• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牛粪好氧发酵添加聚天冬氨酸固持氮素的机理

徐荣 朱凌宇 王守红 张家宏 王桂良 寇祥明 唐鹤军 韩光明 吴雷明 毕建花

引用本文:
Citation:

牛粪好氧发酵添加聚天冬氨酸固持氮素的机理

    作者简介: 徐荣 E-mail:realmaridreal@126.com;
    通讯作者: 王守红, E-mail:yzwish@126.com
  • 基金项目: 教育部农业与农产品安全国际合作联合实验室开放课题(JRK20180013);江苏省重点研发计划(社会发展)项目(BE2017688);江苏省重点研发计划(社会发展)项目(BE2015661);扬州市市级计划-现代农业项目(YZ2018040);江苏里下河地区农业科学研究所科研基金项目(SJ〔17〕107)。

Mechanism of nitrogen retention by polyaspatric acid during cow manure composting

    Corresponding author: WANG Shou-hong, E-mail:yzwish@126.com ;
  • 摘要:   【目的】  为有效控制堆肥过程中氮素流失,采用聚天冬氨酸 (PASP) 作为氮素固持材料,分步研究牛粪好氧发酵添加聚天冬氨酸固持氮素的效果及机理。  【方法】  首先,采用干湿分离牛粪为原料,设置不同PASP添加量处理 [0 g/t (CK)、120 g/t (A)、240 g/t (B)] 进行堆肥试验,并针对堆体理化性质、氮素含量及腐熟度指标进行定期监测;其次,依据后期制备生物炭中PASP的担载量,设置堆肥过程空白生物炭 (BC-80 g/kg)、生物炭担载PASP (BP-80 g/kg) 添加处理,堆肥初始时 (第1天) 及高温期结束时 (第22天) 时,采用扫描电镜 (SEM) 观察PASP形貌、傅里叶红外变换光谱 (FTIR) 表征官能团变化,X射线光电子能谱 (XPS) 表征氮素结合形态。  【结果】  堆肥初始时,相较于BC,BP表面出现颗粒化特征形貌;高温堆肥22天处理后,BP表面该形貌特征进一步被强化,且结合PASP添加组的堆体pH持续高于CK,表明堆肥过程中PASP未被完全分解;综合堆体理化指标、氮素含量变化及微观表征结果分析发现,PASP通过侧链—COOH与铵态氮形成络合结构,增加高温期堆体特别是堆肥第5~10天铵态氮含量 (P < 0.05) 的同时,增加了微生物对铵态氮的利用难度,导致其高温期积温较CK降低40.0℃~91.9℃,并促使其提前4.0~4.6天进入后腐阶段 (P < 0.05),有效控制了高温期氮素的流失风险;堆体DOM (水溶性有机物) 红外光谱分析结果表明,PASP促使堆体相对芳香化程度增强 (P < 0.05),且基于其在高温期对氮素的固持作用,提升降温期微生物水溶性总氮供应能力,间接降低矿化作用强度,促进含氮有机物与芳香物质合成腐殖质,控制降温期的氮素损失风险;并最终表现为堆肥第39天时,PASP处理氨气累积挥发量显著降低26.62%~37.02% (P < 0.05),其全氮含量较堆前增加7.09%~13.64% (CK下降1.23%,P > 0.05)。  【结论】  PASP通过侧链—COOH与铵态氮络合作用及对堆体腐殖化程度的提升作用,综合控制氮素损失风险。同时,添加PASP可降低高温期积温,促使堆体提前4.0~4.6天进入后腐阶段,这也是其控制高温堆肥氮素流失的主要机制。对干湿分离牛粪好氧堆肥而言,PASP在120 g/t低用量时可获得较为理想的氮素截留效果。
  • 图 1  聚天冬氨酸 (PASP) 结构式

    Figure 1.  Structural formula for polyaspartic acid

    图 2  氨气吸收装置示意图

    Figure 2.  Apparatus for ammonia absorption

    图 3  不同处理堆肥氨气释放量变化趋势

    Figure 3.  Variation of release amount of ammonia in compost under different treatments

    图 4  各处理不同堆肥阶段物料红外光谱

    Figure 4.  Fourier transform infrared spectroscopy in different compost periods

    图 5  堆体不同阶段相对芳香化程度

    Figure 5.  Relative aromatization degree in different compost periods

    图 6  堆肥初始及高温期结束时的生物炭和吸附PASP生物炭样品电镜扫描图

    Figure 6.  Scanning images of biochar(BC0, BC1) and biochar-absorbed PASP (BP0, BP1) samples at the beginning and the end of high temperature periods during composting

    图 7  高温堆肥前后生物炭及吸附PASP生物炭傅里叶变换红外光谱

    Figure 7.  Fourier transform infrared spectroscopy of biochar with and without absorbing PASP before and after composting

    图 8  高温堆肥前后生物炭及吸附PASP生物炭X射线光电子能谱 (XPS) 全谱扫描

    Figure 8.  X-ray photoelectron spectroscopy of biochar with and without absorbing PASP before and after composting

    图 9  高温堆肥前后生物炭及吸附PASP生物炭X射线光电子能谱 (XPS) 氮特征谱

    Figure 9.  Characteristic spectrum of nitrogen by X-ray photoelectron spectroscopy of biochar with and without absorbing PASP before and after composting

    表 1  供试材料理化性质

    Table 1.  Physicochemical properties of the experimental materials

    原料
    Material
    含水率Moisture
    (%)
    pH电导率EC
    (mS/cm)
    有机质OM
    (%)
    全氮Total N
    (g/kg)
    NH4+-N
    (mg/kg)
    NO3-N
    (mg/kg)
    牛粪Cow dung55.4 ± 0.28.11 ± 0.020.939 ± 0.00965.19 ± 0.67.166 ± 0.23735.08 ± 1.8814.62 ± 0.82
    PASP (10 g/L) 9.40 ± 0.034.501 ± 0.08639.26 ± 0.669.882 ± 0.55
    生物炭Biochar10.79 ± 0.20 0.011 ± 0.001 0.005 ± 0.0030.003 ± 0.00
    下载: 导出CSV

    表 2  堆肥温度特征指标

    Table 2.  Characteristic indexes for compost temperature

    处理
    Treatment
    达到55℃天数
    Days required to 55℃
    ≥ 55℃持续天数
    Lasting days ≥ 55℃
    最高温度 (℃)
    Max temperature
    降到 ≤ 35℃天数
    Days required
    to ≤ 35℃
    高温期积温 (℃)
    Cumulative temperature
    during high
    temperature period
    全程积温 (℃)
    Total cumulative
    temperature
    CK1.3 ± 0.3 a23.3 ± 0.3 a61.7 ± 0.3 a40.3 ± 0.7 a1370.7 ± 19.0 a2199.7 ± 11.0 a
    A1.3 ± 0.3 a21.7 ± 0.3 b62.7 ± 0.7 a35.7 ± 0.3 b1278.8 ± 20.2 b2040.3 ± 15.5 c
    B1.0 ± 0.0 a 22.7 ± 0.3 ab63.0 ± 0.0 a36.3 ± 0.7 b 1330.7 ± 18.2 ab2116.0 ± 10.0 b
    注(Note):CK、A、B 分别表示堆肥原料中加入 PASP 0、120 和 240 g/t The addition rates of PASP are 0, 120 and 240 g/t in the composting raw materials, respectively; 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.
    下载: 导出CSV

    表 3  堆肥过程中堆体理化性质变化

    Table 3.  Variation of physicochemical properties during composting period

    项目
    Item
    处理
    Treatment
    0 d5 d10 d17 d24 d31 d39 d
    pHCK8.060 ± 0.023 b8.090 ± 0.046 b8.110 ± 0.023 b7.847 ± 0.043 a7.737 ± 0.034 b7.743 ± 0.029 b7.460 ± 0.031 b
    A 8.103 ± 0.012 a8.423 ± 0.058 b8.260 ± 0.035 ab8.017 ± 0.072 a7.907 ± 0.043 ab7.853 ± 0.030 ab7.853 ± 0.064 a
    B 8.157 ± 0.033 ab8.213 ± 0.015 a8.180 ± 0.035 a7.963 ± 0.032 a7.832 ± 0.022 a7.790 ± 0.015 a7.817 ± 0.015 a
    EC
    (mS/cm)
    CK0.973 ± 0.010 a0.940 ± 0.012 a1.160 ± 0.023 a1.020 ± 0.013 b1.055 ± 0.007 c1.175 ± 0.008 a1.185 ± 0.025 a
    A 0.928 ± 0.004 b0.970 ± 0.040 a1.080 ± 0.023 b1.060 ± 0.017 ab1.140 ± 0.000 a1.205 ± 0.023 a1.203 ± 0.025 a
    B 0.915 ± 0.003 b1.010 ± 0.006 a0.950 ± 0.017 c1.103 ± 0.009 a1.110 ± 0.012 b1.125 ± 0.004 b1.190 ± 0.037 a
    GI
    (%)
    CK60.35 ± 3.67 a67.80 ± 2.57 a63.55 ± 1.15 a76.17 ± 2.45 ab92.83 ± 2.94 b93.48 ± 2.39 b103.7 ± 2.32 b
    A 58.00 ± 2.06 a62.92 ± 2.15 a66.62 ± 1.03 a83.22 ± 2.49 a106.07 ± 2.69 a113.47 ± 3.34 a122.8 ± 3.22 a
    B 58.84 ± 1.45 a74.77 ± 9.32 a65.59 ± 3.66 a73.43 ± 1.93 b94.11 ± 2.40 b102.84 ± 3.77 ab111.5 ± 5.90 ab
    含水率
    Moisture
    (%)
    CK55.45 ± 0.17 a52.63 ± 0.18 a48.67 ± 0.28 a47.11 ± 0.06 a45.00 ± 0.12 a43.57 ± 0.35 a42.73 ± 0.65 a
    A 54.85 ± 0.08 b51.15 ± 0.06 b47.63 ± 0.32 b45.32 ± 0.12 b44.41 ± 0.14 a43.64 ± 0.36 a42.57 ± 0.23 a
    B 55.81 ± 0.20 a52.51 ± 0.27 a46.44 ± 0.21 c44.89 ± 0.57 b44.13 ± 0.54 a42.86 ± 1.00 a42.11 ± 1.05 a
    有机质
    OM
    (%)
    CK64.22 ± 1.00 a57.57 ± 0.99 a52.14 ± 0.07 b48.94 ± 0.60 b46.25 ± 0.49 b45.50 ± 0.01 a43.42 ± 0.01 b
    A 66.07 ± 0.64 a56.47 ± 1.68 a54.24 ± 0.59 a51.32 ± 0.01 a48.80 ± 0.01 a47.58 ± 0.01 a46.45 ± 0.00 a
    B 65.24 ± 0.47 a57.42 ± 0.74 a54.01 ± 0.38 a51.02 ± 0.00 ab48.06 ± 0.00 ab46.87 ± 0.01 a45.54 ± 0.00 a
    注(Note):CK、A、B 分别表示堆肥原料中加入 PASP 0、120 和 240 g/t The addition rates of PASP are 0, 120 and 204 g/t in the composting raw materials, respectively; 同列数据后不同小写字母表示同一堆肥时期不同处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments at the same composting period (P < 0.05).
    下载: 导出CSV

