• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同氮素形态对干旱胁迫杉木幼苗养分吸收及分配的影响

李树斌 周丽丽 伍思攀 孙敏 丁国昌 林思祖

引用本文:
Citation:

不同氮素形态对干旱胁迫杉木幼苗养分吸收及分配的影响

    作者简介: 李树斌 E-mail:fjlishubin@126.com;
    通讯作者: 周丽丽, E-mail:fjzhoulili@126.com
  • 基金项目: 福建农林大学科技创新专项基金项目(CXZX2017106);国家自然科学基金项目(31800532);福建省林业科技项目([2019]16号);福建省自然科学基金项目(2018J05059);人工林可持续经营福建省高校工程研究中心开放课题(PSM-2017002)。

Effect of different nitrogen forms on nutrient uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

    Corresponding author: ZHOU Li-li, E-mail:fjzhoulili@126.com ;
  • 摘要: 【目的】干旱胁迫是限制植物生长的重要非生物因素之一,而适宜的氮素营养可以提高植物的抗旱性。本文探讨了供应不同形态氮源对干旱条件下杉木(Cunninghamia lanceolata (Lamb.) Hook)幼苗养分吸收及分配的影响。【方法】采用水培试验,供试杉木材料为2个无性系幼苗(7–14号和8–8号),在营养液中添加10%(w/v)PEG-6000进行干旱胁迫。营养液中的氮源分别处理包括硝态氮、铵态氮、硝铵混合氮,氮素浓度均为4.571 mmol/L,每个品种均设6个处理。培养20 d后,测定了杉木幼苗根、茎、叶的养分含量。【结果】与正常水分供应相比较,干旱胁迫条件下供应铵态氮可促进叶片N、K以及茎叶P、K的吸收,供应混合氮可促进根部K的吸收;供应铵态氮促进根、茎Ca的吸收,对叶片Ca无明显作用。干旱胁迫对根部Fe、Mn、Cu、Zn吸收量影响显著,氮素供应不同程度地降低干旱胁迫下各器官的Mg、Fe、Mn和Cu吸收量,表现为抑制吸收,但添加铵态氮比硝态氮的降低幅度小。三个氮源处理均降低了干旱条件下根部Zn吸收量,但没有降低甚至增加了茎、叶中Zn的吸收量,说明氮营养可调整Zn在各器官间的分配,缓解干旱导致的缺锌现象。不同器官之间各养分吸收量差异显著,三个氮源处理中,N和P吸收量表现为叶 > 根 > 茎,K和Ca为叶 > 茎 > 根,Fe、Cu为根 > 叶 > 茎,Mg、Mn和Zn吸收量在各器官之间的分配规律不一。铵态氮吸收量均表现为叶 > 根 > 茎,且各器官铵态氮吸收量显著高于硝态氮,说明杉木具有明显的喜铵特性。【结论】在干旱胁迫下,氮素供应形态显著影响着杉木幼苗养分的吸收及在各器官的分配,作用效果因家系品种和元素种类而异。总体来讲,铵态氮提高干旱胁迫下杉木幼苗养分吸收的效果好于NO3-N,杉木可以认为是喜铵植物。
  • 表 1  干旱胁迫条件下添加不同形态氮素对杉木幼苗大量养分吸收及分配的影响 (mg/pot)

    Table 1.  Effects of different nitrogen forms on total N, P and K uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

    家系
    Family
    clone
    氮供应形态
    N supply
    form
    NPK
    根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
    No.7–14CK-NO399.96 ± 10.96 Bb95.36 ± 15.33 Ba232.16 ± 78.56 Aa10.34 ± 0.61 ABa8.72 ± 0.39 Ba16.75 ± 1.15 Aa46.15 ± 2.53 Ba107.40 ± 2.33 Aa161.57 ± 38.56 Aab
    CK-NH4+113.62 ± 9.24 Ba83.69 ± 5.40 Bab140.96 ± 22.63 Aab12.12 ± 0.74 ABa6.98 ± 1.72 Bab16.42 ± 3.52 Aa45.48 ± 12.16 Bab101.08 ± 30.23 Aa113.48 ± 19.05 ABb
    CK-NO3+
    NH4+
    123.20 ± 43.81 Aa91.31 ± 22.24 Aa120.92 ± 48.11 Ab5.51 ± 1.84 Bb6.06 ± 1.27 ABab15.85 ± 1.21 Aab36.35 ± 14.40 Cabc86.67 ± 8.54 Ba211.84 ± 42.75 Aa
    PEG+NO3102.68 ± 13.72 Ab60.77 ± 11.50 Bb123.00 ± 14.67 Ab3.89 ± 0.47 Bb5.34 ± 1.65 ABab11.90 ± 1.13 Abc19.98 ± 1.28 Cc71.57 ± 11.37 Ba177.65 ± 6.08 Aab
    PEG+NH4+113.96 ± 20.07 ABa72.20 ± 10.86 Bb161.78 ± 20.30 Aab4.55 ± 1.01 Bb4.92 ± 0.78 ABb12.68 ± 1.49 Aab35.79 ± 6.06 Cbc89.84 ± 8.51 Ba178.61 ± 26.51 Aab
    PEG+NO3+
    NH4+
    71.30 ± 13.36 Cc79.26 ± 5.57 Bb173.80 ± 2.26 Aab3.14 ± 0.47 Bb6.25 ± 1.49 ABab9.06 ± 0.81 Ac18.23 ± 4.66 Cc103.08 ± 26.58 Ba201.47 ± 10.31 Aa
    No.8–8CK-NO3139.53 ± 29.58 Ba87.21 ± 11.56 Ba153.81 ± 32.65 Aab7.74 ± 0.81 ABa4.04 ± 1.35 Ba11.01 ± 2.38 Aa23.49 ± 3.21 Ca49.03 ± 8.52 Ba141.25 ± 21.71 Ab
    CK-NH4+139.10 ± 17.01 Ba88.52 ± 6.34 Ba160.38 ± 5.71 Aa6.04 ± 0.92 ABab3.41 ± 0.72 Bab9.02 ± 2.52 Aab19.05 ± 3.53 Cab42.83 ± 10.23 Ba132.93 ± 31.54 Ab
    CK-NO3+
    NH4+
    142.45 ± 13.34 Aa78.38 ± 6.53 Bb148.18 ± 22.67 Abc4.21 ± 0.78 Bb2.26 ± 0.10 Bb8.82 ± 1.49 Ab9.27 ± 0.88 Cb30.27 ± 4.45 Bb183.15 ± 34.24 Aab
    PEG+NO375.44 ± 6.53 Cb59.22 ± 12.53 Bc122.28 ± 9.57 Ac4.15 ± 0.52 Bb3.61 ± 0.71 Ba9.83 ± 0.82 Aab15.98 ± 2.11 Cab37.35 ± 4.95 Ba141.44 ± 9.52 Ab
    PEG+NH4+107.98 ± 13.55 ABb81.12 ± 4.69 Bb159.21 ± 21.78 Aa4.96 ± 0.47 Bb5.20 ± 0.11 Ba12.05 ± 1.21 Aa16.89 ± 3.51 Cab64.12 ± 1.91 Ba211.36 ± 16.44 Aa
    PEG+NO3+
    NH4+
    63.67 ± 7.57 Bb57.04 ± 8.37 Bc125.78 ± 12.69 Ac2.73 ± 0.21 Bc3.30 ± 0.68 Bab8.51 ± 1.04 Ab11.78 ± 1.44 Cab46.17 ± 3.72 Ba164.12 ± 7.33 Aab
    注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
    下载: 导出CSV

    表 2  无性系类型、干旱胁迫及氮素形态对杉木不同器官养分吸收的三因素方差分析 (P值)

    Table 2.  Three-way ANOVA analysis of clones, water stress, nitrogen sources and their interactions on nutrient uptake of different organs in Cunninghamia lanceolata plantlets (P value)

    养分
    Nutrient
    器官
    Organ
    无性系类型 (C)
    Clone
    氮素形态 (N)
    N form
    干旱胁迫 (D)
    Water stress
    C×NC×DN ×DC×N×D
    N 根Root0.0240.0380.0030.9880.0500.0190.731
    茎Stem0.4500.7580.0090.3510.9730.4180.876
    叶Leaf0.4550.7530.4160.5650.8590.1220.241
    P 根Root0.003 < 0.001 < 0.0010.2210.0020.0380.076
    茎Stem < 0.0010.4390.4460.4580.0490.2480.600
    叶Leaf0.0010.0220.0320.9960.0100.4000.790
    K 根Root < 0.0010.0500.0090.5690.0400.4280.727
    茎Stem < 0.0010.6240.9120.7300.2360.1140.666
    叶Leaf0.4270.1220.1470.2020.8980.0600.913
    Ca根Root0.9580.0500.5280.7360.8650.0500.633
    茎Stem0.0410.4420.5080.2490.8260.1850.819
    叶Leaf0.0350.5380.0270.6170.3770.2280.595
    Mg根Root < 0.0010.013 < 0.0010.063 < 0.0010.8280.394
    茎Stem0.0210.8810.1980.2540.0920.1570.729
    叶Leaf0.6350.5840.0070.3110.0130.4650.534
    Fe根Root0.2930.050 < 0.0010.0140.7250.2310.411
    茎Stem0.5640.2630.8750.6850.4000.1610.035
    叶Leaf0.0500.6490.2800.0310.0130.1200.885
    Mn根Root0.4400.138 < 0.0010.0200.5910.1720.019
    茎Stem < 0.0010.4450.7100.4750.0890.0500.259
    叶Leaf0.0140.1620.5490.7080.2300.2560.451
    Cu根Root0.0010.089 < 0.0010.1170.0290.0180.065
    茎Stem0.0010.6550.3070.4630.3070.4970.131
    叶Leaf < 0.0010.0210.2030.6240.8940.2430.477
    Zn根Root0.0230.1420.0300.0670.6850.7230.209
    茎Stem0.0020.038 < 0.0010.9620.0700.0970.004
    叶Leaf0.0500.001 < 0.0010.0320.0500.8960.279
    注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
    下载: 导出CSV

