        施氮 (N+) 处理:在苗期增施尿素375 kg/hm2、过磷酸钙375 kg/hm2、硫酸钾187.5 kg/hm2,大喇叭口期增施尿素375 kg/hm2。不施氮 (N–) 处理:除不施尿素外,所施P、K肥与施氮 (N+) 处理完全相同,其它田间管理措施同大田。

        叶面积测量从小区内随机调查5株穗位叶:  叶面积 (cm2) = 长 (cm) × 宽 (cm) × 0.75

        在玉米灌浆初期,利用Yaxin-1260叶绿素仪测定玉米穗位叶距离叶柄1/3处的叶绿素含量,每处理测定5株,取平均值。穗下绿叶数在玉米灌浆初期每处理测定5株,取平均值。采用目测计数,记为0~1,如,半片绿叶记为0.5。

      • 采用SPSS17.0统计软件,对160份SSSLs的开花期进行单因素方差分析和Duncan’s多重比较。利用复合区间作图法对叶形相关性状QTL进行定位[31],若某一性状与许178在P < 0.05水平上差异显著,则认为该单片段代换系代换片段上存在一个QTL,并同时估算各个QTL的加性效应值及贡献率[32]

        加性效应值 (A) = (单片段代换系的表型值−对照的表型值)/2;

        贡献率 (R%) = (加性效应值/对照的表型值) × 100。

      • 叶片相关性状在两种氮水平下均表现出丰富的表型变异,在施氮条件下,SSSLs群体的叶面积在贵阳的变异范围为292~599 cm2,平均值为 (471 ± 60) cm2 (表2);在德江和罗平的变异范围分别为307~621 cm2和354~648 cm2;SSSLs群体的叶绿素含量在贵阳、德江和罗平的变异范围分别为32.9~46.1 mg/g、32.8~51.7 mg/g和39.8~54.7 mg/g。在玉米灌浆初期,SSSLs群体的穗下绿叶数在贵阳、德江和罗平的变异范围分别为1.47~5.35片、0.60~4.11片和1.36~4.61片。

        表 2  不同品种及SSSLs群体叶片相关性状平均值

        Table 2.  Phenotypic value of SSSLs population in three experimental sites

        处理
        Treatment
        性状
        Trait
        地点
        Site
        许178 Xu178 综3 Zong3 SSSLs群体Population
        平均值Mean 平均值Mean 范围Range 平均值Mean ± SD
        N+ 叶面积
        Leaf area
        (cm2)
        贵阳Guiyang 524 266 292~599 471 ± 60
        德江Dejiang 584 150 307~621 499 ± 53
        罗平Luoping 526 376 354~648 524 ± 47
        叶绿素含量
        Chl. content
        (mg/g)
        贵阳Guiyang 39.3 33.1 32.9~46.1 40.4 ± 2.18
        德江Dejiang 40.4 35.2 32.8~51.7 42.4 ± 3.23
        罗平Luoping 46.5 37.8 39.8~54.7 48.2 ± 2.78
        穗下绿叶数
        GLUE
        贵阳Guiyang 3.87 2.46 1.47~5.35 3.39 ± 0.75
        德江Dejiang 2.01 0.33 0.60~4.11 2.30 ± 0.70
        罗平Luoping 2.47 2.64 1.36~4.61 3.12 ± 0.70
        N– 叶面积
        Leaf area
        (cm2)
        贵阳Guiyang 434 345.0 252~504 378 ± 47
        德江Dejiang 402 187.6 166~480 322 ± 64
        罗平Luoping 480 268.0 212~572 424 ± 61
        叶绿素含量
        Chl. content
        (mg/g)
        贵阳Guiyang 36.4 34.7 26.6~45.2 34.3 ± 3.15
        德江Dejiang 41.8 31.5 21.1~49.2 37.4 ± 4.4
        罗平Luoping 43.8 34.3 27.9~50.5 42.5 ± 3.7
        穗下绿叶数
        GLUE
        贵阳Guiyang 2.03 2.40 1.15~5.14 2.69 ± 0.89
        德江Dejiang 1.11 0.20 0.15~3.61 1.70 ± 0.75
        罗平Luoping 2.09 2.45 0.98~4.40 2.62 ± 0.70
        注(Note):GLUE—Number of green leaves under ear.