    表 4  堆肥过程中堆体不同形态氮素含量变化 (g/kg)

    Table 4.  Variation of nitrogen forms during composting period

    项目
    Item
    处理
    Treatment
    0 d5 d10 d17 d24 d31 d39 d
    全氮
    Total N
    CK7.072 ± 0.403 a8.994 ± 0.716 a9.590 ± 0.441 b6.920 ± 1.080 a10.705 ± 0.620 a 8.460 ± 1.030 a6.985 ± 0.376 a
    A 7.053 ± 0.656 a7.056 ± 0.508 a11.914 ± 0.508 b 7.608 ± 0.529 a12.250 ± 1.180 a 8.850 ± 0.377 a8.015 ± 0.296 a
    B 7.372 ± 0.226 a8.118 ± 0.421 a8.859 ± 0.577 a8.724 ± 0.331 a11.090 ± 1.460 a 8.780 ± 0.229 a7.895 ± 0.946 a
    水溶性总氮
    WSTN
    CK0.264 ± 0.010 a0.286 ± 0.003 b0.272 ± 0.003 a0.288 ± 0.005 a0.232 ± 0.006 b0.200 ± 0.012 b0.160 ± 0.006 b
    A 0.281 ± 0.006 a0.295 ± 0.003 b0.268 ± 0.003 a0.275 ± 0.007 a0.283 ± 0.005 a0.239 ± 0.001 a0.187 ± 0.009 a
    B 0.269 ± 0.009 a0.322 ± 0.001 a0.270 ± 0.003 a0.279 ± 0.005 a0.238 ± 0.007 b0.207 ± 0.005 b0.162 ± 0.004 b
    水溶性无机氮
    WSIN
    CK 0.050 ± 0.003 ab0.077 ± 0.005 c0.059 ± 0.003 b0.076 ± 0.001 a0.046 ± 0.003 a0.032 ± 0.002 a0.027 ± 0.001 b
    A 0.043 ± 0.003 b0.098 ± 0.003 b0.062 ± 0.002 b0.076 ± 0.003 a0.053 ± 0.006 a0.031 ± 0.002 a0.030 ± 0.001 a
    B 0.057 ± 0.001 a0.130 ± 0.006 a0.075 ± 0.004 a0.076 ± 0.005 a0.051 ± 0.003 a0.031 ± 0.002 a0.033 ± 0.001 a
    NH4+-NCK0.037 ± 0.002 a0.064 ± 0.004 c0.046 ± 0.003 b0.064 ± 0.002 a0.037 ± 0.002 a0.025 ± 0.002 a0.018 ± 0.002 b
    A 0.029 ± 0.002 b0.083 ± 0.003 b0.048 ± 0.003 b0.064 ± 0.003 a0.044 ± 0.006 a0.023 ± 0.002 a0.021 ± 0.005 a
    B 0.040 ± 0.001 a0.115 ± 0.003 a0.061 ± 0.004 a0.063 ± 0.004 a0.041 ± 0.003 a0.024 ± 0.002 a0.024 ± 0.001 a
    NO3-NCK0.013 ± 0.001 a0.012 ± 0.001 a0.013 ± 0.001 a0.012 ± 0.002 a0.009 ± 0.001 a0.008 ± 0.000 a0.009 ± 0.000 a
    A 0.014 ± 0.002 a0.014 ± 0.002 a0.014 ± 0.001 a0.012 ± 0.001 a0.009 ± 0.001 a0.007 ± 0.001 a0.009 ± 0.000 a
    B 0.017 ± 0.001 a0.015 ± 0.003 a0.014 ± 0.001 a0.013 ± 0.001 a0.010 ± 0.001 a0.007 ± 0.001 a0.009 ± 0.002 a
    注(Note):CK、A、B 分别表示堆肥原料中加入 PASP 0、120 和 240 g/t The addition rates of PASP are 0, 120 and 204 g/t in the compost raw material, respectively; WSTN—Water soluble total N; WSIN—Water soluble inorganic nitrogen; 同列数据后不同小写字母表示同一堆肥时期不同处理间差异显著 Values followed by different small letters in a column mean significant difference among treatments at the same composting period (P < 0.05).
    下载: 导出CSV
  • [1] 杨滨键, 尚杰, 于法稳. 农业面源污染防治的难点、问题及对策[J]. 中国生态农业学报, 2019, 27(2): 236–245. Yang B J, Shang J, Yu F W. Difficulty, problems and countermeasures of agricultural non-point sources pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 236–245.
    [2] 沈玉君, 李冉, 孟海波, 等. 国内外堆肥标准分析及其对中国的借鉴启示[J]. 农业工程学报, 2019, 35(12): 265–271. Shen Y J, Li R, Meng H B, et al. Analysis of composting standards at home and abroad and its enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 265–271. doi:  10.11975/j.issn.1002-6819.2019.12.032
    [3] 李丹阳, 李恕艳, 李国学, 等. 添加剂对猪粪秸秆堆肥的氮素损失控制效果[J]. 农业工程学报, 2016, 32(S2): 260–267. Li D Y, Li S Y, Li G X, et al. Effects of additive on nitrogen loss during composting of pig manure and corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 260–267.
    [4] 李旭, 路明艺, 师晓爽, 等. 多孔填充剂促进牛粪秸秆高温恒温堆肥有机质降解减少氮损失[J]. 农业工程学报, 2018, 34(S1): 132–137. Li X, Lu M Y, Shi X S, et al. Accelerating organic matter degradation and reducing NH3 emission during constant high temperature composting of cattle manure and corn straw with addition of porous material[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 132–137.
    [5] Jiang T, Schuchardt F, Li G X, et al. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system[J]. Chemosphere, 2013, 90(4): 1545–1551. doi:  10.1016/j.chemosphere.2012.08.056
    [6] Predicala B, Nemati M, Stade S, et al. Control of H2S emission from swine manure using Na-nitrite and Na-molybdate[J]. Journal of Hazardous Materials, 2008, 154(1–3): 300–309. doi:  10.1016/j.jhazmat.2007.10.026
    [7] 王彩云, 吴景贵. 自然有机物料覆盖对鸡粪中NH3及H2S释放的影响[J]. 环境科学与技术, 2018, 41(10): 198–205. Wang C Y, Wu J G. Effects of natural organic materials covering on release of NH3 and H2S in chicken manure[J]. Environmental Science & Technology, 2018, 41(10): 198–205.
    [8] 马双双, 孙晓曦, 韩鲁佳, 等. 功能膜覆盖好氧堆肥过程氨气减排性能研究[J]. 农业机械学报, 2017, 48(11): 344–349. Ma S S, Sun X X, Han L J, et al. Reduction of ammonia emission during membrane–covered aerobic composting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 344–349. doi:  10.6041/j.issn.1000-1298.2017.11.042
    [9] 沈玉君, 张朋月, 孟海波, 等. 通风方式对猪粪堆肥主要臭气物质控制的影响研究[J]. 农业工程学报, 2019, 35(7): 203–209. Shen Y J, Zhang P Y, Meng H B, et al. Effects of ventilation modes on control of main odor substances in pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 203–209. doi:  10.11975/j.issn.1002-6819.2019.07.025
    [10] 胡雨彤, 时连辉, 刘登民, 等. 添加硫酸对牛粪堆肥过程及其养分变化的影响[J]. 植物营养与肥料学报, 2014, 20(3): 718–725. Hu Y T, Shi L H, Liu D M, et al. Effects of adding sulphuric acid on composting process of cattle manure and changes of main nutrients[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 718–725. doi:  10.11674/zwyf.2014.0325
    [11] 李宁, 张晓岸, 熊晓莉, 等. 复合铜盐对有机废弃物高温好氧堆肥的保氮效果[J]. 环境科学学报, 2018, 38(6): 2462–2467. Li N, Zhang X A, Xiong X L, et al. Effectsof composite copper salts on nitrogen conservation in thermophilic aerobic composting of organic waste[J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2462–2467.
    [12] 齐鲁, 张俊亚, 郑嘉熹, 等. 沸石粉和硝化抑制剂投加对污泥堆肥过程中氮素保存和温室气体排放的影响[J]. 环境科学学报, 2018, 38(6): 2131–2139. Qi L, Zhang J Y, Zheng J X, et al. Effects of natural zeolite and nitrification inhibitors on the nitrogen loss and green house gas (GHG) emission during sludge composting[J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2131–2139.
    [13] 谢胜禹, 余广炜, 潘兰佳, 等. 添加生物炭对猪粪好氧堆肥的影响[J]. 农业环境科学学报, 2019, 38(6): 1365–1372. Xie S Y, Yu G W, Pan L J, et al. Influence of biochar on the aerobic compost of pig manure[J]. Journal of Agro-Environment Science, 2019, 38(6): 1365–1372. doi:  10.11654/jaes.2018-1320
    [14] 齐婧媛, 徐凤花, 郭梅仙, 等. 除氨菌系对牛粪堆肥氮素转化的影响[J]. 中国土壤与肥料, 2012, (2): 73–77. Qi J Y, Xu F H, Guo M X, et al. Ammonia removal microorganism's effects on nitrogen transformation of cattle manure composting[J]. Soil and Fertilizer Sciences in China, 2012, (2): 73–77. doi:  10.3969/j.issn.1673-6257.2012.02.014
    [15] 韩玮, 何明. 外源酶对秸秆堆肥进程的影响及腐熟度模糊评价[J]. 环境科学学报, 2015, 35(11): 3742–3749. Han W, He M. Effects of exogenous enzymes on composting of straw and maturity assessment by fuzzy evaluation[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3742–3749.