    表 3  干旱胁迫条件下添加不同形态氮素对杉木幼苗中量养分吸收及分配的影响 (mg/pot)

    Table 3.  Effects of different nitrogen forms on total Ca and Mg uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

    家系
    Family clone
    处理
    Treatment
    CaMg
    根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
    No.7–14CK-NO319.70 ± 1.68 Bbc25.93 ± 2.09 ABa51.31 ± 3.09 Aab14.93 ± 1.37 Ab6.91 ± 0.46 Ba13.35 ± 1.12 Ba
    CK-NH4+12.86 ± 1.13 Cc24.44 ± 5.58 Ba49.96 ± 6.00 Aab15.94 ± 0.53 Aa6.04 ± 1.08 Ba12.70 ± 2.14 ABa
    CK-NO3+NH4+22.49 ± 9.99 Ba24.33 ± 4.89 ABa57.54 ± 5.28 Aa11.58 ± 2.49 Ac6.59 ± 0.71 Aa12.73 ± 0.98 Aa
    PEG+NO315.88 ± 0.96 Bbc22.26 ± 3.34 ABa47.53 ± 5.33 Ab6.54 ± 0.74 Bd4.49 ± 0.77 Bb8.67 ± 0.42 Ab
    PEG+NH4+22.08 ± 7.08 Ba26.95 ± 2.88 ABa48.76 ± 5.49 Ab6.97 ± 1.15 ABd4.82 ± 0.62 Bb8.53 ± 1.05 Ab
    PEG+ NO3 + NH4+11.29 ± 2.35 Bc31.85 ± 6.67 Aa49.84 ± 3.01 AAb3.97 ± 0.60 Be5.91 ± 1.12 Ab8.35 ± 0.44 Ab
    No.8–8CK-NO320.88 ± 2.31 Ca22.40 ± 6.75 Ba53.76 ± 8.94 Aa7.67 ± 0.64 Aa5.18 ± 1.64 Aa9.09 ± 1.61 Aa
    CK-NH4+15.43 ± 4.78 CAb22.49 ± 2.42 Ba54.94 ± 3.21 Aa4.19 ± 1.97 Cbc4.56 ± 0.55 BAb10.07 ± 1.63 Aa
    CK-NO3+NH4+17.14 ± 0.81 BAb16.03 ± 1.90 Bb64.27 ± 10.09 Aa5.88 ± 0.08 BAbc3.87 ± 0.20 Bb12.23 ± 2.36 Aa
    PEG+NO319.00 ± 2.91 BAb16.63 ± 3.40 Bb55.35 ± 3.93 Aa6.14 ± 0.82 BAb3.72 ± 0.65 Bb8.72 ± 0.88 Aa
    PEG+NH4+19.35 ± 2.30 CAb28.04 ± 1.22 Ba69.52 ± 8.12 Aa4.98 ± 0.39 Cbc6.03 ± 0.21 Ba12.19 ± 1.07Aa
    PEG+NO3+NH4+11.75 ± 1.19 Bb19.46 ± 3.22 BAb54.55 ± 6.12 Aa3.57 ± 0.26 Cc4.47 ± 0.50 BAb9.79 ± 1.02 Aa
    注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
    下载: 导出CSV

    表 4  干旱胁迫条件下添加不同形态氮素对杉木幼苗微量养分吸收及分配的影响 (mg/pot)

    Table 4.  Effects of different nitrogen forms on total Fe, Mn, Cu and Zn uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

    家系
    Family
    clone
    处理
    Treatment
    FeMn
    根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
    No.7–14CK-NO37.91 ± 0.86 Aa0.16 ± 0.01 Bb0.55 ± 0.02 Bab0.32 ± 0.02 Bb0.26 ± 0.02 Ba2.07 ± 0.19 Aab
    CK-NH4+10.30 ± 1.52 Aa0.33 ± 0.07 Ba0.52 ± 0.04 Bb0.63 ± 0.03 Ba0.28 ± 0.05 Ca1.85 ± 0.16 Aab
    CK- NO3+NH4+5.37 ± 1.65 Aab0.18 ± 0.04 Cb0.77 ± 0.09 Ba0.31 ± 0.07 Bb0.20 ± 0.03 Bab2.32 ± 0.05 Aa
    PEG+NO33.21 ± 0.28 Ab0.29 ± 0.11 Ba0.44 ± 0.02 Bb0.12 ± 0.01 Bc0.15 ± 0.03 Bb1.81 ± 0.16 Ab
    PEG+NH4+5.34 ± 1.36 Aab0.17 ± 0.02 Bb0.42 ± 0.15 Bb0.14 ± 0.03 Cc0.24 ± 0.03 Ba1.90 ± 0.17 Aab
    PEG+ NO3- + NH4+2.61 ± 0.59 Ab0.30 ± 0.06 Ba0.52 ± 0.03 Bb0.14 ± 0.04 Cc0.28 ± 0.07 Ba2.12 ± 0.10 Aab
    No.8–8CK-NO310.25 ± 2.49 Aa0.18 ± 0.03 Cb0.41 ± 0.08 Bab0.63 ± 0.19 Ba0.14 ± 0.03 Cab2.05 ± 0.21 Aab
    CK-NH4+5.69 ± 0.80 Ab0.25 ± 0.05 Ba0.42 ± 0.03 Bab0.39 ± 0.06 Bab0.11 ± 0.02 Cb1.92 ± 0.85 Ab
    CK- NO3+NH4+6.23 ± 0.42 Ab0.26 ± 0.01 Ba0.44 ± 0.07 Bab0.38 ± 0.02 Bab0.11 ± 0.01 Cb3.21 ± 0.70 Aa
    PEG+NO33.06 ± 0.33 Ab0.16 ± 0.05 Cb0.51 ± 0.04 Bab0.14 ± 0.05 Cb0.14 ± 0.03 Bab2.52 ± 0.27 Aab
    PEG+NH4+2.59 ± 0.58 Ab0.26 ± 0.04 Ba0.58 ± 0.11 Ba0.16 ± 0.03 Bb0.18 ± 0.02 Ba3.09 ± 0.41 Aa
    PEG+NO3+NH4+2.68 ± 0.38 Ab0.20 ± 0.03 Bab0.36 ± 0.02 Bb0.13 ± 0.02 Bb0.16 ± 0.01 Bab2.79 ± 0.36 Aab
    家系
    Family
    clone
    处理
    Treatment
    CuZn
    根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
    No.7–14CK-NO30.13 ± 0.02 Abc0.04 ± 0.01 Ba0.05 ± 0.01 Bab0.12 ± 0.02 Ab0.11 ± 0.01 Abc0.12 ± 0.01 Bb
    CK-NH4+0.20 ± 0.02 Aab0.03 ± 0.01 Ba0.05 ± 0.01 Bab0.30 ± 0.02 Aa0.12 ± 0.04 Bbc0.12 ± 0.02 Cb
    CK- NO3+NH4+0.25 ± 0.05 Aa0.02 ± 0.01 Ba0.04 ± 0.01 Bb0.21 ± 0.06 Aab0.06 ± 0.01 Cc0.19 ± 0.03 Bb
    PEG+NO30.09 ± 0.01 Ac0.03 ± 0.01 Ba0.05 ± 0.01 Bab0.12 ± 0.01 Bb0.11 ± 0.01 Abc0.20 ± 0.03 Ab
    PEG+NH4+0.13 ± 0.02 Abc0.03 ± 0.01 Ca0.06 ± 0.01 Ba0.18 ± 0.07 Bab0.16 ± 0.02 Aab0.18 ± 0.04 ABb
    PEG+ NO3 + NH4+0.09 ± 0.03 Ac0.03 ± 0.01 Ba0.04 ± 0.01 Bb0.21 ± 0.05 Bab0.21 ± 0.03 Aa0.32 ± 0.02 Aa
    No.8–8CK-NO30.09 ± 0.01 Abc0.02 ± 0.01 Ba0.03 ± 0.01 Bab0.18 ± 0.03 Aa0.06 ± 0.01 Bb0.13 ± 0.02 Ab
    CK-NH4+0.15 ± 0.02 Aa0.01 ± 0.01 Ba0.03 ± 0.01 Bab0.14 ± 0.05 Aab0.09 ± 0.01 Aab0.13 ± 0.01 Ab
    CK- NO3+NH4+0.12 ± 0.01 Aba0.02 ± 0.01 Ba0.02 ± 0.01 Bb0.18 ± 0.02 Aa0.10 ± 0.01 Ba0.17 ± 0.03 ABa
    PEG+NO30.11 ± 0.01 Aab0.01 ± 0.01 Ba0.03 ± 0.01 Bab0.11 ± 0.01 Bb0.09 ± 0.01 Aab0.16 ± 0.03 Aa
    PEG+NH4+0.06 ± 0.01 Ac0.02 ± 0.01 Ba0.04 ± 0.01 Ba0.12 ± 0.01 Bb0.13 ± 0.01 Aa0.19 ± 0.02 Aa
    PEG+NO3+NH4+0.08 ± 0.01 Abc0.02 ± 0.01 Ba0.03 ± 0.01 Bab0.10 ± 0.02 Bab0.10 ± 0.01 ABa0.18 ± 0.02 Aa
    注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
    下载: 导出CSV

    表 5  干旱胁迫条件下添加不同形态氮素对杉木幼苗NO3-和NH4+吸收及分配的影响 (mg/pot)

    Table 5.  Effects of different nitrogen forms on NO3- and NH4+ uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