        在缺氮条件下,SSSLs群体叶面积在贵阳、德江和罗平的变化范围分别为252~504 cm2、166~480 cm2、212~572 cm2;叶绿素含量的变化范围分别为26.6~45.2 mg/g、21.1~49.2 mg/g、27.9~50.5 mg/g;在玉米灌浆初期,穗下绿叶数的变化范围分别为1.15~5.14片、0.15~3.61片、0.98~4.40片。

      • 在施氮 (N+) 和不施氮 (N–) 两种处理条件下,利用复合区间作图法共检测到42个叶片相关性状QTL,分布于10条染色体上 (表3表4图1),单个QTL可解释目标表型变异的变幅为6.2%~33.65%,其中在德江点共检测到19个QTL,在贵阳点共检测到16个QTL,在罗平点共检测到17个QTL。

        表 3  施氮处理叶片相关性状的QTLs

        Table 3.  The leaf traits related QTLs under nitrogen application

        性状
        Trait
        QTL Bin 位点
        Position
        (cM)
        代换片段
        Substitution segment
        加性效应值(A)
        Additive effect
        贡献率(R%)
        Contribution
        德江
        Dejiang
        贵阳
        Guiyang
        罗平
        Luoping
        德江
        Dejiang
        贵阳
        Guiyang
        罗平
        Luoping
        叶面积
        Leaf area
        qLAI1a 1.03 272–341.75 phi001~phi095~bnlg182~umc2217 –85.41 –16.31
        qLAI1b 1.03 283.27–398.2 phi095~bnlg182~umc2217~bnlg2295 –84.19 –75.77 –86.13 –14.41 –14.47 –16.38
        qLAI1c 1.06 532.8–782.35 bnlg1598~umc1122~umc2396~umc1013~dupssr12 –92.22 –17.61
        qLAI3a 3.04 165–344.28 umc1425~umc2000~umc1307~umc1954 –138.63 –84.54 –23.72 –16.15
        qLAI3b 3.08 608.17–728.65 umc1844~umc1320~bnlg1182 –91.53 –17.48
        qLAI4a 4.03 81–252.52 phi074~umc1550~umc1117~umc1662 55.61 10.58
        qLAI4b 4.11 687.8–737.8 umc1109~phi076~umc1058 –135.56 –23.19
        qLAI8 8.06 412.9–571.5 umc2356~umc1724~phi080 57.97 11.03
        穗下绿叶数
        Number of green leaves under ear
        qLN1 1.02 138.415–259.3 phi427913~bnlg1007~bnlg1203 0.92 0.61 15.77 15.76
        qLN2 2.06 323.3–376.39 umc1485~bnlg1831~bnlg1396 –1.20 –31.01
        qLN7a 7.01 27.2–249.1 umc1642~umc2160~umc1929 1.05 0.74 0.89 22.24 19.12 25.83
        qLN7b 7.05 392.1–545.2 phi328175 0.98 0.56 0.98 18.76 14.47 19.47
        qLN9 9.01 0–62.7 umc1957~umc1867~umc2078 0.78 0.92 28.56 27.04
        叶绿素
        Chlorophyll content
        qCHL3a 3.06 344.28–538.2 umc1954~umc1266~umc2050 4.95 2.89 12.25 6.20
        qCHL3b 3.09 789.78–806.9 umc1052~umc1641~末端 5.23 3.84 12.93 8.24
        qCHL5 5.05 156.9–434.8 umc1587~mmc0081~umc2072 5.65 13.99
        qCHL7 7.02 118.5–264.83 umc2160~umc1929~umc1585 5.16 2.66 12.77 6.76
        qCHL10 10.04 253.3–283.5 umc1077~umc1053~umc2350 –3.19 –8.12