    [16] 曹本福, 桂阳, 祖庆学, 等. 减量施肥下聚天冬氨酸对烤烟生长、产量及养分吸收的影响[J]. 中国烟草科学, 2018, 39(5): 57–63. Cao B F, Gui Y, Zu Q X, et al. Effects of polyaspartic acid on growth, yield and nutrient absorption of flue-cured tobacco with reduced fertilization[J]. Chinese Tobacco Science, 2018, 39(5): 57–63.
    [17] 李杰, 卢宗云, 石元亮, 等. 新型聚氨酸增效肥料对小白菜根系活性与产量的影响[J]. 中国土壤与肥料, 2019, (1): 134–139. Li J, Lu Z Y, Shi Y L, et al. Effect of new type synergist of poly amino acid fertilizer on pakchoi root activity and yield[J]. Soil and Fertilizer Sciences in China, 2019, (1): 134–139.
    [18] Yan Z, Liu X, Yuan Y, et al. Deodorization study of the swine manure with two yeast strains[J]. Biotechnology & Bioprocess Engineering, 2013, 18(1): 135–143.
    [19] 李森, 罗雪梅, 涂卫国, 等. 保氮剂对水葫芦堆肥进程及氮素损失的影响[J]. 应用生态学报, 2017, 28(4): 1197–1203. Li S, Luo X M, Tu W G, et al. Effects of nitrogen preserving agent on composting process and nitrogen loss of Eichhornia crassipes[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1197–1203.
    [20] 李荣华, 张广杰, 秦睿, 等. 添加钝化剂对猪粪好氧堆肥过程中理化特性的影响[J]. 环境科学学报, 2012, 32(10): 2591–2599. Li R H, Zhang G J, Qin R, et al. Influence of heavy metal passive agents on the compost physicochemical properties during the swine manure composting[J]. Acta Scientiae Circumstantiae, 2012, 32(10): 2591–2599.
    [21] Yuan Y, Tao Y, Zhou S G, et al. Electron transfer capacity as a rapid and simple maturity index for compost[J]. Bioresources Technology, 2012, 116: 428–434. doi:  10.1016/j.biortech.2012.03.114
    [22] 富丽, 徐先英, 付贵全, 等. 五种生物质炭的特性分析[J]. 干旱区资源与环境, 2019, 33(9): 202–208. Fu L, Xu X Y, Fu G Q, et al. Characteristic analysis of five biochars[J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 202–208.
    [23] 陈义轩, 宋婷婷, 方明, 等. 四种生物炭对潮土土壤微生物群落结构的影响[J]. 农业环境科学学报, 2019, 38(2): 394–404. Chen Y X, Song T T, Fang M, et al. The effect of four biochar on the structure of microbial communities in alluvial soil[J]. Journal of Agro-Environment Science, 2019, 38(2): 394–404. doi:  10.11654/jaes.2018-0966
    [24] 江滔, 常佳丽, 马旭光, 等. 堆肥中不同氮素原位固定剂的综合比较研究[J]. 农业环境科学学报, 2018, 37(2): 369–375. Jiang T, Chang J L, Ma X G, et al. Comprehensive comparison of different nitrogen conservation agents during composting[J]. Journal of Agro-Environment Science, 2018, 37(2): 369–375. doi:  10.11654/jaes.2017-0996
    [25] 姜继韶, 尧倩. 酸性物质对猪粪秸秆堆肥过程中氮素转化的影响[J]. 环境科学, 2017, 38(3): 1272–1278. Jiang J S, Yao Q. Effects of acidic materials on the N transformations during the composting of pig manure and wheat straw[J]. Environmental Science, 2017, 38(3): 1272–1278.
    [26] 李帆, 钱坤, 武际, 等. 过磷酸钙用量对猪粪堆肥过程及磷形态变化的影响[J]. 植物营养与肥料学报, 2017, 23(4): 1037–1044. Li F, Qian K, Wu J, et al. Influence of applying calcium superphosphate on swine manure composting and phosphorus transformation[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 1037–1044. doi:  10.11674/zwyf.16284
    [27] 王海候, 何胥, 陶玥玥, 等. 添加不同粒径炭基辅料改善猪粪好氧堆肥质量的效果[J]. 农业工程学报, 2018, 34(9): 224–232. Wang H H, He X, Tao Y Y, et al. Improving pig manure aerobic composting quality by using carbonaceous amendment with different particle sizes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 224–232. doi:  10.11975/j.issn.1002-6819.2018.09.028
    [28] 王海候, 何胥, 陶玥玥, 等. 炭基辅料对羊粪好氧堆肥中氮素损失的影响[J]. 农业环境科学学报, 2019, 38(4): 928–936. Wang H H, He X, Tao Y Y, et al. Effect of carbonaceous amendment on nitrogen loss during the aerobic composting of sheep manure[J]. Journal of Agro-Environment Science, 2019, 38(4): 928–936. doi:  10.11654/jaes.2018-0664
    [29] 徐路魏, 王旭东. 生物质炭对蔬菜废弃物堆肥化过程氮素转化的影响[J]. 农业环境科学学报, 2016, 35(5): 1160–1166. Xu L W, Wang X D. Effect of biochar on nitrogen transformation in vegetable wastes during composting[J]. Journal of Agro-Environment Science, 2016, 35(5): 1160–1166.
    [30] Fels L E, Zamama M, Asli A E, et al. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests[J]. International Biodeterioration & Biodegradation, 2014, 87(1): 128–137.
    [31] Jouraiphy A, Amir S, Winterton P, et al. Structural study of the fulvic fraction during composting of activated sludge-plant matter: Elemental analysis, FTIR and 13C NMR[J]. Bioresource Technology, 2008, 99(5): 1066–1072. doi:  10.1016/j.biortech.2007.02.031
    [32] 于子旋, 杨静静, 王语嫣, 等. 畜禽粪便堆肥的理化腐熟指标及其红外光谱[J]. 应用生态学报, 2016, 27(6): 2015–2023. Yu Z X, Yang J J, Wang Y Y, et al. Physical and chemical maturity indexes and Fourier transform infrared (FTIR) spectroscopy of animal manures during composting[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 2015–2023.
    [33] 徐玉坤, 孙向阳, 栾亚宁, 等. 园林废弃物堆肥红外光谱特性分析[J]. 土壤通报, 2014, 45(5): 1071–1076. Xu Y K, Sun X Y, Luan Y N, et al. Analysis of infrared spectral characteristics in green waste composting[J]. Chinese Journal of Soil Science, 2014, 45(5): 1071–1076.
    [34] 孙向平, 李国学, 肖爱平, 等. 添加不同比例玉米秸秆对猪粪高温堆肥过程中胡敏酸的结构组成及红外光谱特性影响分析[J]. 光谱学与光谱分析, 2014, 34(9): 2413–2418. Sun X P, Li G X, Xiao A P, et al. Analysis on the impact of composting with diffrernt properties of corn stalks and pig manure on humic acid fractions and IR spectral feature[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2413–2418. doi:  10.3964/j.issn.1000-0593(2014)09-2413-06
    [35] Chen J, Xu L, Han J, et al. Synthesis of modified polyaspartic acid and evaluation of its scale inhibition and dispersion capacity[J]. Desalination, 2015, 358: 42–48. doi:  10.1016/j.desal.2014.11.010
    [36] Quan Z, Chen Y, Wang X, et al. Experimental study on scale inhibition performance of a green scale inhibitor polyaspartic acid[J]. Science in China Series B: Chemistry, 2008, 51(7): 695–699. doi:  10.1007/s11426-008-0063-y
    [37] Shi S, Li D, Chai C, et al. Synthesis of a polyaspartic acid/4-(2-aminoethyl) morpholine graft copolymer and evaluation of its scale and corrosion inhibition performance[J]. Polymers for Advanced Technologies, 2018, 29(11): 2838–2847. doi:  10.1002/pat.4406
    [38] 高玉华, 刘振法, 郭茹辉, 等. 聚天冬氨酸衍生物的合成及阻垢性能[J]. 化工学报, 2009, 60(8): 2107–2111. Gao Y H, Liu Z F, Guo R H, et al. Synthesis of polyaspartic acid derivative and its characteristics in scale inhibition[J]. Journal of Chemical Industry and Engineering (China), 2009, 60(8): 2107–2111. doi:  10.3321/j.issn:0438-1157.2009.08.035
    [39] 胡灯, 李琼, 赵彦生, 等. 改性聚天冬氨酸/聚 (丙烯酸–丙烯酰胺) 互穿网络吸水性树脂的制备及表征[J]. 高分子材料科学与工程, 2016, 32(10): 30–35. Hu D, Li Q, Zhao Y S, et al. Synthesis and characterization of modified poly (aspartic acid)/poly (acrylic acid-acrylamide) interpenetrating network absorbent resin[J]. Polymer Materials Science and Engineering, 2016, 32(10): 30–35.