    家系
    Family clone
    处理
    Treatment
    总硝态氮总铵态氮
    根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
    No.7–14CK-NO33.61 ± 0.33 Bab3.92 ± 0.49 Aab5.65 ± 0.40 Aa98.15 ± 15.33 ABab55.52 ± 6.14 Bab168.85 ± 11.41 Aa
    CK-NH4+3.16 ± 1.15 Bab4.24 ± 1.18 Aab3.28 ± 0.36 Bb113.37 ± 8.50 Ba59.76 ± 19.89 Ca150.11 ± 20.24 Aab
    CK-NO3+NH4+2.84 ± 0.96 Bb3.02 ± 0.62 Bb5.87 ± 0.31 Aa90.99 ± 31.23 ABab49.77 ± 4.99 Bab173.89 ± 9.61 Aa
    PEG+NO32.33 ± 0.13 Bb3.85 ± 0.50 Aab4.31 ± 0.92 Bab48.53 ± 4.67 Bb42.41 ± 9.07 Bb134.66 ± 11.21 Ab
    PEG+NH4+5.28 ± 0.55 Aa5.01 ± 1.48 Aa4.68 ± 0.10 ABab57.53 ± 14.52 Bb53.53 ± 4.85 Bb138.20 ± 17.36 Ab
    PEG+ NO3+NH4+2.71 ± 0.9501 Bb4.49 ± 1.37 Aab2.93 ± 0.02 Bb54.97 ± 11.12 Bb51.34 ± 9.18 Bb161.96 ± 10.15 Aa
    No.8–8CK-NO3-4.81 ± 1.04 Aa1.63 ± 0.39 Bab3.67 ± 0.20 Abcd55.98 ± 7.16 Bb30.32 ± 6.97 Bb96.07 ± 19.02 Aab
    CK-NH4+3.79 ± 0.63 Aa0.96 ± 0.06 Bb2.06 ± 0.093 Bd77.18 ± 20.58 ABab39.77 ± 4.50 Bab92.98 ± 22.26 Aab
    CK-NO3+NH4+5.49 ± 0.51 Aa0.89 ± 0.06 Bb2.94 ± 0.54 Bcd47.73 ± 8.42 Bb37.52 ± 3.64 ABab83.83 ± 11.54 Ab
    PEG+NO31.25 ± 0.20 Bb0.95 ± 0.22 Bb3.22 ± 0.54 ABc88.02 ± 9.76 ABa35.90 ± 9.41 Bab113.43 ± 4.54 Aa
    PEG+NH4+4.38 ± 0.54 Aa1.87 ± 0.33 Ba5.25 ± 0.26 Aa87.58 ± 14.54 Ba51.83 ± 1.95 Ba136.56 ± 23.49 Aa
    PEG+NO3+NH4+1.81 ± 0.18 Bb1.59 ± 0.28 Bab4.54 ± 0.31 Aab48.87 ± 4.90 Bb32.43 ± 1.34 Cb108.95 ± 10.41 Aab
    注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
    下载: 导出CSV
  • [1] Muslima N, Renu P, Siddiqi T O, et al. Nitrogen-deficiency stress induces protein expression differentially in low-N tolerant and low-n sensitive maize genotypes[J]. Frontiers in Plant Science, 2016, 7. doi: 10.3389/fpls.2016.00298
    [2] 崔晓阳, 宋金凤. 原始森林土壤NH4+/NO3生境特征与某些针叶树种的适应性[J]. 生态学报, 2004, 25(11): 3082–3092. Cui X Y, Song J F. Soil NH4+/NO3 nitrogen characteristics in primary forests and the adaptability of some coniferous species[J]. Acta Ecologica Sinica, 2004, 25(11): 3082–3092.
    [3] 李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略[J]. 生态学报, 2016, 36(9): 2620–2625. Li C C, Li Q R, Xu X L, et al. Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages[J]. Acta Ecologica Sinica, 2016, 36(9): 2620–2625.
    [4] 樊卫国, 葛会敏. 不同形态及配比的氮肥对枳砧脐橙幼树生长及氮素吸收利用的影响[J]. 中国农业科学, 2015, 48(13): 2666–2675. Fan W G, Ge H M. Effects of nitrogen fertilizer of different forms and ratios on growth, nitrogen absorption and utilization of young navel orange trees grafted on Poncirus trifoliata[J]. Scientia Agricultura Sinica, 2015, 48(13): 2666–2675. doi: 10.3864/j.issn.0578-1752.2015.13.018
    [5] 盛炜彤, 范少辉, 马祥庆, 等. 杉木人工林长期生产力保持机制研究[M]. 北京: 科学出版社, 2005. 153–156.
    Sheng W T, Fan S H, Ma X Q, et al. Long term productivity of Chinese fir plantations[M]. Beijing: Science Press, 2005. 153–156.
    [6] 马晓东, 钟小莉, 桑钰. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用[J]. 生态学报, 2018, 38(20): 7508–7519. Ma X D, Zhong X L, Sang Y. Characteristics of nitrogen absorption, distribution, and utilization by Populus euphratica seedlings under drought stress[J]. Acta Ecologica Sinica, 2018, 38(20): 7508–7519.
    [7] 叶莉莎, 陈双林. 硝态氮和铵态氮供应比例对雷竹碳、氮、磷化学计量的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1672–1678. Ye L S, Chen S L. Effects of nitrate and ammonia supply ratio on the C, N and P stoichiometric characteristics of Phyllostachys violascens[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1672–1678. doi: 10.11674/zwyf.15520
    [8] Ga oY, Li Y, Yang X, et al. Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress[J]. Plant and Soil, 2010, 331(1–2): 193–201. doi: 10.1007/s11104-009-0245-1
    [9] 马祥庆, 刘爱琴, 黄宝龙, 等. 氮素高效基因型杉木无性系的选择研究[J]. 林业科学, 2002, 38(6): 53–57. Ma X Q, Liu A Q, Huang B L, et al. Study on selection of high-nitrogen-efficiency-genotypes of Chinese fir clones[J]. Scientia Silvae Sinicae, 2002, 38(6): 53–57. doi: 10.3321/j.issn:1001-7488.2002.06.010
    [10] 林有乐. 2003年干旱对1~3年生杉木林生长的影响[J]. 福建林业科技, 2004, 31(3): 31–34. Lin Y L. Effects of the 2003 drought on the growth of 1-to3-year-old Chinese fir (Cunninghamia Lanceolata) plantation[J]. Journal of Fujian Forestry Science and Technology, 2004, 31(3): 31–34. doi: 10.3969/j.issn.1002-7351.2004.03.008
    [11] 李树斌, 丁国昌, 曹光球, 等. 不同杉木无性系模拟胁迫下抗旱性综合评价[J]. 福建农林大学学报(自然科学版), 2012, 41(5): 491–496. Li S B, Ding G C, Cao G Q, et al. Drought resistance estimation of different Chinese fir clones under simulated water stress[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2012, 41(5): 491–496.
    [12] 郭伟志. 干旱胁迫下不同杉木无性系的若干生理响应和差异蛋白质组分析[D]. 福州: 福建农林大学硕士学位论文, 2012.
    Guo W Z. Analysis on some physiological effects and differential proteome of the different Chinese fir clones under drought stress[D]. Fuzhou: MS Thesis of Fujian Agriculture and Forestry University, 2012.
    [13] 刘欢, 王超琦, 吴家森, 等. 氮素指数施肥对杉木无性系苗生长及养分含量的影响[J]. 应用生态学报, 2016, 27(10): 3123–3128. Liu H, Wang C Q, Wu J S, et al. Effects of exponential N fertilization on the growth and nutrient content in clonal Cunninghamia lanceolata seedlings[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3123–3128.
    [14] Lü XT, Dijkstra FA, Kong DL, et al. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland[J]. Scientific Reports, 2014, 4: 4817.
    [15] 康晓育, 常聪, 孙协平, 等. 低氮和干旱胁迫对富士和秦冠生长及氮素利用的影响[J]. 植物营养与肥料学报, 2014, 20(4): 965–973. Tang X Y, Chang C, Sun X P, et al. How nitrogen and drought stress affect growth and nitrogen use efficiency for Fuji and Qinguan apple seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 965–973. doi: 10.11674/zwyf.2014.0419
    [16] 王旭明, 张铮, 王海红, 等. 局部根区水氮耦合对玉米幼苗养分吸收利用的影响[J]. 干旱地区农业研究, 2010, 28(3): 107–113. Wang X M, Zhang Z, Wang H H, et al. Interactive effects of water and nitrogen supply on nutrient absorption and utilization of maize seedlings under partial root-zone water stress[J]. Agricultural Research in the Arid Areas, 2010, 28(3): 107–113.
    [17] 牛振明, 张国斌, 刘赵帆, 等. 氮素形态及配比对甘蓝养分吸收、产量以及品质的影响[J]. 草业学报, 2013, 22(6): 68–76. Niu Z M, Zhang G B, Liu Z F, et al. Effects of different nitrogen forms on nutrient uptake, yield formation and quality of cabbage[J]. Acta Prataculturae Sinica, 2013, 22(6): 68–76. doi: 10.11686/cyxb20130609
    [18] 邹春琴, 李春俭, 张福锁, 等. 铁和不同形态氮素对玉米植株吸收矿质元素及其在体内分布的影响. Ⅰ. 对氮、磷、钾、钙、镁等营养元素的影响[J]. 植物营养与肥料学报, 1996, 2(1): 68–73. Zou C Q, Li C J, Zhang F S, et al. Effects of Fe and different forms of nitrogen on uptake and distribution of mineral elements in corn plants Ⅰ. on the N, P, K Ca, and Mg[J]. Plant Nutrition and Fertilizer Science, 1996, 2(1): 68–73. doi: 10.3321/j.issn:1008-505X.1996.01.009
    [19] 刘秀珍, 郭丽娜, 赵兴杰. 不同水分条件下氮肥形态配比对苋菜养分与产量的影响[J]. 水土保持学报, 2008, 22(6): 141–144. Liu X Z, Guo L N, Zhao X J. Effects of nitrogen forms on nutrient and yield of Amaranth with different irrigation[J]. Journal of Soil and Water Conservation, 2008, 22(6): 141–144. doi: 10.3321/j.issn:1009-2242.2008.06.030
    [20] Gutschick VP, Alamos L, Mexico N. Evolved strategies in nitrogen acquisition by plants[J]. The American Naturalist, 1981, 118(5): 607–637. doi: 10.1086/283858
    [21] 唐辉, 李婷婷, 沈朝华, 等. 氮素形态对香榧苗期光合作用、主要元素吸收剂氮代谢的影响[J]. 林业科学, 2014, 50(10): 158–163. Tang H, Li T T, Shen C H, et al. Effects of nitrogen forms on foliar photosynthesis, nutrient status and nitrogen metabolism of Torreya grandis Seedlings[J]. Scientia Silvae Sinicae, 2014, 50(10): 158–163.
    [22] Olykan S T and Adams J A. Pinus radiata seedling growth and micronutrient uptake in a sand culture experiment as affected by the form of nitrogen[J]. New Zealand Journal of Forestry Science, 1995, 25(1): 49–60.
    [23] 于飞, 周健民, 王火焰, 等. 不同氮肥对油菜生长和养分吸收的影响[J]. 中国土壤与肥料, 2005, (1): 20–22. Yu F, Zhou J M, Wang H Y, et al. Effects of different nitrogen on growth and nutrient uptake of rape[J]. Soil and Fertilizer Sciences in China, 2005, (1): 20–22. doi: 10.3969/j.issn.1673-6257.2005.01.006
    [24] Ruan JY, Zhang FS, Ming HW. Effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property Camellia sinensis L[J]. Plant and Soil, 2000, 223: 63–71.
    [25] 范钦桢. 铵对钾素释放、固定影响的研究[J]. 土壤学报, 1993, 30(3): 245–251. Fan Q Z. Influence of ammonium on release and fixation of potassium in soil[J]. Acta Pedologica Sinica, 1993, 30(3): 245–251.
    [26] Ek H, Andersson S, Arnebrant K, et al. Growth and assimilation of NH4+ and NO3 by Paxillus involutus in association with Betula pendula and Piceaabies as affected by substrate pH[J]. New Phytologist, 1994, 128(4): 629–637. doi: 10.1111/j.1469-8137.1994.tb04027.x
    [27] 艾绍英, 姚建武, 黄小红, 等. 蔬菜硝酸盐的还原转化特性研究[J]. 植物营养与肥料学报, 2002, 8(1): 40–43. Ai S Y, Yao J W, Huagn X H, et al. Study on the nitrate reduction characteristics of vegetables[J]. Plant Nutrition and Fertilizer Science, 2002, 8(1): 40–43. doi: 10.3321/j.issn:1008-505X.2002.01.007
    [28] 邹春琴, 李春俭, 张福锁, 等. 铁和不同形态氮素对玉米植株吸收矿质元素及其在体内分布的影响Ⅱ. 对铁、锰、铜、锌等营养元素的影响[J]. 植物营养与肥料学报, 1996, 2(3): 219–225. Zou C Q, Li C J, Zhang F S, et al. Effects of iron and different forms of nitrogen on uptake and distribution of mineral elements in corn plantsⅡ. on the Fe, Mn, Cu and Zn[J]. Plant Nutrition and Fertilizer Science, 1996, 2(3): 219–225. doi: 10.3321/j.issn:1008-505X.1996.03.005
    [29] Warren C R and Adams M A. Possible cause of slow growth of nitrate-supplied Pinus pinaster[J]. Canadian Journal of Forest Research, 2002, 32: 569–580. doi: 10.1139/x01-225
  • [1] 李华杨肖娥罗安程 . 不同氮源与钾水平对杂交组合及常规稻生长和养分吸收的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2001.0306
    [2] 汪耀富孙德梅徐传快程玉渊 . 干旱胁迫下氮用量对烤烟养分积累与分配及烟叶产量和品质的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2004.0317
    [3] 耿杰张琳捷岳小红曹靖代立兰蔡锐唐让云 . 铵态氮和硝态氮调节盐胁迫豌豆幼苗生长和根系呼吸的作用. 植物营养与肥料学报, doi: 10.11674/zwyf.17314
    [4] 柯世省金则新 . 干旱胁迫和复水对夏蜡梅幼苗光合生理特性的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2007.0629
    [5] 丁燕芳梁永超朱佳李兆君 . 硅对干旱胁迫下小麦幼苗生长及光合参数的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2007.0319
    [6] 高雁李春娄恺 , . 甜菜碱对干旱胁迫下棉花幼苗生理特性的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.0355
    [7] 巩文秀马力张存莉 . 喷施拉肖皂苷C提高黄瓜幼苗对抗干旱胁迫的生理效应. 植物营养与肥料学报, doi: 10.11674/zwyf.14361
    [8] 田萌萌刘静刘洁于向鹏金海如* . 不同外源碳对AM真菌吸收氮源合成精氨酸的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.1108
    [9] 刘文莉张崇邦管铭韩文娟葛滢常杰 . 不同植物种类、碳氮源供给和pH对人工湿地真菌反硝化的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.17018
    [10] . 越冬期干旱胁迫对油菜施肥效果的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2010.0522
    [11] 魏永胜梁宗锁张福锁 . 干旱胁迫及不同钾水平下烟草叶肉细胞中钾的再分布. 植物营养与肥料学报, doi: 10.11674/zwyf.2002.0413
    [12] 高雁李春娄恺 . 干旱胁迫条件下加工番茄对喷施甜菜碱的生理响应. 植物营养与肥料学报, doi: 10.11674/zwyf.2012.11320
    [13] 邢承华吴韶辉梅忠陈雪罗小会 . 黑豆边缘细胞对干旱胁迫的响应和对根系生理特性的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2012.11285
    [14] 秦子娴朱敏郭涛* . 干旱胁迫下丛枝菌根真菌对玉米生理生化特性的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2013.0229
    [15] 李长志李欢刘庆史衍玺 . 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, doi: 10.11674/zwyf.14513
    [16] 孙哲史春余刘桂玲高俊杰柳洪鹃郑建利张鹏 . 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异. 植物营养与肥料学报, doi: 10.11674/zwyf.15307
    [17] 王冰程宪国 . 干旱、高盐及低温胁迫下植物生理及转录因子的应答调控. 植物营养与肥料学报, doi: 10.11674/zwyf.17312
    [18] 樊小林李玲何文勤尚浩博汪沛洪 . 氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应. 植物营养与肥料学报, doi: 10.11674/zwyf.1998.0205
    [19] 孙哲史春余陈路路田昌庚郑建利柳洪鹃张鹏 . 干旱胁迫下钾素对甘薯碳水化合物及内源激素含量的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.18388
    [20] 肖列刘国彬李鹏薛萐 . 白羊草光合特性及非结构性碳水化合物含量对 CO2 浓度倍增和干旱胁迫的响应. 植物营养与肥料学报, doi: 10.11674/zwyf.16132
  • 加载中
WeChat 点击查看大图
表(5)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-06
  • 网络出版日期:  2019-12-11