        表 4  不施氮处理叶片相关性状的QTLs

        Table 4.  The leaf traits related QTLs under no N supply

        性状
        Trait
        QTL Bin 位点
        Position
        (cM)
        代换片段
        Substitution segment
        加性效应值(A)
        Additive effect
        贡献率(R%)
        Contribution
        德江
        Dejiang
        贵阳
        Guiyang
        罗平
        Luoping
        德江
        Dejiang
        贵阳
        Guiyang
        罗平
        Luoping
        叶面积
        Leaf area
        qLAI1a 1.01 86.3–190.53 umc1269~phi427913~bnlg1007 –82.30 –20.47
        qLAI1b 1.03 283.27–398.2 phi095~bnlg182~umc2217~bnlg2295 –66.38 –73.06 –15.28 –15.22
        qLAI1c 1.06 457–599.89 umc1703~umc1754~bnlg1598~umc1122 –78.21 –19.45
        qLAI2a 2.04 294.2–323.3 bnlg1018~umc2079~umc1485 –134.10 –27.94
        qLAI2b 2.06 323.3–376.39 umc1485~bnlg1831~bnlg1396 –84.12 –17.53
        qLAI3a 3.04 165–344.28 umc1425~umc2000~umc1307~umc1954 –87.48 –92.66 –21.76 –19.31
        qLAI3b 3.08 608.17–728.65 umc1844~umc1320~bnlg1182 –82.00 –55.68 –63.29 –20.40 –12.82 –13.19
        qLAI4 4.11 687.8–737.8 umc1109~phi076~umc1058 –118.01 –57.57 –19.35 –13.25
        qLAI9 9.04 317.08–321.6 umc1771~umc1990~umc1519 –80.54 –16.78
        穗下绿叶数
        Number of green leaves under ear
        qLN1 1.01 0–86.3 末端~phi097~umc1106~umc1269 1.05 0.86 24.59 22.36
        qLN2 2.04 294.2–368.8 bnlg1018~umc2079~umc1485~bnlg1831 1.50 0.78 23.65 23.32
        qLN3 3.02 77–165 bnlg1144~bnlg1647~umc1425 1.02 28.56
        qLN6 6.05 244.75–335.45 umc1614~umc1020~umc1462 1.25 12.61
        qLN7a 7.01 27.2–249.1 umc1642~umc2160~umc1929 1.06 1.01 1.02 25.50 29.75 28.56
        qLN7b 7.05 392.1–545.2 phi328175 0.78 1.35 20.27 26.26
        qLN9 9.01 0–62.7 umc1957~umc1867~umc2078 0.94 1.16 1.06 14.68 17.14 20.72
        叶绿素
        Chlorophyll content
        qCHL1a 1.05 438.8–457 umc1461~umc1689~umc1124 –6.74 –16.13
        qCHL1b 1.08 604.41–842.3 umc2396~umc1013~dupssr12~umc2047 –7.46 –17.84
        qCHL2 2.06 294.2–408.89 bnlg1018~umc2079~umc1485~bnlg1831~bnlg1396~umc1637 –4.18 –11.49
        qCHL3 3.04 165–344.28 umc1425~umc2000~umc1307~umc1954 –4.29 –11.80
        qCHL4a 4.08 462.5–481.19 bnlg1444~phi066~umc2041 –7.37 –3.86 –4.98 –17.64 –10.61 –11.37
        qCHL4b 4.11 687.8–737.8 umc1109~phi076~umc1058 –10.33 –24.71
        qCHL9 9.06 415.05–520.76 umc2345~umc2207~bnlg292 –7.92 –18.10
        qCHL10 10.04 253.3–283.5 umc1077~umc1053~umc2350 –4.86 –13.38

        图  1  两种施氮条件下检测到的玉米叶片相关性状QTL

        Figure 1.  The QTL identified for leaf traits in different developing stages under N+ and N– conditions

        在施氮 (N+) 条件下,在3个地点共检测出8个叶面积的QTL,其中,qLAI1b在3个环境中同时被检测到 (表3)。qLAI1b在德江、贵阳和罗平点对叶面积的贡献率分别为14.4%、14.5%和16.4%;来自于综3的等位基因起增效作用。qLAI3b在德江和贵阳2个环境中检测到,对叶面积的贡献率分别为23.7%和16.2%;其余6个QTL仅在一个环境中检测到。在施氮 (N+) 条件下,在3个地点共检测出5个穗下绿叶数的QTL,分布在第1、2、7和9染色体上,有2个QTL (qLN7aqLN7b) 在3个环境中同时被检测到。qLN7a在德江、贵阳和罗平点对穗下绿叶数的贡献率分别为22.24%、19.12%和25.8%;而qLN7b在德江、贵阳和罗平点对穗下绿叶数的贡献率分别为18.8%、14.5%和19.5%。在施氮 (N+) 条件下,在德江、贵阳、罗平分别检测到4、2、2个叶绿素QTL。在德江检测到的4个QTL分布在第3、5、7染色体上。在贵阳检测到的2个QTL分布在第7、10染色体上。在罗平检测到的2个QTL分布在第3染色体上。

        在氮胁迫 (N–) 条件下,3个环境中共检测出9个叶面积QTL,分布于第1、2、3、4和9染色体上,单个QTL可解释的表型变异介于12.5%~27.9% 之间,其中qLAI3b在3个试验环境中同时被检测到,位于第3染色体上的bin3.08,在德江、贵阳和罗平的贡献率分别为20.4%、12.8%和13.2%,来自于许178的等位基因起增效作用。5个QTL在2个环境中同时被检测到。在不施氮 (N–) 条件下共检测出7个穗下绿叶数QTL,其中有2个QTL在3个环境中重复检出,其贡献率在12.6%~29.8%之间。在3个试验环境中重复检出、效应较大且一致的玉米穗下绿叶数QTL主要有bin7.01区的qLN7a (umc1642~umc2160~umc1929),bin 9.01区的qLN9 (umc1957~umc1867~umc2078)。