    [40] 孙培磊, 高学理, 王小娟, 等. 富羟基聚天冬氨酸接枝共聚物合成及阻垢研究[J]. 水处理技术, 2019, 45(5): 20–24. Sun P L, Gao X L, Wang X J, et al. Synthesis of hydroxy-rich polyaspartic acid grafted copolymer and its for scale inhibition[J]. Technology of Water Treatment, 2019, 45(5): 20–24.
    [41] 陈思慧, 张亚平, 李飞, 等. 钝化剂联合农艺措施修复镉污染水稻土[J]. 农业环境科学学报, 2019, 38(3): 563–572. Chen S H, Zhang Y P, Li F, et al. Remediation of Cd-polluted paddy soils using amendments combined with agronomic measures[J]. Journal of Agro-Environment Science, 2019, 38(3): 563–572.
    [42] 杨玉华, 徐建宝, 王小龙, 等. 多元聚天冬氨酸水处理剂的合成及阻碳酸钙垢性能研究[J]. 兰州交通大学学报, 2013, 32(3): 150–154. Yang Y H, Xu J B, Wang X L, et al. The synthesis of multiple polyaspartic acid water treatment agent and study on scale inhibitor performance of calcium carbonate[J]. Journal of Lanzhou Jiaotong University, 2013, 32(3): 150–154.
    [43] 柳鑫华, 王文静, 丁云飞, 等. 缓蚀阻垢剂聚天冬氨酸衍生物合成条件的探究[J]. 工业水处理, 2014, 34(1): 61–64. Liu X H, Wang W J, Ding Y F, et al. Study on the synthesis conditions of scale inhibitor, polyaspartic acid derivative[J]. Industrial Water Treatment, 2014, 34(1): 61–64.
    [44] 范春辉, 张颖超, 王家宏. 黄土区秸秆腐殖化溶解性有机质对土壤铅赋存形态的影响机制[J]. 光谱学与光谱分析, 2015, 35(11): 3146–3150. Fan C H, Zhang Y C, Wang J H. Influence mechanism of dissolved organic matter (DOM) from straw humification on chemical speciation of lead in loess region[J]. Spectroscopy and Spectral Analysis, 2015, 35(11): 3146–3150.
    [45] 马培, 谷保祥, 张丹, 等. 游离和固定化香菇废弃菌柄处理含铅废水的比较研究[J]. 农业环境科学学报, 2013, 32(3): 653–660. Ma P, Gu B X, Zhang D, et al. Comparative study on treating waste water containing lead by free and immobilized residue[J]. Journal of Agro-Environment Science, 2013, 32(3): 653–660.
    [46] 王思源, 申健, 李盟军, 等. 不同改性生物炭功能结构特征及其对铵氮吸附的影响[J]. 生态环境学报, 2019, 28(5): 1037–1045. Wang S Y, Shen J, Li M J, et al. Functional and structural characteristics of different modified biochar and its impacts on ammonium nitrogen adsorption[J]. Ecology and Environmental Sciences, 2019, 28(5): 1037–1045.
    [47] 郜斌斌, 王选, 常瑞雪, 等. 黏土矿物和化学添加剂对牛粪堆肥过程氮素固持的影响[J]. 农业工程学报, 2018, 34(20): 250–257. Gao B B, Wang X, Chang R X, et al. Effects of clay and chemical additives on nitrogen retention during cow manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 250–257. doi:  10.11975/j.issn.1002-6819.2018.20.032
    [48] Tong D S, Wan M, Zheng Y M, et al. Polyaspartic acid-grafted montmorillonite composite: a new adsorbent for the removal of copper (II), zinc (II), nickel (II)[J]. Desalination and Water Treatment, 2018, 133: 103–113. doi:  10.5004/dwt.2018.22849
    [49] 董世杰, 鲁屹, 唐婉莹, 等. 聚天门冬氨酸钙盐对水稻田面水中三氮动态变化的影响[J]. 水土保持学报, 2018, 32(6): 208–213, 221. Dong S J, Lu Y, Tang W Y, et al. Effects of polyaspartic acid calcium salt on the dynamic changes of NH4+, NO3and total nitrogen in surface water of paddy field[J]. Journal of Soil and Water Conservation, 2018, 32(6): 208–213, 221.
    [50] 徐嘉翼, 牛世伟, 隋世江, 等. 聚天门冬氨酸/盐对水稻田面水氮素变化及养分利用的影响[J]. 农业环境科学学报, 2019, 38(8): 1696–1703. Xu J Y, Niu S W, Sui S J, et al. Effects of polyaspartic-acid/salt on nitrogen loss from paddy surface water and nutrients utilization[J]. Journalof Agro-Environment Science, 2019, 38(8): 1696–1703. doi:  10.11654/jaes.2019-0229
    [51] 刘宁, 周嘉良, 马双双, 等. 生物炭对鸡粪好氧堆肥主要氮素形态含量影响与保氮机制[J]. 农业机械学报, 2016, 47(12): 233–239. Liu N, Zhou J L, Ma S S, et al. Impacts of biochar on major forms contents and conservation mechanism of nitrogen during aerobic composting of chicken manure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 233–239. doi:  10.6041/j.issn.1000-1298.2016.12.028
    [52] 林焕嘉, 逄玉万, 王德汉, 等. 两种不同镁盐在牛粪堆肥高温期的保氮效果研究[J]. 中国农学通报, 2017, 33(27): 19–25. Lin H J, Pang Y W, Wang D H, et al. Effect of two different magnesium salt on nitrogen fixing in high-temperature phase of cattle manure composting[J]. Chinese Agricultural Science Bulletin, 2017, 33(27): 19–25. doi:  10.11924/j.issn.1000-6850.casb16120053
    [53] 杨文卿, 陈潇川, 郭梓波, 等. 聚丙烯酸钠作为调理剂对好氧堆肥的保氮影响[J]. 环境工程学报, 2014, 8(10): 4439–4444. Yang W Q, Chen X C, Guo Z B, et al. Effect of sodium polyacrylate as an amendment on preserving nitrogen during aerobic composting[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4439–4444.
  • [1] 徐张义赵帅翔马东立张卫峰 . 低蛋白饲喂技术对猪粪好氧堆肥腐熟度的影响. 植物营养与肥料学报, 2020, 37(7): 1-10. doi: 10.11674/zwyf.19437
    [2] 聂二旗郑国砥高定刘晓燕 . 适量通风显著降低鸡粪好氧堆肥过程中氮素损失. 植物营养与肥料学报, 2019, 25(10): 1773-1780. doi: 10.11674/zwyf.18432
    [3] 李帆钱坤武际万水霞蒋光月朱宏斌 . 过磷酸钙用量对猪粪堆肥过程及磷形态变化的影响. 植物营养与肥料学报, 2017, 23(4): 1037-1044. doi: 10.11674/zwyf.16284
    [4] 李灿东郭泰王志新郑伟张振宇李于王囡囡刘忠堂 . 叶面氮素施量对大豆氮素吸收与分配的影响. 植物营养与肥料学报, 2015, 21(5): 1361-1365. doi: 10.11674/zwyf.2015.0532
    [5] 龚金龙邢志鹏胡雅杰张洪程*戴其根霍中洋许轲魏海燕高辉 . 籼、粳超级稻氮素吸收利用与转运差异研究. 植物营养与肥料学报, 2014, 20(4): 796-810. doi: 10.11674/zwyf.2014.0402
    [6] 刘利雷小龙黄光忠刘代银任万军 . 机械化播栽对杂交稻氮素积累分配及碳氮比的影响. 植物营养与肥料学报, 2014, 20(4): 831-844. doi: 10.11674/zwyf.2014.0405
    [7] 王海宁葛顺峰姜远茂魏绍冲周恩达王富林 . 施氮水平对五种苹果砧木生长以及氮素吸收、分配和利用特性的影响. 植物营养与肥料学报, 2012, 18(5): 1272-1277. doi: 10.11674/zwyf.2012.11482
    [8] 解开治徐培智张发宝唐拴虎顾文杰黄旭蒋瑞萍卢钰升 . 鸡粪好氧堆肥过程中氨氧化古菌群落结构的动态变化. 植物营养与肥料学报, 2012, 18(6): 1487-1494. doi: 10.11674/zwyf.2012.12159
    [9] 李青军张炎胡伟孟凤轩冯广平胡国智刘新兰 . 氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响. 植物营养与肥料学报, 2011, 17(3): 755-760. doi: 10.11674/zwyf.2011.0284
    [10] 马力杨林章肖和艾殷士学夏立忠李运东刘国华 . 长期施肥和秸秆还田对红壤水稻土氮素分布和矿化特性的影响. 植物营养与肥料学报, 2011, 17(4): 898-905. doi: 10.11674/zwyf.2011.0405
    [11] 顾文杰张发宝徐培智解开治唐拴虎 . 堆肥反应器中硫磺对牛粪好氧堆肥的保氮效果研究. 植物营养与肥料学报, 2011, 17(1): 224-230. doi: 10.11674/zwyf.2011.0131
    [12] 李耕高辉远刘鹏杨吉顺董树亭张吉旺王敬锋 . 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 2010, 16(3): 536-542. doi: 10.11674/zwyf.2010.0304
    [13] 董守坤龚振平祖伟 . 氮素营养水平对大豆氮素积累及产量的影响. 植物营养与肥料学报, 2010, 16(1): 65-70. doi: 10.11674/zwyf.2010.0110
    [14] 焦永鸽李天福张云贵李志宏刘宏斌谷海红 . 有机质对红壤烤烟氮素累积分配特征的影响. 植物营养与肥料学报, 2009, 15(4): 923-929. doi: 10.11674/zwyf.2009.0428
    [15] 孙旭生林琪李玲燕姜雯翟延举 , . 氮素对超高产小麦生育后期光合特性及产量的影响 . 植物营养与肥料学报, 2008, 14(5): 840-844. doi: 10.11674/zwyf.2008.0504
    [16] 王建同延安 . 猕猴桃树对氮素吸收、利用和贮存的定量研究. 植物营养与肥料学报, 2008, 14(6): 1170-1177. doi: 10.11674/zwyf.2008.0623
    [17] 刘连涛李存东孙红春路文静冯丽肖 . 氮素营养水平对棉花不同部位叶片衰老的生理效应. 植物营养与肥料学报, 2007, 13(5): 910-914. doi: 10.11674/zwyf.2007.0523
    [18] 梁太波王振林刘兰兰王汝娟陈晓光张晓冬史春余 . 腐植酸尿素对生姜产量及氮素吸收、同化和品质的影响. 植物营养与肥料学报, 2007, 13(5): 903-909. doi: 10.11674/zwyf.2007.0522
    [19] 刘伟徐坤苏华王惠林 . 氮素对菠菜衰老生理指标的影响. 植物营养与肥料学报, 2007, 13(6): 1110-1115. doi: 10.11674/zwyf.2007.0620
    [20] 段英华张亚丽沈其荣陈红云张勇 . 增硝营养对不同基因型水稻苗期氮素吸收同化的影响. 植物营养与肥料学报, 2005, 11(2): 160-165. doi: 10.11674/zwyf.2005.0204
  • 加载中
图(9)表(4)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  66
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-24
  • 网络出版日期:  2020-07-20
  • 刊出日期:  2020-06-01