不同氮素形态对干旱胁迫杉木幼苗养分吸收及分配的影响

    作者简介:李树斌 E-mail:fjlishubin@126.com
    通讯作者: 周丽丽, fjzhoulili@126.com
  • 1. 福建农林大学林学院,福州 350002
  • 2. 国家林业和草原局杉木工程技术研究中心,福州 350002
  • 3. 闽江学院海洋研究院,福州 350108
  • 4. 人工林可持续经营福建省高校工程研究中心,福州 350002
  • 5. 福建农林大学艺术与园林学院,福州 350002
  • 基金项目: 福建农林大学科技创新专项基金项目(CXZX2017106);国家自然科学基金项目(31800532);福建省林业科技项目([2019]16号);福建省自然科学基金项目(2018J05059);人工林可持续经营福建省高校工程研究中心开放课题(PSM-2017002)。
  • 摘要: 【目的】干旱胁迫是限制植物生长的重要非生物因素之一,而适宜的氮素营养可以提高植物的抗旱性。本文探讨了供应不同形态氮源对干旱条件下杉木(Cunninghamia lanceolata (Lamb.) Hook)幼苗养分吸收及分配的影响。【方法】采用水培试验,供试杉木材料为2个无性系幼苗(7–14号和8–8号),在营养液中添加10%(w/v)PEG-6000进行干旱胁迫。营养液中的氮源分别处理包括硝态氮、铵态氮、硝铵混合氮,氮素浓度均为4.571 mmol/L,每个品种均设6个处理。培养20 d后,测定了杉木幼苗根、茎、叶的养分含量。【结果】与正常水分供应相比较,干旱胁迫条件下供应铵态氮可促进叶片N、K以及茎叶P、K的吸收,供应混合氮可促进根部K的吸收;供应铵态氮促进根、茎Ca的吸收,对叶片Ca无明显作用。干旱胁迫对根部Fe、Mn、Cu、Zn吸收量影响显著,氮素供应不同程度地降低干旱胁迫下各器官的Mg、Fe、Mn和Cu吸收量,表现为抑制吸收,但添加铵态氮比硝态氮的降低幅度小。三个氮源处理均降低了干旱条件下根部Zn吸收量,但没有降低甚至增加了茎、叶中Zn的吸收量,说明氮营养可调整Zn在各器官间的分配,缓解干旱导致的缺锌现象。不同器官之间各养分吸收量差异显著,三个氮源处理中,N和P吸收量表现为叶 > 根 > 茎,K和Ca为叶 > 茎 > 根,Fe、Cu为根 > 叶 > 茎,Mg、Mn和Zn吸收量在各器官之间的分配规律不一。铵态氮吸收量均表现为叶 > 根 > 茎,且各器官铵态氮吸收量显著高于硝态氮,说明杉木具有明显的喜铵特性。【结论】在干旱胁迫下,氮素供应形态显著影响着杉木幼苗养分的吸收及在各器官的分配,作用效果因家系品种和元素种类而异。总体来讲,铵态氮提高干旱胁迫下杉木幼苗养分吸收的效果好于NO3-N,杉木可以认为是喜铵植物。