        在氮胁迫 (N–) 条件下,在3个环境中共检测出8个叶绿素QTL,分布在除第5、6、7、8以外其他染色体上,有1个QTL在3个环境中同时被检测到,位于bin 4.08的bnlg1444~phi 066~umc 2041染色体片段上,在德江、贵阳和罗平点对叶绿素含量的贡献率分别为17.6%、10.6%和11.4%,且来自于亲本综3的等位基因起减效作用。

      • 前人对玉米氮高效利用的QTL定位研究已有报道[33-35]。刘宗华等[36]的研究结果表明,叶绿素含量的QTL表达存在时空性,其中qchl4qchl5b在整个生育时期均能检测到。Gallais等[37]在高氮和低氮水平下检测到的QTL有很大差别;本研究中,施氮条件下,在染色体bin1.03区域检测到QTL qLAI1b;前人在该区域检测出与株型性状和丝黑穗病抗性相关的QTL-qDH12[38-39];检测开花期相关的QTL qDTP1b、QTL qDTS1[33],一定程度上反映出株型、抗病性和生育期重叠的“一因多效”的作用结果。因此,对玉米叶片相关性状的QTL分析,不仅有助于增加对其遗传结构的了解,发掘更多候选基因,阐明叶形发育和形成的分子机制,还可为耐密理想株型的分子标记辅助选择提供依据。不施氮条件下,在染色体bin3.08区域检测到1个QTL qLAI3b;该区域存在抗大斑病QTL[40]、控制株高QTL[41]。在染色体bin7.01和bin 9.01区域,分别检测到QTL qLN7A和QTL qLN9;在该区域检测到玉米株型、品质和产量等相关性状的QTL[42-44]。在染色体bin4.08区域,检测到1个QTL qCHL4a。不同氮素处理下,共检测出在 3个试验环境中均稳定表达且效应较大的一致性QTLs,分别位于bin3.08区域QTL qLAI3b、bin7.01区域QTL qLN7a和bin7.05区域QTL qLN7b。虽然,该群体重要QTL区段在玉米氮素吸收、转运以及利用过程中的重要性的研究未见报道;但是,本研究结果证明了这些区段在玉米不同氮素处理过程中均起着重要作用,对于深入挖掘玉米氮素利用效率将提供更为可靠的分子遗传学信息。

        叶片是光合作用的重要器官,氮素供应显著影响叶片的扩展,通过提高叶片的光合作用效率,从而达到提高作物在氮胁迫下的产量;Tian等[45]研究发现,氮高效品种在叶片扩展方面具有明显优势;在低氮条件下保持了较大的叶片面积,从而保证光合产物的生产用于籽粒灌浆[37]。在本研究中,氮胁迫下 共检测到4个叶型相关性状QTL,分别为QTL qLAI3b、QTL qCHL4a、QTL qLN7A和QTL qLN9。Bertin等[46]研究发现,控制叶片衰老的位于第7染色体的QTL可以解释表型变异的42%,是一个主效基因。氮胁迫条件下检测到叶型相关性状QTL为氮高效分子标记辅助选择育种提供支撑;但本试验是在一年多点环境下,试验结果仍需进一步验证。本研究为揭示玉米氮素效率利用差异以及分子辅助的提高玉米氮利用效率育种提供分子遗传学依据。

      • 在不同环境条件下,检测出一些共有的玉米氮响应主效QTLs,如qLAI3b (umc1844~umc1320~bnlg1182)、qLN7a (umc1642~umc2160~umc1929)、qLN7b (phi328175);在施氮和不施氮条件下均被检测到;同时还存在一些特异性的QTLs区段,如qCHL4a (bnlg1444~phi066~umc2041)、qLN9(umc1957~umc1867~umc2078) 仅在不施氮条件下被检测到。这些染色体区段将为进一步改良玉米氮素利用效率以及株型相关候选基因的图位克隆等提供更多的分子遗传学支持。

        致谢:贵州省旱粮研究所杨明伦老师在田间管理过程中给予帮助,在此表示感谢。

    参考文献 (46)

    目录

      /

      返回文章
      返回