牛粪好氧发酵添加聚天冬氨酸固持氮素的机理

    作者简介:徐荣 E-mail:realmaridreal@126.com
    通讯作者: 王守红, yzwish@126.com
  • 1. 江苏里下河地区农业科学研究所,江苏扬州 225007
  • 2. 江苏省生态农业工程技术研究中心,江苏扬州 225007
  • 基金项目: 教育部农业与农产品安全国际合作联合实验室开放课题(JRK20180013);江苏省重点研发计划(社会发展)项目(BE2017688);江苏省重点研发计划(社会发展)项目(BE2015661);扬州市市级计划-现代农业项目(YZ2018040);江苏里下河地区农业科学研究所科研基金项目(SJ〔17〕107)。
  • 摘要:   【目的】  为有效控制堆肥过程中氮素流失,采用聚天冬氨酸 (PASP) 作为氮素固持材料,分步研究牛粪好氧发酵添加聚天冬氨酸固持氮素的效果及机理。  【方法】  首先,采用干湿分离牛粪为原料,设置不同PASP添加量处理 [0 g/t (CK)、120 g/t (A)、240 g/t (B)] 进行堆肥试验,并针对堆体理化性质、氮素含量及腐熟度指标进行定期监测;其次,依据后期制备生物炭中PASP的担载量,设置堆肥过程空白生物炭 (BC-80 g/kg)、生物炭担载PASP (BP-80 g/kg) 添加处理,堆肥初始时 (第1天) 及高温期结束时 (第22天) 时,采用扫描电镜 (SEM) 观察PASP形貌、傅里叶红外变换光谱 (FTIR) 表征官能团变化,X射线光电子能谱 (XPS) 表征氮素结合形态。  【结果】  堆肥初始时,相较于BC,BP表面出现颗粒化特征形貌;高温堆肥22天处理后,BP表面该形貌特征进一步被强化,且结合PASP添加组的堆体pH持续高于CK,表明堆肥过程中PASP未被完全分解;综合堆体理化指标、氮素含量变化及微观表征结果分析发现,PASP通过侧链—COOH与铵态氮形成络合结构,增加高温期堆体特别是堆肥第5~10天铵态氮含量 (P < 0.05) 的同时,增加了微生物对铵态氮的利用难度,导致其高温期积温较CK降低40.0℃~91.9℃,并促使其提前4.0~4.6天进入后腐阶段 (P < 0.05),有效控制了高温期氮素的流失风险;堆体DOM (水溶性有机物) 红外光谱分析结果表明,PASP促使堆体相对芳香化程度增强 (P < 0.05),且基于其在高温期对氮素的固持作用,提升降温期微生物水溶性总氮供应能力,间接降低矿化作用强度,促进含氮有机物与芳香物质合成腐殖质,控制降温期的氮素损失风险;并最终表现为堆肥第39天时,PASP处理氨气累积挥发量显著降低26.62%~37.02% (P < 0.05),其全氮含量较堆前增加7.09%~13.64% (CK下降1.23%,P > 0.05)。  【结论】  PASP通过侧链—COOH与铵态氮络合作用及对堆体腐殖化程度的提升作用,综合控制氮素损失风险。同时,添加PASP可降低高温期积温,促使堆体提前4.0~4.6天进入后腐阶段,这也是其控制高温堆肥氮素流失的主要机制。对干湿分离牛粪好氧堆肥而言,PASP在120 g/t低用量时可获得较为理想的氮素截留效果。

    English Abstract

    • 未能得到合理有效利用的有机废弃物资源成为了农业面源污染的重要来源[1]。好氧堆肥处理可实现废弃物无害化、减量化、资源化的目标,是当下较为有效的利用方式之一[2]。但在该处理过程中,堆肥氨化作用及渗滤液流失,极易导致氮素流失[3]。相关研究结果表明,堆肥高温期存在的氨气挥发过程为氮素流失的主要途径[4],占总损失量的49.63%~94.88%[3-5],不利于堆肥质量的保持;此外,氨气挥发进入大气,可促进PM2.5成核重要成分—铵盐的生成,增加雾霾发生概率,亦不利于大气环境保护[6]

      为解决该问题,相关研究采用自然物料[7]、薄膜[8]等覆盖堆体,或安装进气管槽等相对廉价方式减少堆体扰动,控制氨气散逸[9]。此外,通过施用化学 (硫酸[10]、铜盐[11]、硝化抑制剂[12]等)、物理 (生物炭[13]、沸石[12]等)、微生物 (除氨菌[14]) 及酶制剂 (外源酶[15]) 等添加剂,调整堆肥理化性质,吸附氨化作用的反应物,优化相关特征微生物种群,均实现了较好的氮素固持效果。聚天冬氨酸 (PASP) 属于高分子氨基酸材料,绿色可降解,在农业生产中作为肥料增效剂,可与氮、磷、钾等养分螯合,提高养分的有效性,进而提高作物产量[16-17]。本研究探讨了PASP对牛粪好氧堆肥过程中的氮素固持效果,并观测了堆肥氨气挥发高峰期—高温期PASP分子结构、官能团变化及其与氮素螯合形态等的微观表征,结合堆体理化性质、腐殖化指标,探讨PASP的氮素固持机理,为利用PASP提升堆肥质量、降低堆肥污染程度提供理论和技术支撑。

      • 堆肥原料为集约养殖场排出的新鲜奶牛粪,经脱水机械处理后,细碎均匀,无需添加辅料即可快速升温、发酵、腐熟;生物炭为椰壳纤维经过600℃高温限氧灼烧2 h而成,购自河南环盛炭业有限公司;聚天冬氨酸 (PASP),购自河北协同环保科技股份有限公司,其分子量为8000左右,分子结构如图1所示。干湿分离牛粪、PASP和生物炭理化性状见表1

        图  1  聚天冬氨酸 (PASP) 结构式

        Figure 1.  Structural formula for polyaspartic acid

        表 1  供试材料理化性质

        Table 1.  Physicochemical properties of the experimental materials

        原料
        Material
        含水率Moisture
        (%)
        pH电导率EC
        (mS/cm)
        有机质OM
        (%)
        全氮Total N
        (g/kg)
        NH4+-N
        (mg/kg)
        NO3-N
        (mg/kg)
        牛粪Cow dung55.4 ± 0.28.11 ± 0.020.939 ± 0.00965.19 ± 0.67.166 ± 0.23735.08 ± 1.8814.62 ± 0.82
        PASP (10 g/L) 9.40 ± 0.034.501 ± 0.08639.26 ± 0.669.882 ± 0.55
        生物炭Biochar10.79 ± 0.20 0.011 ± 0.001 0.005 ± 0.0030.003 ± 0.00
      • 将牛粪按条垛状堆放,堆体高1.2 m、宽2.2 m、长3.5 m。PASP分别按照CK (0 g/t)、处理A (120 g/t)、处理B (240 g/t) 的堆体用量添加至各堆体中。每2 天采用翻抛机 (转速1800 r/min) 翻堆一次,直至温度降至室温左右时,试验结束。

      • 将PASP配成水溶液 (2.4 g/kg),将过4 mm筛生物炭按照与PASP重量比2000∶3加入,搅拌均匀后静置24 h,50℃烘干24 h,制成载PASP生物炭 (BP)。按照PASP 120 g/t堆肥的用量设置BP用量,即称重BP 160 g与堆肥物料2 kg混匀,装入尼龙网袋 (孔径低于堆肥、生物炭的尺寸,以防漏出),置于堆体中部。同样方法,设置等量未吸附PASP的生物炭 (BC) 处理作为对照。于堆肥初始时 (第1天) 和堆肥高温期结束时 (第22天) 取样,过5目筛后高速粉碎并冷冻干燥,分别记为BP0、BC0、BP1、BC1。采用电镜扫描 (SEM)、傅里叶红外转换光谱 (FTIR) 及X射线光电子能谱 (XPS) 表征两种材料堆肥前后的表观形貌和分子结构变化。

      • 每日上午10:00及下午4:00,自不同方向将温度计插入堆体30 cm测定当前温度,并记录环境温度。样品采集时间分别为堆肥0、5、10、17、24、31、39天,每次随机采样3 kg,其中1 kg鲜样装入自封袋保存于–4℃冰箱,用于速效养分及堆体理化性质的测定;1 kg鲜样风干后用于总氮和有机质含量的测定;1 kg鲜样立即装入4 L矿泉水瓶,并置于恒温培养箱中泵气培养3 h (培养温度与采样时堆体温度相同),泵出气体后采用50 mL 2%硼酸溶液[18]吸收,滴定法测定,并计算氨气挥发量及累计挥发量 ,装置示意图见图2

        图  2  氨气吸收装置示意图

        Figure 2.  Apparatus for ammonia absorption

        堆体铵态氮、硝态氮及水溶性总氮含量分别采用氯化钾联合浸提—靛酚蓝比色法、紫外分光光度法、凯氏定氮法测定[19],水溶性无机氮含量为铵态氮和硝态氮之和;pH和电导率 (EC) 的测定均采用鲜样与蒸馏水按照 1∶10 (重量比) 混合振荡0.5 h,pH计、电导率仪分别测定;种子发芽率指数 (GI) 测定:将前述混合振荡液过滤,取10 mL过滤液置于垫有滤纸的玻璃培养皿中,并均匀放入20 粒雪里蕻种子,25℃黑暗条件下生长48 h后,测量发芽率和根长,每个样品 3 次重复,同时以蒸馏水处理作对照,计算GI。GI计算公式[20]

        GI (%) = (各处理的种子发芽率 × 各处理的种子根长)/(对照种子发芽率 × 对照种子根长) × 100。

        堆体总氮、有机质含量分别采用凯氏定氮法和灼烧法测定[6]