    English Abstract

    • 氮是植物必需的大量元素之一,通常是植物生长发育和形态构建中吸收最多的矿质元素之一[1]。我国南方酸性红壤的强烈淋溶作用导致林地氮素发生大量流失,土壤氮素不足已成为制约南方人工林产量的重要因素[2]。很多研究已经证实,可被植物吸收利用的氮素形态主要有铵态氮 (NH4+-N) 和硝态氮 (NO3-N) 两种,但不同植物种类对氮营养环境的长期适应,形成对不同的氮源偏向选择性,并形成了不同的氮素利用分配策略[3]。有研究认为,酸性土壤上发育在演替阶段晚期或顶极阶段的占优势针叶树种对铵态氮具有较高吸收能力及利用效率,表现出强烈的铵偏向选择,如加州铁杉 (Tsuga heterophylla)、北美短叶松 (Pinus banksiana)、花旗松 (Pseudotsuga meziesii)、挪威云杉 (Picea abies) 等[2],而在呈碱性的石灰性黄壤上生长的枳砧脐橙 (Citrus sinensis) 幼树却偏好吸收硝态氮[4]。可见,植物对不同氮源的选择吸收是长期进化形成的内在特性。

      目前,全球变暖导致气温升高,降水和蒸发格局的改变使很多地区的树种遭受着严峻的干旱考验。亚热带森林受季风气候影响,夏季高温多雨,土壤高度风化呈酸性,养分长期淋溶损失,形成了“缺氮少磷富钾”的特点[5]。干旱会降低植物光合能力和氮代谢酶活性,影响氮素等矿质养分的吸收及分配,造成自身生长减缓甚至停滞[6-7]。而适当增加氮素供应可以提高干旱胁迫下叶片含水量,增强光合竞争力以及营养贮藏,对干旱胁迫具有明显的缓解作用[8]

      杉木 (Cunninghamia lanceolata) 人工林被认为是人为控制下的偏途顶级群落,是中国南方最主要的速生用材树种之一,栽植面积占中国人工林面积的26.55%。长期以来杉木多代连栽、短轮伐期及不合理经营等措施导致人工林产量日趋下降,土壤氮素不足一直是限制杉木人工林产量的重要因素[9]。加之近年来全球气候变化及极端天气的出现,季节性伏旱和秋旱造成杉木生长不良或多病,这种现象在杉木分布的北部边缘产区更加明显,干旱胁迫严重制约杉木产量的提高和可持续发展[10]。目前,国内外研究者对于杉木抗旱和氮素养分利用方面已开展了系列研究,但这些研究要么主要集中在不同耐旱型种源筛选、抗旱的形态、生理及基因调控机理等方面[11-12],要么主要针对配方施肥及营养诊断方面[13],而关于杉木在干旱胁迫下添加不同形态氮素如何影响养分的吸收及分配策略的研究还鲜见报道。氮素供应能有效调控植物不同器官之间养分的运移分配,可以带动整个植物生态系统的水分及养分的应答效应[14]。因此,我们提出如下假设:在干旱胁迫条件下,供应不同形态氮素养分可调节杉木幼苗对氮及其它养分的吸收和分配,用以补偿干旱胁迫对养分吸收造成的负面效应。为了验证该假设,我们选择课题组前期筛选的杉木优良无性系7–14号和8–8号为供试材料,通过水培试验研究供应不同形态氮素对干旱条件下杉木幼苗大中微量养分及不同形态氮素吸收及分配的影响,探讨不同杉木无性系在干旱条件下依赖于不同形态氮素对养分吸收利用的耐旱机理,为杉木种质资源耐旱性评价、精准造林配置及提高林地养分利用效率提供科学依据。

      • 原始材料种子由福建省尤溪国有林场杉木三代种子园提供,在国家林草局杉木工程技术研究中心温室内,经种子育苗、苗期生长评价及无性繁殖,选择一年生优良杉木无性系幼苗为供试材料 (编号分别为7–14号和8–8号),平均苗高38.5 cm。

      • 首先将两种杉木幼苗从培养基质 (蛭石∶营养土=1∶1) 中取出,清水洗净根部,再用去离子水反复冲洗3次后,移至水培装置中进行驯化培养1周,每天上午和下午各通气1 h,使杉木幼苗适应水培环境。然后,以Hoagland营养液为基础营养液,其中氮素处理为:铵态氮 (NH4+-N)、硝态氮 (NO3-N)、混合氮 (NH4+-N+NO3-N),每种营养液中氮浓度均为4.571 mmol/L。在处理用营养液中加入10%(w/v) 的PEG-6000(德国Merck) 模拟干旱胁迫,以不加为对照,每种材料共进行6种处理:CK-NO3、CK-NH4+、CK-NO3+NH4+、10%PEG+NO3、10%PEG+NH4+、10%PEG+NO3+NH4+。在营养液中添加硝化抑制剂 (0.01 mM双氰胺,DCD) 防止氮素形态变化。两种无性系杉木幼苗驯化结束后,分别移入6个处理的培养液中培养,每个处理栽种3株幼苗,3次重复。处理在光照培养箱 (LT-ACC400) 内进行,培养温度25℃,光照16 h,湿度60%,光照强度9600 lx。

      • 培养20 d后,幼苗收获,分为根、茎、叶三部分进行烘干、称重,研磨后过0.15 mm(100目) 筛,备用。称取0.1 g用锡箔纸包裹,全氮采用元素分析仪测定 (德国,ELEMENTAR VarioMAX型)。全P、K、Ca、Mg、Fe、Mn、Cu和Zn采用电感耦合等离子体发射光谱仪 (美国,OPTIMA 8000型)。铵态氮和硝态氮采用间断元素化学分析仪测定 (意大利,SmartChem200型)。

      • 试验数据在Excel 2007软件中进行整理。采用SPSS 22.0软件进行统计分析。

        养分吸收量 (mg/盆)=养分含量 (mg/g) × 生物量 (g/盆)。

        不同处理、不同器官间养分吸收量采用单因素 (one-way ANOVA) 和Duncan法进行方差分析和多重比较 (P < 0.05)。采用三因素方差分析 (three-way ANOVA) 检验无性系类型、干旱处理、氮素形态及其交互作用对不同器官养分吸收量的影响。

      • 表1可知,对于家系No.7–14,供应硝态氮和铵态氮对茎叶中的氮素吸收影响不显著,但铵态氮显著增加根的氮素吸收。干旱胁迫对根和叶中氮素的吸收影响不显著,但显著降低在茎中的吸收量 (P < 0.05)。家系No.8–8在正常情况下,根中氮素的吸收均高于家系No.7–14;但在干旱胁迫下,除叶片中铵态氮处理外,其余处理各部位氮素的吸收均显著下降,且低于同样处理的No.7–14。因此,家系No.7–14对氮素形态比较敏感,喜铵态氮,而对干旱胁迫不敏感。家系No.8–8对氮素形态不敏感,但对干旱胁迫敏感。

        表 1  干旱胁迫条件下添加不同形态氮素对杉木幼苗大量养分吸收及分配的影响 (mg/pot)

        Table 1.  Effects of different nitrogen forms on total N, P and K uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

        家系
        Family
        clone
        氮供应形态
        N supply
        form
        NPK
        根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
        No.7–14CK-NO399.96 ± 10.96 Bb95.36 ± 15.33 Ba232.16 ± 78.56 Aa10.34 ± 0.61 ABa8.72 ± 0.39 Ba16.75 ± 1.15 Aa46.15 ± 2.53 Ba107.40 ± 2.33 Aa161.57 ± 38.56 Aab
        CK-NH4+113.62 ± 9.24 Ba83.69 ± 5.40 Bab140.96 ± 22.63 Aab12.12 ± 0.74 ABa6.98 ± 1.72 Bab16.42 ± 3.52 Aa45.48 ± 12.16 Bab101.08 ± 30.23 Aa113.48 ± 19.05 ABb
        CK-NO3+
        NH4+
        123.20 ± 43.81 Aa91.31 ± 22.24 Aa120.92 ± 48.11 Ab5.51 ± 1.84 Bb6.06 ± 1.27 ABab15.85 ± 1.21 Aab36.35 ± 14.40 Cabc86.67 ± 8.54 Ba211.84 ± 42.75 Aa
        PEG+NO3102.68 ± 13.72 Ab60.77 ± 11.50 Bb123.00 ± 14.67 Ab3.89 ± 0.47 Bb5.34 ± 1.65 ABab11.90 ± 1.13 Abc19.98 ± 1.28 Cc71.57 ± 11.37 Ba177.65 ± 6.08 Aab
        PEG+NH4+113.96 ± 20.07 ABa72.20 ± 10.86 Bb161.78 ± 20.30 Aab4.55 ± 1.01 Bb4.92 ± 0.78 ABb12.68 ± 1.49 Aab35.79 ± 6.06 Cbc89.84 ± 8.51 Ba178.61 ± 26.51 Aab
        PEG+NO3+
        NH4+
        71.30 ± 13.36 Cc79.26 ± 5.57 Bb173.80 ± 2.26 Aab3.14 ± 0.47 Bb6.25 ± 1.49 ABab9.06 ± 0.81 Ac18.23 ± 4.66 Cc103.08 ± 26.58 Ba201.47 ± 10.31 Aa
        No.8–8CK-NO3139.53 ± 29.58 Ba87.21 ± 11.56 Ba153.81 ± 32.65 Aab7.74 ± 0.81 ABa4.04 ± 1.35 Ba11.01 ± 2.38 Aa23.49 ± 3.21 Ca49.03 ± 8.52 Ba141.25 ± 21.71 Ab
        CK-NH4+139.10 ± 17.01 Ba88.52 ± 6.34 Ba160.38 ± 5.71 Aa6.04 ± 0.92 ABab3.41 ± 0.72 Bab9.02 ± 2.52 Aab19.05 ± 3.53 Cab42.83 ± 10.23 Ba132.93 ± 31.54 Ab
        CK-NO3+
        NH4+
        142.45 ± 13.34 Aa78.38 ± 6.53 Bb148.18 ± 22.67 Abc4.21 ± 0.78 Bb2.26 ± 0.10 Bb8.82 ± 1.49 Ab9.27 ± 0.88 Cb30.27 ± 4.45 Bb183.15 ± 34.24 Aab
        PEG+NO375.44 ± 6.53 Cb59.22 ± 12.53 Bc122.28 ± 9.57 Ac4.15 ± 0.52 Bb3.61 ± 0.71 Ba9.83 ± 0.82 Aab15.98 ± 2.11 Cab37.35 ± 4.95 Ba141.44 ± 9.52 Ab
        PEG+NH4+107.98 ± 13.55 ABb81.12 ± 4.69 Bb159.21 ± 21.78 Aa4.96 ± 0.47 Bb5.20 ± 0.11 Ba12.05 ± 1.21 Aa16.89 ± 3.51 Cab64.12 ± 1.91 Ba211.36 ± 16.44 Aa
        PEG+NO3+
        NH4+
        63.67 ± 7.57 Bb57.04 ± 8.37 Bc125.78 ± 12.69 Ac2.73 ± 0.21 Bc3.30 ± 0.68 Bab8.51 ± 1.04 Ab11.78 ± 1.44 Cab46.17 ± 3.72 Ba164.12 ± 7.33 Aab
        注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
      • 家系No.7–14,正常条件下氮素供应形态对根茎叶中磷的吸收没有显著影响,干旱胁迫显著降低两种氮形态处理根和叶中磷的吸收,硝态氮处理显著降低了茎中磷的吸收量 (P < 0.05)。家系No.8–8在正常情况下,根茎叶中磷的吸收量低于家系No.7–14,氮素供应形态对其吸收量影响不显著;干旱胁迫下,两种氮源处理根系中磷的吸收量显著降低,而茎叶中影响不显著。因此,两个家系磷的吸收不受氮素供应形态的影响,干旱胁迫主要降低了根系中磷的吸收。