        堆体水溶性有机物 (以下简称DOM) 提取及红外光谱测定方法:堆肥升温期、高温期及降温期分别随机取堆肥样品,并混匀,采用四分法得到200 g样品,待风干后采用高速粉碎机 (10000 r/min) 全部粉碎后,准确称取3 g (精确到0.001 g) 上述处理好的样品,按照堆肥干物质重与超纯水体积比为1∶10在恒温条件下利用恒温水浴振荡器在200 r/min震荡提取24 h,在4℃、12000 r/min下离心20 min,上清液过0.45 μm的滤膜,将滤液进行冷冻干燥,得到堆肥DOM[21]。采用美国Varian公司670-IR型傅里叶变换红外光谱仪对提取的DOM进行扫描,范围为4000~400 cm–1,分辨率为4 cm–1,扫描信号累加32次,每处理重复3次[22]

      • 采用德国Carl Zeiss公司的GeminiSEM 300型号场发射扫描电镜进行表面形貌观察,放大倍数均为50 kx。利用美国Varian公司670-IR型傅里叶变换红外光谱仪表征材料表面官能团[18],光谱范围为4000~400 cm–1,分辨率为4 cm–1,扫描信号累加32次,每处理重复3次。通过美国Thermo Fisher Scientific公司的ESCALAB250Xi型号X射线光电子能谱仪进行氮元素化学态分析[23],其原始数据分别采用Origin 8预处理,进而用XPS peak41软件分峰处理。

      • 表2可知,堆肥高温期,CK、A和B处理达到55℃的天数无显著差异,但CK ≥ 55℃持续的天数显著多于A处理 (P < 0.05);CK的高温期积温较A、B处理分别高91.9℃、40℃,其中CK与A之间的差异达到显著水平(P < 0.05);3个处理堆体间的最高温度无显著差异,但关于高温降至 ≤ 35℃所需的天数,CK显著多于A和B处理 (P < 0.05),换言之,A和B处理较CK分别提前4.6、4.0天进入后腐阶段;堆肥全程总积温3个处理之间差异显著,表现为CK > B > A (P < 0.05)。此外,本研究堆肥高温期持续时间较长,主要是由于选用的干湿分离牛粪物料较为细碎均匀,堆体孔隙度相对较小,水分散失相对较慢,保温作用较强。

        表 2  堆肥温度特征指标

        Table 2.  Characteristic indexes for compost temperature

        处理
        Treatment
        达到55℃天数
        Days required to 55℃
        ≥ 55℃持续天数
        Lasting days ≥ 55℃
        最高温度 (℃)
        Max temperature
        降到 ≤ 35℃天数
        Days required
        to ≤ 35℃
        高温期积温 (℃)
        Cumulative temperature
        during high
        temperature period
        全程积温 (℃)
        Total cumulative
        temperature
        CK1.3 ± 0.3 a23.3 ± 0.3 a61.7 ± 0.3 a40.3 ± 0.7 a1370.7 ± 19.0 a2199.7 ± 11.0 a
        A1.3 ± 0.3 a21.7 ± 0.3 b62.7 ± 0.7 a35.7 ± 0.3 b1278.8 ± 20.2 b2040.3 ± 15.5 c
        B1.0 ± 0.0 a 22.7 ± 0.3 ab63.0 ± 0.0 a36.3 ± 0.7 b 1330.7 ± 18.2 ab2116.0 ± 10.0 b
        注(Note):CK、A、B 分别表示堆肥原料中加入 PASP 0、120 和 240 g/t The addition rates of PASP are 0, 120 and 240 g/t in the composting raw materials, respectively; 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.

        表3表明,3个处理堆体pH总体随堆肥时间延长呈不断下降趋势。堆肥开始时(堆肥第0天),处理A、B、CK的pH分别为8.103、8.157、8.060,CK的pH显著低于A处理 (P < 0.05);堆肥第5天时达到最大差异,A、B、CK的pH分别为8.423、8.213、8.090,其中处理B显著高于CK (P < 0.05);堆肥结束时(堆肥第39天),A、B、CK处理的pH分别为7.853、7.817、7.460,其中A、B与CK间的差异均显著 (P < 0.05)。

        表 3  堆肥过程中堆体理化性质变化

        Table 3.  Variation of physicochemical properties during composting period

        项目
        Item
        处理
        Treatment
        0 d5 d10 d17 d24 d31 d39 d
        pHCK8.060 ± 0.023 b8.090 ± 0.046 b8.110 ± 0.023 b7.847 ± 0.043 a7.737 ± 0.034 b7.743 ± 0.029 b7.460 ± 0.031 b
        A 8.103 ± 0.012 a8.423 ± 0.058 b8.260 ± 0.035 ab8.017 ± 0.072 a7.907 ± 0.043 ab7.853 ± 0.030 ab7.853 ± 0.064 a
        B 8.157 ± 0.033 ab8.213 ± 0.015 a8.180 ± 0.035 a7.963 ± 0.032 a7.832 ± 0.022 a7.790 ± 0.015 a7.817 ± 0.015 a
        EC
        (mS/cm)
        CK0.973 ± 0.010 a0.940 ± 0.012 a1.160 ± 0.023 a1.020 ± 0.013 b1.055 ± 0.007 c1.175 ± 0.008 a1.185 ± 0.025 a
        A 0.928 ± 0.004 b0.970 ± 0.040 a1.080 ± 0.023 b1.060 ± 0.017 ab1.140 ± 0.000 a1.205 ± 0.023 a1.203 ± 0.025 a
        B 0.915 ± 0.003 b1.010 ± 0.006 a0.950 ± 0.017 c1.103 ± 0.009 a1.110 ± 0.012 b1.125 ± 0.004 b1.190 ± 0.037 a
        GI
        (%)
        CK60.35 ± 3.67 a67.80 ± 2.57 a63.55 ± 1.15 a76.17 ± 2.45 ab92.83 ± 2.94 b93.48 ± 2.39 b103.7 ± 2.32 b
        A 58.00 ± 2.06 a62.92 ± 2.15 a66.62 ± 1.03 a83.22 ± 2.49 a106.07 ± 2.69 a113.47 ± 3.34 a122.8 ± 3.22 a
        B 58.84 ± 1.45 a74.77 ± 9.32 a65.59 ± 3.66 a73.43 ± 1.93 b94.11 ± 2.40 b102.84 ± 3.77 ab111.5 ± 5.90 ab
        含水率
        Moisture
        (%)
        CK55.45 ± 0.17 a52.63 ± 0.18 a48.67 ± 0.28 a47.11 ± 0.06 a45.00 ± 0.12 a43.57 ± 0.35 a42.73 ± 0.65 a
        A 54.85 ± 0.08 b51.15 ± 0.06 b47.63 ± 0.32 b45.32 ± 0.12 b44.41 ± 0.14 a43.64 ± 0.36 a42.57 ± 0.23 a
        B 55.81 ± 0.20 a52.51 ± 0.27 a46.44 ± 0.21 c44.89 ± 0.57 b44.13 ± 0.54 a42.86 ± 1.00 a42.11 ± 1.05 a
        有机质
        OM
        (%)
        CK64.22 ± 1.00 a57.57 ± 0.99 a52.14 ± 0.07 b48.94 ± 0.60 b46.25 ± 0.49 b45.50 ± 0.01 a43.42 ± 0.01 b
        A 66.07 ± 0.64 a56.47 ± 1.68 a54.24 ± 0.59 a51.32 ± 0.01 a48.80 ± 0.01 a47.58 ± 0.01 a46.45 ± 0.00 a
        B 65.24 ± 0.47 a57.42 ± 0.74 a54.01 ± 0.38 a51.02 ± 0.00 ab48.06 ± 0.00 ab46.87 ± 0.01 a45.54 ± 0.00 a
        注(Note):CK、A、B 分别表示堆肥原料中加入 PASP 0、120 和 240 g/t The addition rates of PASP are 0, 120 and 204 g/t in the composting raw materials, respectively; 同列数据后不同小写字母表示同一堆肥时期不同处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments at the same composting period (P < 0.05).

        3个处理堆体EC总体随堆肥时间延长呈现不断上升趋势。堆肥开始时,处理A、B、CK的EC分别为0.928、0.915、0.973 mS/cm,处理A、B显著低于CK (P < 0.05);堆肥第10天时三者差异最大,处理A、B、CK的EC值分别为1.080、0.950、1.160 ms/cm,且三者间差异达到显著水平 (P < 0.05);至堆肥结束时,处理A、B、CK的EC值较为接近,分别为1.203、1.190 、1.185 mS/cm,且三者间差异未达到显著水平 (P > 0.05)。

        堆肥17天前3个处理GI差异未达显著水平。处理A在堆肥第17 天时,种子发芽率指数超过80%,达到腐熟状态,而其他两个处理则在第17~23天才达到腐熟状态。至堆肥结束时,仅处理A的GI显著高于CK (P < 0.05)。

        3个堆肥处理堆体含水率总体随堆肥时间延长呈不断下降趋势,其中各处理前期 (堆肥第1~8 天) 水分损失速率快于堆肥中后期 (堆肥第10~39天);3个处理堆肥第10天开始水分散失速率差异显著,表现为CK>A>B;至堆肥结束时,处理A、B、CK含水率分别为42.57%、42.11%、42.73%,且三者间差异未达到显著水平 (P > 0.05)。

        3个堆肥处理堆体有机质含量总体随堆肥时间延长呈不断下降趋势,且在高温期下降速率要高于堆肥降温期及后腐期;自堆肥第10 天开始,CK的有机质含量下降速率快于PASP添加处理;至堆肥结束时,处理A、B及CK的有机质含量分别为46.45%、45.54%、43.42%,其中前二者显著高于CK (P < 0.05), 较堆肥开始时,各处理有机质含量分别下降29.70%、30.18%、32.40%。

      • 表4表明,全氮3个堆肥处理堆体全氮含量随堆肥天数增加呈现不断波动趋势;CK全氮含量分别于堆肥第10天后逐渐低于添加PASP的A、B处理;不同用量PASP处理的全氮含量在堆肥高温期阶段的相互关系并不明确,但当堆肥进入降温期 (堆肥第24天为节点),处理A全氮含量一直高于B处理,但最终二者全氮含量相近。在堆肥全过程中,A、B处理及CK全氮含量峰值均出现在堆肥第24天,即降温期开始时,分别为12.25、11.09、10.70 g/kg,三者间差异未达到显著水平 (P > 0.05);各处理堆体全氮含量最终分别为8.02、7.90、6.99 g/kg,三者间差异未达到显著水平 (P > 0.05);其中A、B处理全氮含量分别较堆肥初始时提高13.64%、7.09%,而CK则降低1.23%。此外,本研究中,堆肥结束时的CK全氮含量较堆肥前略有下降,这可能与水分散失、氮素损失、有机质分解速率等密切相关[24-29]

        表 4  堆肥过程中堆体不同形态氮素含量变化 (g/kg)

        Table 4.  Variation of nitrogen forms during composting period

        项目
        Item
        处理
        Treatment
        0 d5 d10 d17 d24 d31 d39 d
        全氮
        Total N
        CK7.072 ± 0.403 a8.994 ± 0.716 a9.590 ± 0.441 b6.920 ± 1.080 a10.705 ± 0.620 a 8.460 ± 1.030 a6.985 ± 0.376 a
        A 7.053 ± 0.656 a7.056 ± 0.508 a11.914 ± 0.508 b 7.608 ± 0.529 a12.250 ± 1.180 a 8.850 ± 0.377 a8.015 ± 0.296 a
        B 7.372 ± 0.226 a8.118 ± 0.421 a8.859 ± 0.577 a8.724 ± 0.331 a11.090 ± 1.460 a 8.780 ± 0.229 a7.895 ± 0.946 a
        水溶性总氮
        WSTN
        CK0.264 ± 0.010 a0.286 ± 0.003 b0.272 ± 0.003 a0.288 ± 0.005 a0.232 ± 0.006 b0.200 ± 0.012 b0.160 ± 0.006 b
        A 0.281 ± 0.006 a0.295 ± 0.003 b0.268 ± 0.003 a0.275 ± 0.007 a0.283 ± 0.005 a0.239 ± 0.001 a0.187 ± 0.009 a
        B 0.269 ± 0.009 a0.322 ± 0.001 a0.270 ± 0.003 a0.279 ± 0.005 a0.238 ± 0.007 b0.207 ± 0.005 b0.162 ± 0.004 b
        水溶性无机氮
        WSIN
        CK 0.050 ± 0.003 ab0.077 ± 0.005 c0.059 ± 0.003 b0.076 ± 0.001 a0.046 ± 0.003 a0.032 ± 0.002 a0.027 ± 0.001 b
        A 0.043 ± 0.003 b0.098 ± 0.003 b0.062 ± 0.002 b0.076 ± 0.003 a0.053 ± 0.006 a0.031 ± 0.002 a0.030 ± 0.001 a
        B 0.057 ± 0.001 a0.130 ± 0.006 a0.075 ± 0.004 a0.076 ± 0.005 a0.051 ± 0.003 a0.031 ± 0.002 a0.033 ± 0.001 a
        NH4+-NCK0.037 ± 0.002 a0.064 ± 0.004 c0.046 ± 0.003 b0.064 ± 0.002 a0.037 ± 0.002 a0.025 ± 0.002 a0.018 ± 0.002 b
        A 0.029 ± 0.002 b0.083 ± 0.003 b0.048 ± 0.003 b0.064 ± 0.003 a0.044 ± 0.006 a0.023 ± 0.002 a0.021 ± 0.005 a
        B 0.040 ± 0.001 a0.115 ± 0.003 a0.061 ± 0.004 a0.063 ± 0.004 a0.041 ± 0.003 a0.024 ± 0.002 a0.024 ± 0.001 a
        NO3-NCK0.013 ± 0.001 a0.012 ± 0.001 a0.013 ± 0.001 a0.012 ± 0.002 a0.009 ± 0.001 a0.008 ± 0.000 a0.009 ± 0.000 a
        A 0.014 ± 0.002 a0.014 ± 0.002 a0.014 ± 0.001 a0.012 ± 0.001 a0.009 ± 0.001 a0.007 ± 0.001 a0.009 ± 0.000 a
        B 0.017 ± 0.001 a0.015 ± 0.003 a0.014 ± 0.001 a0.013 ± 0.001 a0.010 ± 0.001 a0.007 ± 0.001 a0.009 ± 0.002 a
        注(Note):CK、A、B 分别表示堆肥原料中加入 PASP 0、120 和 240 g/t The addition rates of PASP are 0, 120 and 204 g/t in the compost raw material, respectively; WSTN—Water soluble total N; WSIN—Water soluble inorganic nitrogen; 同列数据后不同小写字母表示同一堆肥时期不同处理间差异显著 Values followed by different small letters in a column mean significant difference among treatments at the same composting period (P < 0.05).

        3个堆肥处理堆体水溶性总氮含量随堆肥时间延长总体呈下降趋势;堆肥第1~17天,CK水溶性总氮含量变化较小,最高时为0.288 g/kg,之后则不断下降,最终含量为0.160 g/kg,且较初始时下降39.21%;而添加PASP的处理A和B在高温前期 (堆肥第1~10天) 时,水溶性总氮含量高于CK,并达到峰值,分别为0.295、0.322 g/kg;随着堆肥进程,二者水溶性总氮含量波动变化至堆肥第17天时,B处理首先迅速下降,直至堆肥结束时,其水溶性总氮含量为0.162 g/kg,较堆肥初期减少40.06%;而A处理水溶性总氮含量的下降时间节点则出现延迟,其最终水溶性总氮含量达到0.187 g/kg,相较于堆肥初始时,减少33.37%;堆肥结束时,仅处理A的水溶性总氮含量显著高于CK (P < 0.05)。

        3个堆肥处理水溶性无机氮随堆肥时间延长总体呈先升后降趋势,在堆肥第17天前,各处理水溶性无机氮含量表现为B > A > CK,且在堆肥第5天时达到峰值,分别为0.130、0.098、0.077 g/kg;堆肥第17天后,三者水溶性无机氮含量接近;至堆肥结束时,A和B处理水溶性无机氮含量分别为0.030、0.033 g/kg,显著高于CK的0.027 g/kg(P < 0.05);各处理水溶性无机氮含量分别较堆肥前下降28.95%、41.79%、45.11%。

        3个堆肥处理铵态氮含量随堆肥时间延长总体呈先升后降趋势;堆肥第1~17天时,各处理堆体铵态氮含量为B > A > CK,且在堆肥第5天时,各处理铵态氮含量均达到峰值,B、A、CK处理分别为0.115 、0.083 、0.064 g/kg,且三者间的差异达到显著水平 (P < 0.05);自高温末期直至堆肥结束 (堆肥第17~39 天),各处理铵态氮含量不断下降,三者间铵态氮含量接近;堆肥结束时,处理A、B及CK的铵态氮含量分别为0.021、0.024、0.018 g/kg,此时前二者显著高于CK (P < 0.05);各处理铵态氮含量较堆肥初始时分别下降26.18%、40.63%、49.62%。

        3个堆肥处理堆体硝态氮含量随堆肥时间延长总体呈先降后增的趋势;堆肥前期由于高温氨化作用占主导地位,其氮源主要来源于有机质分解和各种速效形态氮素的转化利用,其中包括硝态氮。因而堆肥高温期及降温前期 (堆肥第1~31天),硝态氮含量始终呈下降趋势,并在堆肥第31天时,各处理达到最低值,A、B、CK处理分别为0.007、0.007、0.008 g/kg;而在后腐阶段 (堆肥第31~39天),处理A、B及CK的硝态氮含量略有回升;至堆肥结束时,三者堆体的硝态氮含量均为0.009 g/kg,且较堆肥初始时,分别下降34.75%、44.56%、32.73%;堆肥全程中,各处理堆体硝态氮含量间的差异未达到显著水平 (P > 0.05)。

        图3所示,堆肥第1~3天是各处理堆肥氨气挥发最强阶段,堆肥第3天达到峰值时,处理A、B、CK的日均释放速率分别为2.98、3.12、4.25 mg/(kg·d),由于CK变异大,3个处理间差异未达显著水平。之后,氨气日均释放速率呈现波动,但均大幅下降,并趋于稳定。但氨气累计释放量自堆肥第1天起,CK一直高于A、B两个处理。堆肥结束时,处理A、B、CK的氨气累计释放量分别为30.14、35.12、47.86 mg/kg,A、B处理比CK分别显著下降33.02%、26.62% (P < 0.05)。

        图  3  不同处理堆肥氨气释放量变化趋势

        Figure 3.  Variation of release amount of ammonia in compost under different treatments

      • 3个处理在升温期、高温期 (> 55℃) 和降温期,堆肥的DOM红外谱图具有相似的特征峰 (图4)。从文献[30-32]报道的特征峰可以推断,3500~3200 cm–1处为OH—的伸缩振动,其强弱代表碳水化合物含量。CK的碳水化合物峰值为升温期 > 高温期 > 降温期,但不同时期的差值较小;A处理的峰强则在升温期至高温期大幅下降,降温期略有回升,总体呈下降趋势;B处理峰强于堆肥前期变化较小,在高温期至降温期内大幅下降,总体亦呈下降趋势;降温期时,CK较升温期峰强增加16.77%,而A和B处理峰强分别下降36.99%及27.85%。2935~2915 cm–1处为不对称—CH2—中的C—H伸缩振动,代表堆体中的脂肪及脂质类物质。堆肥过程中,CK的峰强不断增加,A和B处理呈先降后升的趋势;降温期时,CK及B处理的峰强较升温期增加9.44%、3.82%,而A处理峰强则下降47.52%。1650~1620 cm–1处为取代的芳环振动及酰胺中的C=O、N—H键的伸缩振动,代表堆体中的芳香化物质,CK峰强先升后降,处理A峰强先降后升,处理B峰强则呈不断增强趋势;至堆肥降温期,CK及B处理的峰强分别较升温期增加1.28%、38.55%,而A处理峰强则下降11.88%。1080~1030 cm–1波数处代表多糖及其类似物,A处理和CK的多糖及其类似物含量于堆肥过程中均呈现先升后降的趋势,B处理则表现为先降后升,且仅B处理出现多糖及其类似物的积累;堆肥降温期时,CK及处理A多糖及其类似物含量较升温期分别下降10.33%、15.02%,而B处理则增加11.01%。