      • 正常胁迫下,氮素供应形态对家系No.7–14和家系No.8–8的钾吸收量影响均不显著,但在干旱胁迫下,供应硝态氮显著降低家系No.7–14根中钾的吸收,供应铵态氮显著增加两个家系叶中钾的吸收。因此,两个家系各器官钾的吸收不受氮素形态的影响,但添加铵态氮可以显著促进叶中钾的吸收。

      • 表2可知,无性系类型与干旱胁迫、氮素形态与干旱胁迫对两个家系根的氮、磷吸收具有显著的交互作用,无性系类型和干旱胁迫对两个家系茎叶磷的吸收及根中钾的吸收具有显著的交互作用。

        表 2  无性系类型、干旱胁迫及氮素形态对杉木不同器官养分吸收的三因素方差分析 (P值)

        Table 2.  Three-way ANOVA analysis of clones, water stress, nitrogen sources and their interactions on nutrient uptake of different organs in Cunninghamia lanceolata plantlets (P value)

        养分
        Nutrient
        器官
        Organ
        无性系类型 (C)
        Clone
        氮素形态 (N)
        N form
        干旱胁迫 (D)
        Water stress
        C×NC×DN ×DC×N×D
        N 根Root0.0240.0380.0030.9880.0500.0190.731
        茎Stem0.4500.7580.0090.3510.9730.4180.876
        叶Leaf0.4550.7530.4160.5650.8590.1220.241
        P 根Root0.003 < 0.001 < 0.0010.2210.0020.0380.076
        茎Stem < 0.0010.4390.4460.4580.0490.2480.600
        叶Leaf0.0010.0220.0320.9960.0100.4000.790
        K 根Root < 0.0010.0500.0090.5690.0400.4280.727
        茎Stem < 0.0010.6240.9120.7300.2360.1140.666
        叶Leaf0.4270.1220.1470.2020.8980.0600.913
        Ca根Root0.9580.0500.5280.7360.8650.0500.633
        茎Stem0.0410.4420.5080.2490.8260.1850.819
        叶Leaf0.0350.5380.0270.6170.3770.2280.595
        Mg根Root < 0.0010.013 < 0.0010.063 < 0.0010.8280.394
        茎Stem0.0210.8810.1980.2540.0920.1570.729
        叶Leaf0.6350.5840.0070.3110.0130.4650.534
        Fe根Root0.2930.050 < 0.0010.0140.7250.2310.411
        茎Stem0.5640.2630.8750.6850.4000.1610.035
        叶Leaf0.0500.6490.2800.0310.0130.1200.885
        Mn根Root0.4400.138 < 0.0010.0200.5910.1720.019
        茎Stem < 0.0010.4450.7100.4750.0890.0500.259
        叶Leaf0.0140.1620.5490.7080.2300.2560.451
        Cu根Root0.0010.089 < 0.0010.1170.0290.0180.065
        茎Stem0.0010.6550.3070.4630.3070.4970.131
        叶Leaf < 0.0010.0210.2030.6240.8940.2430.477
        Zn根Root0.0230.1420.0300.0670.6850.7230.209
        茎Stem0.0020.038 < 0.0010.9620.0700.0970.004
        叶Leaf0.0500.001 < 0.0010.0320.0500.8960.279
        注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
      • 表3可知,正常处理下,氮素供应形态对两个家系钙吸收量的影响均不显著,但在干旱条件下,硝态氮普遍降低了两个家系各器官钙的吸收量,铵态氮则在一定程度上增加了各器官钙的吸收。其中,硝态氮显著降低家系No.8–8茎中钙的吸收量,铵态氮显著增加家系No.7–14根中钙的吸收量 (P < 0.05)。因此,两个家系钙的吸收不受氮素供应形态的影响,但干旱条件下添加铵态氮可促进根部钙的吸收。

        表 3  干旱胁迫条件下添加不同形态氮素对杉木幼苗中量养分吸收及分配的影响 (mg/pot)

        Table 3.  Effects of different nitrogen forms on total Ca and Mg uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

        家系
        Family clone
        处理
        Treatment
        CaMg
        根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
        No.7–14CK-NO319.70 ± 1.68 Bbc25.93 ± 2.09 ABa51.31 ± 3.09 Aab14.93 ± 1.37 Ab6.91 ± 0.46 Ba13.35 ± 1.12 Ba
        CK-NH4+12.86 ± 1.13 Cc24.44 ± 5.58 Ba49.96 ± 6.00 Aab15.94 ± 0.53 Aa6.04 ± 1.08 Ba12.70 ± 2.14 ABa
        CK-NO3+NH4+22.49 ± 9.99 Ba24.33 ± 4.89 ABa57.54 ± 5.28 Aa11.58 ± 2.49 Ac6.59 ± 0.71 Aa12.73 ± 0.98 Aa
        PEG+NO315.88 ± 0.96 Bbc22.26 ± 3.34 ABa47.53 ± 5.33 Ab6.54 ± 0.74 Bd4.49 ± 0.77 Bb8.67 ± 0.42 Ab
        PEG+NH4+22.08 ± 7.08 Ba26.95 ± 2.88 ABa48.76 ± 5.49 Ab6.97 ± 1.15 ABd4.82 ± 0.62 Bb8.53 ± 1.05 Ab
        PEG+ NO3 + NH4+11.29 ± 2.35 Bc31.85 ± 6.67 Aa49.84 ± 3.01 AAb3.97 ± 0.60 Be5.91 ± 1.12 Ab8.35 ± 0.44 Ab
        No.8–8CK-NO320.88 ± 2.31 Ca22.40 ± 6.75 Ba53.76 ± 8.94 Aa7.67 ± 0.64 Aa5.18 ± 1.64 Aa9.09 ± 1.61 Aa
        CK-NH4+15.43 ± 4.78 CAb22.49 ± 2.42 Ba54.94 ± 3.21 Aa4.19 ± 1.97 Cbc4.56 ± 0.55 BAb10.07 ± 1.63 Aa
        CK-NO3+NH4+17.14 ± 0.81 BAb16.03 ± 1.90 Bb64.27 ± 10.09 Aa5.88 ± 0.08 BAbc3.87 ± 0.20 Bb12.23 ± 2.36 Aa
        PEG+NO319.00 ± 2.91 BAb16.63 ± 3.40 Bb55.35 ± 3.93 Aa6.14 ± 0.82 BAb3.72 ± 0.65 Bb8.72 ± 0.88 Aa
        PEG+NH4+19.35 ± 2.30 CAb28.04 ± 1.22 Ba69.52 ± 8.12 Aa4.98 ± 0.39 Cbc6.03 ± 0.21 Ba12.19 ± 1.07Aa
        PEG+NO3+NH4+11.75 ± 1.19 Bb19.46 ± 3.22 BAb54.55 ± 6.12 Aa3.57 ± 0.26 Cc4.47 ± 0.50 BAb9.79 ± 1.02 Aa
        注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
      • 对于家系No.7–14,两种氮素供应形态对茎叶中镁的吸收量影响不显著,但供应铵态氮显著增加根中镁的吸收量;干旱胁迫显著降低根茎叶中镁的吸收量 (P < 0.05)。家系No.8–8在正常胁迫条件下,不同氮素形态根茎叶中镁的吸收量均低于家系No.7–14,不同氮素供应对茎叶中镁的吸收量影响不显著,但添加铵态显著降低根中镁的吸收 (P < 0.05);干旱胁迫下,硝态氮降低了根茎叶中镁的吸收,铵态氮不同程度地增加了各器官镁的吸收。因此,不同家系各器官中镁的吸收对氮素添加的响应不同,铵态氮显著增加家系No.7–14根中镁的吸收量,而干旱胁迫显著降低了其根茎叶中镁的吸收。

      • 表2可知,氮素形态与干旱胁迫对两个家系根中镁的吸收具有显著的交互作用,而无性系类型与干旱胁迫对两个家系根与叶中镁的吸收量影响显著 (P < 0.05)。

      • 表4可知,氮素供应形态对家系No.7–14根和叶中铁的吸收没有显著影响,但铵态氮处理显著增加了茎中磷的吸收量,干旱胁迫显著降低了根中铁的吸收量 (P < 0.05)。不同形态氮素供应对家系No.8–8根和茎部铁的吸收影响显著,其中铵态氮显著了降低了根中铁的吸收,而茎中铁的吸收量却显著增加;干旱胁迫降低了根中铁的吸收却增加了茎叶中铁的含量,其中干旱胁迫显著降低了硝态氮处理根与茎中铁的含量 (P < 0.05)。因此,两个家系茎中铁的吸收量受氮素供应的影响显著,而干旱胁迫显著降低了两个家系根中铁的吸收。

        表 4  干旱胁迫条件下添加不同形态氮素对杉木幼苗微量养分吸收及分配的影响 (mg/pot)

        Table 4.  Effects of different nitrogen forms on total Fe, Mn, Cu and Zn uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

        家系
        Family
        clone
        处理
        Treatment
        FeMn
        根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
        No.7–14CK-NO37.91 ± 0.86 Aa0.16 ± 0.01 Bb0.55 ± 0.02 Bab0.32 ± 0.02 Bb0.26 ± 0.02 Ba2.07 ± 0.19 Aab
        CK-NH4+10.30 ± 1.52 Aa0.33 ± 0.07 Ba0.52 ± 0.04 Bb0.63 ± 0.03 Ba0.28 ± 0.05 Ca1.85 ± 0.16 Aab
        CK- NO3+NH4+5.37 ± 1.65 Aab0.18 ± 0.04 Cb0.77 ± 0.09 Ba0.31 ± 0.07 Bb0.20 ± 0.03 Bab2.32 ± 0.05 Aa
        PEG+NO33.21 ± 0.28 Ab0.29 ± 0.11 Ba0.44 ± 0.02 Bb0.12 ± 0.01 Bc0.15 ± 0.03 Bb1.81 ± 0.16 Ab
        PEG+NH4+5.34 ± 1.36 Aab0.17 ± 0.02 Bb0.42 ± 0.15 Bb0.14 ± 0.03 Cc0.24 ± 0.03 Ba1.90 ± 0.17 Aab
        PEG+ NO3- + NH4+2.61 ± 0.59 Ab0.30 ± 0.06 Ba0.52 ± 0.03 Bb0.14 ± 0.04 Cc0.28 ± 0.07 Ba2.12 ± 0.10 Aab
        No.8–8CK-NO310.25 ± 2.49 Aa0.18 ± 0.03 Cb0.41 ± 0.08 Bab0.63 ± 0.19 Ba0.14 ± 0.03 Cab2.05 ± 0.21 Aab
        CK-NH4+5.69 ± 0.80 Ab0.25 ± 0.05 Ba0.42 ± 0.03 Bab0.39 ± 0.06 Bab0.11 ± 0.02 Cb1.92 ± 0.85 Ab
        CK- NO3+NH4+6.23 ± 0.42 Ab0.26 ± 0.01 Ba0.44 ± 0.07 Bab0.38 ± 0.02 Bab0.11 ± 0.01 Cb3.21 ± 0.70 Aa
        PEG+NO33.06 ± 0.33 Ab0.16 ± 0.05 Cb0.51 ± 0.04 Bab0.14 ± 0.05 Cb0.14 ± 0.03 Bab2.52 ± 0.27 Aab
        PEG+NH4+2.59 ± 0.58 Ab0.26 ± 0.04 Ba0.58 ± 0.11 Ba0.16 ± 0.03 Bb0.18 ± 0.02 Ba3.09 ± 0.41 Aa
        PEG+NO3+NH4+2.68 ± 0.38 Ab0.20 ± 0.03 Bab0.36 ± 0.02 Bb0.13 ± 0.02 Bb0.16 ± 0.01 Bab2.79 ± 0.36 Aab
        家系
        Family
        clone
        处理
        Treatment
        CuZn
        根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
        No.7–14CK-NO30.13 ± 0.02 Abc0.04 ± 0.01 Ba0.05 ± 0.01 Bab0.12 ± 0.02 Ab0.11 ± 0.01 Abc0.12 ± 0.01 Bb
        CK-NH4+0.20 ± 0.02 Aab0.03 ± 0.01 Ba0.05 ± 0.01 Bab0.30 ± 0.02 Aa0.12 ± 0.04 Bbc0.12 ± 0.02 Cb
        CK- NO3+NH4+0.25 ± 0.05 Aa0.02 ± 0.01 Ba0.04 ± 0.01 Bb0.21 ± 0.06 Aab0.06 ± 0.01 Cc0.19 ± 0.03 Bb
        PEG+NO30.09 ± 0.01 Ac0.03 ± 0.01 Ba0.05 ± 0.01 Bab0.12 ± 0.01 Bb0.11 ± 0.01 Abc0.20 ± 0.03 Ab
        PEG+NH4+0.13 ± 0.02 Abc0.03 ± 0.01 Ca0.06 ± 0.01 Ba0.18 ± 0.07 Bab0.16 ± 0.02 Aab0.18 ± 0.04 ABb
        PEG+ NO3 + NH4+0.09 ± 0.03 Ac0.03 ± 0.01 Ba0.04 ± 0.01 Bb0.21 ± 0.05 Bab0.21 ± 0.03 Aa0.32 ± 0.02 Aa
        No.8–8CK-NO30.09 ± 0.01 Abc0.02 ± 0.01 Ba0.03 ± 0.01 Bab0.18 ± 0.03 Aa0.06 ± 0.01 Bb0.13 ± 0.02 Ab
        CK-NH4+0.15 ± 0.02 Aa0.01 ± 0.01 Ba0.03 ± 0.01 Bab0.14 ± 0.05 Aab0.09 ± 0.01 Aab0.13 ± 0.01 Ab
        CK- NO3+NH4+0.12 ± 0.01 Aba0.02 ± 0.01 Ba0.02 ± 0.01 Bb0.18 ± 0.02 Aa0.10 ± 0.01 Ba0.17 ± 0.03 ABa
        PEG+NO30.11 ± 0.01 Aab0.01 ± 0.01 Ba0.03 ± 0.01 Bab0.11 ± 0.01 Bb0.09 ± 0.01 Aab0.16 ± 0.03 Aa
        PEG+NH4+0.06 ± 0.01 Ac0.02 ± 0.01 Ba0.04 ± 0.01 Ba0.12 ± 0.01 Bb0.13 ± 0.01 Aa0.19 ± 0.02 Aa
        PEG+NO3+NH4+0.08 ± 0.01 Abc0.02 ± 0.01 Ba0.03 ± 0.01 Bab0.10 ± 0.02 Bab0.10 ± 0.01 ABa0.18 ± 0.02 Aa
        注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
      • 氮素供应显著增加了家系No.7–14根中锰的吸收量,干旱胁迫显著降低了两种氮素处理根中锰的吸收 (P < 0.05);家系No.8–8各器官中锰的吸收受氮素形态的影响均不显著,但干旱条件下硝态氮显著降低了根中锰的吸收量,而铵态氮显著增加茎和叶中锰的吸收。因此,干旱胁迫降低了两个家系根中锰的吸收,铵态氮在一定程度上增加叶中锰的吸收量。

      • 氮素供应形态对家系No.7–14各器官铜的吸收影响均不显著,但干旱条件下硝态氮处理显著降低了根中铜的吸收量;对于家系No.8–8,氮素供应形态对其茎和叶中铜的吸收量影响不显著,但铵态氮处理显著增加其根中铜的吸收,干旱条件下铵态氮处理显著降低了根中铜的吸收,而茎叶中铜的吸收量有一定程度的增加,但差异不显著。因此,铵态氮一定程度上增加了两个家系根中铜的吸收量,但在干旱条件下铵态氮却明显降低了根中铜的吸收,增加叶中铜的吸收量。

      • 氮素形态对家系No.7–14根中锌的吸收具有显著影响,铵态氮显著增加其根中锌的吸收量 (P < 0.05),但干旱胁迫对其各器官锌的吸收均无显著影响。家系No.8–8中各器官锌的吸收受氮素形态供应的影响不显著,干旱条件下其茎和叶中锌的吸收量呈增加趋势,在叶中差异达显著水平 (P < 0.05)。因此,铵态氮对家系No.7–14根中锌的吸收具有明显促进作用,而干旱胁迫条件下家系No.8–8叶中锌的吸收量显著增加。

      • 表2可知,无性系类型与氮素形态对两个家系根和叶中铁的吸收影响显著,对根中锰的吸收和叶中锌的吸收影响显著;无性系类型和干旱胁迫对叶中铁和锌的吸收影响显著,对根中铜的影响显著;氮素形态与干旱胁迫对茎中锰和根中铜影响显著;三个因素对茎中铁和锌、根中锰和铜影响显著 (P < 0.05)。

      • 表5可知,与对照相比,两个家系在干旱胁迫下添加硝态氮处理根、茎、叶硝态氮吸收量表现出明显的下降趋势,而添加铵态氮处理根、茎、叶硝态氮吸收量则表现为不同程度上升。对于铵态氮而言,7–14号家系在干旱胁迫下添加不同形态氮源处理的各器官铵态氮吸收量低于对照处理,而8–8号家系在干旱胁迫下添加不同形态氮源处理铵态氮吸收量高于对照处理。不同器官之间硝态氮含量因家系不同存在一定差异,7–14号家系硝态氮吸收量表现为叶 > 茎 > 根;而对于8–8号家系而言,正常水分下硝态氮吸收量表现为根 > 叶 > 茎,干旱胁迫下硝态氮吸收量表现为叶 > 根 > 茎。两个家系铵态氮吸收量表现为叶 > 根 > 茎。从总量上来看,各器官铵态氮吸收量显著高于硝态氮,说明杉木具有明显的铵偏向吸收特性。

        表 5  干旱胁迫条件下添加不同形态氮素对杉木幼苗NO3-和NH4+吸收及分配的影响 (mg/pot)

        Table 5.  Effects of different nitrogen forms on NO3- and NH4+ uptake and distribution of Cunninghamia lanceolata plantlets under drought stress

        家系
        Family clone
        处理
        Treatment
        总硝态氮总铵态氮
        根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf
        No.7–14CK-NO33.61 ± 0.33 Bab3.92 ± 0.49 Aab5.65 ± 0.40 Aa98.15 ± 15.33 ABab55.52 ± 6.14 Bab168.85 ± 11.41 Aa
        CK-NH4+3.16 ± 1.15 Bab4.24 ± 1.18 Aab3.28 ± 0.36 Bb113.37 ± 8.50 Ba59.76 ± 19.89 Ca150.11 ± 20.24 Aab
        CK-NO3+NH4+2.84 ± 0.96 Bb3.02 ± 0.62 Bb5.87 ± 0.31 Aa90.99 ± 31.23 ABab49.77 ± 4.99 Bab173.89 ± 9.61 Aa
        PEG+NO32.33 ± 0.13 Bb3.85 ± 0.50 Aab4.31 ± 0.92 Bab48.53 ± 4.67 Bb42.41 ± 9.07 Bb134.66 ± 11.21 Ab
        PEG+NH4+5.28 ± 0.55 Aa5.01 ± 1.48 Aa4.68 ± 0.10 ABab57.53 ± 14.52 Bb53.53 ± 4.85 Bb138.20 ± 17.36 Ab
        PEG+ NO3+NH4+2.71 ± 0.9501 Bb4.49 ± 1.37 Aab2.93 ± 0.02 Bb54.97 ± 11.12 Bb51.34 ± 9.18 Bb161.96 ± 10.15 Aa
        No.8–8CK-NO3-4.81 ± 1.04 Aa1.63 ± 0.39 Bab3.67 ± 0.20 Abcd55.98 ± 7.16 Bb30.32 ± 6.97 Bb96.07 ± 19.02 Aab
        CK-NH4+3.79 ± 0.63 Aa0.96 ± 0.06 Bb2.06 ± 0.093 Bd77.18 ± 20.58 ABab39.77 ± 4.50 Bab92.98 ± 22.26 Aab
        CK-NO3+NH4+5.49 ± 0.51 Aa0.89 ± 0.06 Bb2.94 ± 0.54 Bcd47.73 ± 8.42 Bb37.52 ± 3.64 ABab83.83 ± 11.54 Ab
        PEG+NO31.25 ± 0.20 Bb0.95 ± 0.22 Bb3.22 ± 0.54 ABc88.02 ± 9.76 ABa35.90 ± 9.41 Bab113.43 ± 4.54 Aa
        PEG+NH4+4.38 ± 0.54 Aa1.87 ± 0.33 Ba5.25 ± 0.26 Aa87.58 ± 14.54 Ba51.83 ± 1.95 Ba136.56 ± 23.49 Aa
        PEG+NO3+NH4+1.81 ± 0.18 Bb1.59 ± 0.28 Bab4.54 ± 0.31 Aab48.87 ± 4.90 Bb32.43 ± 1.34 Cb108.95 ± 10.41 Aab
        注(Note):处理中的 CK 和 PEG 分别代表正常和干旱胁迫条件 CK and PEG in the treatment codes represent the normal control and water stress; 不同小、大写字母分别表示同一家系处理间、同一处理器官间差异显著 (P < 0.05) Values followed by different lowercase and capital letters indicate significant differences among treatments at the same clone and among organs at the same treatment, respectively (P < 0.05).
      • 干旱胁迫降低植物对水分和养分的吸收能力,导致地上部各器官生长缓慢,而添加不同形态氮源对促进植物养分吸收、提高植物抗旱能力具有重要意义[15]。N是“生命元素”,是植物蛋白质、酶及核酸的重要组成部分。本研究发现,添加硝态氮导致干旱条件下杉木幼苗根、茎、叶N、P、K吸收量均不同程度地降低,而添加铵态氮可促进干旱处理下杉木幼苗叶片N、K的吸收,以及茎叶部P、K的吸收,这与前人的研究结果基本一致[16-17]。施用铵态氮有利于提高甘蓝 (Brassica oleracea) 叶片、玉米 (品种“黄417”) 及苋菜 (Amaranthus mangostanus) 各器官的N含量[17-19]。但也有报道指出硝铵混合配施 (1∶1和1∶2) 可显著提高雷竹叶片及细根对N、P的吸收[7]。原因在于南方酸性土壤由于长期的硝化抑制作用形成以铵态氮占绝对优势的土壤,杉木在长期进化过程中形成“喜铵”特性,导致其过多吸收硝态氮后会造成氮代谢失调和养分失衡[20],这与本研究中杉木幼苗各器官的铵态氮吸收量均显著高于硝态氮的结论一致 (表5)。而添加铵态氮处理,可提高杉木幼苗体内硝酸还原酶 (NR) 和谷氨酰胺合成酶 (GS) 的活性,增强氮代谢运转,促进氨基酸的合成与转化,最终提高植物器官的氮素水平[21]。另外,杉木吸收铵态氮后导致根际土壤酸化,有利于土壤难溶性P的活化,从而促进植物对P的吸收,一般认为,N、P的吸收具有协同互作效应[21-22]

        硝态氮和铵态氮是植物吸收的主要无机氮形态,以往关于添加不同形态氮素对其它养分吸收的影响结论不一,这主要与植物类型、土壤条件、试验处理不同有关。本研究发现添加铵态氮促进干旱条件下杉木幼苗根、茎Ca的吸收,但会降低干旱条件下不同器官Mg、Mn的吸收及根部Fe、Cu、Zn的吸收,表现为拮抗吸收 (表3表4)。于飞等[23]也有类似的报道,指出施加铵态氮对油菜 (Brassica napus L.)Ca、Mg的吸收表现为显著的抑制作用。Ruan等[24]也发现,与硝态氮肥处理相比,铵态氮肥处理导致茶树根系K含量和地上部Ca、Mg含量显著降低。添加不同形态氮素对其它养分吸收的影响,一方面与NO3和NH4+离子的电性差异有关,通常NH4+抑制K、Ca、Mg等养分离子的吸收,增加P(H2PO4或HPO42–) 的吸收[17, 25],而NO3更有利于促进K和Ca的吸收和向上的运输[18];另一方面,与土壤pH关系密切[26],硝酸根被吸收后由于NO3还原导到OH离子失衡,土壤pH升高,植物会分泌大量有机酸以维持酸碱平衡,有机酸与金属离子发生强烈的螯合作用,阻碍Fe、Zn和其他微量元素向地上部运输[27]

        不同形态氮素不但影响干旱条件下各种养分的吸收,还会通过调整各养分在不同器官之间的分配策略来平衡体内的养分以提高自身的抗旱性。本研究发现不同处理N、P、K和Ca吸收量表现为叶最大 (表2表3),说明无论是否遭受干旱胁迫,杉木幼苗都会将重要的养分 (N、P、K) 分配到生长代谢最旺盛的叶片部位,保证植物光合作用的顺利完成,促进植物快速生长。不同处理Fe、Cu吸收量表现为根 > 叶 > 茎,而Mg、Mn和Zn的吸收量在各器官之间的分配规律不一 (表3表4)。邹春琴等[28]研究Fe及不同形态氮素对玉米微量元素吸收及分配时也得出类似结论,他们发现正常供铁时,与供应NO3相比,供应NH4+-N玉米新叶中锰、锌的吸收量明显降低,说明NH4+与Mn2+、Zn2+在吸收及运输上具有拮抗作用,可能与竞争根表现阳离子的结合位点有关;供应铵态氮使玉米根中铁积累减少,新叶中铁含量增加,说明铵态氮对铁素的高效利表现在促进铁向上运移。可见,不同形态氮素对干旱胁迫下植物微量养分的吸收及分配严重影响植株体内养分平衡状况,植物生长尤其是分生组织中需要各种微量元素的参与,然而目前关于不同形态氮素对干旱条件下微量元素的吸收、利用及分配的研究还很匮乏。例如关于硝态氮环境中针叶树种的代谢性缺锌现象已引起广泛关注,有报道指出海岸松 (Pinus pinaster) 在较高浓度硝酸根作为单一氮源供应时,幼苗针叶出现典型的缺Zn症状[29],而杉木是否也存在这种现象还需进一步验证,但本研究发现添加硝态氮、铵态氮和混合氮均会降低干旱条件下根部Zn的吸收,但会明显促进干旱条件下叶和茎Zn的吸收,杉木幼苗可能采取将根部Zn向地上茎、叶部运移及分配的策略,以缓解缺Zn症状的出现 (表4)。因此,开展不同形态氮素对干旱条件下各种微量元素吸收、利用及分配的影响,可能是缓解植物遭受干旱胁迫、提高抗旱能力的关键,需要今后更深入的研究与探讨。

      • 干旱条件下添加不同形态氮素不但影响杉木幼苗体内氮素的吸收与分配,而且对其它养分元素的吸收和分配产生重要影响,但因无性系类型、氮素形态、元素种类不同而异。杉木各器官铵态氮吸收量显著高于硝态氮,表现为“喜铵”特性。干旱条件下添加铵态氮可促进叶片N、K及茎叶P、K的吸收,以及根、茎Ca的吸收,对根部Mg、Fe、Mn、Cu、Zn的吸收具有抑制作用,对茎叶Zn的吸收具有促进作用。可见,植物养分平衡是保障植物生长的重要基础,总体而言,在干旱条件下添加适量的铵态氮可促进杉木幼苗不同养分的吸收及分配,保障体内的养分平衡以提高抗旱性。

    参考文献 (29)
    WeChat 关注分享

    返回顶部

    目录

      /

      返回文章
      返回