        图  4  各处理不同堆肥阶段物料红外光谱

        Figure 4.  Fourier transform infrared spectroscopy in different compost periods

        然而仅依靠红外光谱不同特征峰强度的比较分析堆体的腐殖化进程,存在一定片面性。通过1650 cm–1 (芳香碳)/3400 cm–1 (碳水化合物碳)、1650 cm–1 (芳香碳) /2930 cm–1 (脂族碳)、1650 cm–1 (芳香碳) /1419 cm–1 (羧基碳)、1650 cm–1 (芳香碳) /1030 cm–1 (多糖碳) 的峰强比值,可进一步判断堆肥腐殖化程度[32-33],本文将此比值依次标记为F1、F2、F3、F4。

        图5所示,F1代表芳香碳/碳水化合物碳,堆肥过程中,CK处理的F1呈不断下降趋势,而A处理的F1呈先升后降的趋势,至堆肥降温期,CK的F1下降7.59% (P < 0.05),而A处理则上升40.18% (P < 0.05);B处理的F1则呈不断增加的趋势,降温期较升温期增加92.04% (P < 0.05)。F2代表芳香碳/脂族碳,CK的F2值在堆肥过程中呈先升后降趋势,且相较于升温期,降温期时下降7.59% (P > 0.05);而A和B处理则呈不断增加趋势,至堆肥降温期,A,B处理F2值分别较升温期增加70.97%、33.11% (P < 0.05)。而各处理F3和F4在堆肥过程中的变化均未达到显著水平 (P > 0.05)。此外,CK堆体降温期相对芳香化程度有所降低,可能与后腐期CK的有机物分解相对较强有关,与于子旋等[32]、孙向平等[34]的研究结果相似。

        图  5  堆体不同阶段相对芳香化程度

        Figure 5.  Relative aromatization degree in different compost periods

      • 图6所示,在50 kx左右放大倍数下,堆肥开始时空白生物炭 (BC0) 表面及孔道内部光滑,无填充物;担载PASP后的生物炭 (BP0) 表面则显著颗粒化,且孔道中也存在颗粒化填塞物。堆肥高温结束时,空白生物炭 (BC1) 表面呈现粗糙、不规则化;而担载PASP的生物炭 (BP1) 表面颗粒化特征则得到加强,且孔道内存在填充物。相关文献[35-37]在通过电镜表征PASP与材料结合及阻垢前后表面形貌特征时,发现PASP附着或阻垢后,材料表面均由光滑形态向颗粒化规则形态转变。因此,综合分析认为PASP已成功附着于生物炭表面及孔道,并在堆肥过程中不断与堆体物质相结合,导致电镜表征过程中的PASP颗粒化形貌得到增强。

        图  6  堆肥初始及高温期结束时的生物炭和吸附PASP生物炭样品电镜扫描图

        Figure 6.  Scanning images of biochar(BC0, BC1) and biochar-absorbed PASP (BP0, BP1) samples at the beginning and the end of high temperature periods during composting

        对以上4个样品进行FTIR扫描 (图7),1394.8 cm–1处的特征峰代表C—N伸缩振动及N—H的弯曲振动[38];1585.7 cm–1处的特征峰代表—COOH的反对称伸缩振动[39-40];1460.7 cm–1处的特征峰代表芳香或脂肪族碳的伸缩振动[41],3071.1 cm–1处的特征峰代表末端基双键碳上C—H的伸缩振动[42],3232.8 cm–1处的特征峰代表仲胺N—H的伸缩振动[43]。分析认为,区别于PASP,BC0、BC1、BP0、BP1均展现出芳香碳的特征峰,表明载体生物炭的存在;BC0除2356 cm–1附近的CO2干扰峰及1460.7 cm–1处附近的芳香碳、脂族碳特征峰外,其活性官能团较为匮乏;而相较于PASP,BP0亦存在相同的羧基、C—N及N—H的特征峰,表明PASP成功被生物炭吸附;而BP1与BC1相似,表面并未发现明显的PASP特征峰 (—COOH、C—N、N—H)。分析认为,相对于红外光谱扫描强度而言,BP0上PASP担载量较少;经过 22天堆肥高温期处理后,BP1表面官能团可能与堆体中的游离物质螯合,形成结合态,其相应官能团及键节的特征峰强度出现降低,乃至消失,这与范春辉[44]、马培等[45]、王思源等[46]的研究结果相似。1000 cm–1波数以下,则主要是无机组分的指纹识别区,包括PASP溶剂中少量磷酸盐组分等。

        图  7  高温堆肥前后生物炭及吸附PASP生物炭傅里叶变换红外光谱

        Figure 7.  Fourier transform infrared spectroscopy of biochar with and without absorbing PASP before and after composting

        X射线光电子能谱 (XPS) 全谱扫描结果 (图8) 表明,BC0、BC1、BP0表面主要以C1s、O1s的电子能谱峰为主,而BP1表面则以C1s、O1s、Na1s、N1s的电子能谱峰为主。相较于BC0和BP0,高温堆肥后BC1、BP1表面N1s、O1s电子能谱峰强度有所增加。

        图  8  高温堆肥前后生物炭及吸附PASP生物炭X射线光电子能谱 (XPS) 全谱扫描

        Figure 8.  X-ray photoelectron spectroscopy of biochar with and without absorbing PASP before and after composting

        对堆肥前后BC和BP的N1s电子能谱峰进行拟合、分峰处理 (图9) 表明,BC0表面氮元素含量较少,主要以生物炭内部C—N结合态为主,BP0表面氮素含量相对丰富,主要包括生物炭内部的C—N结合态和PASP分子结构中O=C—NH(C,H) 结合态;BC1表面氮素以生物炭内部C—N结合态及NOX形态存在,而BP1表面则以NH4+与CHRCOOH间的结合态、PASP分子结构中O=C—NH(C, H) 结合态、C—N结合态及NO3形态存在。

        图  9  高温堆肥前后生物炭及吸附PASP生物炭X射线光电子能谱 (XPS) 氮特征谱

        Figure 9.  Characteristic spectrum of nitrogen by X-ray photoelectron spectroscopy of biochar with and without absorbing PASP before and after composting

      • 好氧堆肥高温过程 (堆温 ≥ 55℃) 决定堆体无害化程度;但高温期过长,不仅影响堆肥效率,且堆体在高温与偏碱性环境共同作用下,氨化强度增加,氮素流失风险升高[47]。因而,可在满足堆体无害化标准 (堆温高于55℃时间 ≥ 5 天) 基础上,通过适当降低堆温和pH,缓解因极端环境造成的氮素流失现象。

        结合上述分析,PASP作为高分子氨基酸材料,其碱性特征可增加氮素氨化流失风险,但试验结果表明,相较于CK,堆肥结束时,PASP处理 (A、B) 的氨气累计挥发量显著降低了26.62%~37.02% (P < 0.05,图3);PASP处理 (A、B) 全氮含量亦较堆前增加7.09%~13.64% (CK则减少1.23%,表4),因此,PASP具备有效的氮素固持功能。

        为有效揭示堆肥过程中PASP的氮素截留机理,本研究通过制备担载PASP生物炭 (BP) 和空白生物炭 (BC),并比较堆肥初始时 (堆肥第1天,BP0、BC0) 及堆肥高温期结束时 (堆肥第22天,BP1、BC1),材料表面形貌及官能团结构等,验证堆肥前后能否在生物炭表面实现PASP成功担载。结果表明,BC0与BP0在表面及孔道形貌上存在差异 (图6),BP0出现PASP官能团及键节的红外特征峰等现象 (图7),均表明堆肥初始时,PASP在生物炭表面实现有效担载;其次,BP1与BP0相比,前者颗粒化形貌特征得到强化,且明显不同于BC1表面不规则粗糙化形貌特征 (图6),表明高温期PASP仍有效存在于生物炭表面;此外,PASP处理堆体pH持续高于CK,亦从侧面验证了堆肥过程中PASP未被完全分解,这为开展进一步试验奠定了基础。

        在此基础之上,本研究比较了BP0与BP1表面的N1s电子能谱峰。分峰结果表明,堆肥高温期22天处理后,BP1表面不仅存在PASP结构特征峰[O=C—NH(C, H)],还存在特征官能团与氮素结合态的特征峰 (NH4+与CHRCOOH,图9)。说明堆肥高温期,PASP通过其丰富的侧链基团 (—COOH),与铵态氮络合 (与其络合铜、锌、镍等重金属离子的机理相似[48]),使得堆肥第5~10天中,PASP处理的铵态氮含量高于CK (表4);PASP对铵氮的螯合作用,虽一定程度上抑制了无害化进程但亦增加了速效氮的利用难度,表现为PASP处理的高温期积温较CK下降了40.0℃~91.9℃ (表2),却缓解了由于PASP对堆体的碱化作用而造成氨化反应加剧的负面效应,有效控制了氮素流失过程,这与董世杰等[49]、徐嘉翼等[50]关于PASP对稻田田面水体铵态氮动态变化研究的结果相似。此外,BP1、BC1中氮氧化物电子能谱峰的存在表明可能存在硝态氮的吸收过程 (图9)。因而,通过特征峰峰面积计算两种材料中的氮氧化物含量,并结合BC0的红外光谱等指标综合分析认为,二者表面氮氧化物含量接近,表明氮氧化物吸附过程主要归功于生物炭,与PASP关系较小;此外,堆肥过程中庇护于生物炭孔道内的硝化细菌可利用吸附氮素进行硝化作用[51],这也是生物炭中氮氧化物来源之一。

        PASP的添加还促使堆体提前进入后腐阶段 (表2),而堆体DOM红外光谱扫描结果表明,相较于CK,PASP处理相对芳香化程度更高 (图4);而堆肥第24~39 天,PASP处理的水溶性总氮含量均高于CK,其中处理A与CK的差异达到显著水平 (P < 0.05),这为后腐阶段提供易于利用氮源,间接降低有机氮矿化强度,促进含氮有机物与芳香类物质不断聚合形成腐殖质,间接控制氮素流失风险。

        堆肥氮素固持技术一直是该领域的研究热点,相关研究人员采用黏土矿物[47]、生物炭[27]等多孔材料吸附速效氮素,或通过添加镁盐[52]、铜盐[11]等金属盐类与速效氮素形成络合物,乃至更为稳定的鸟粪晶石沉淀物,或添加适量硫酸[10],降低堆体pH,减少氨化作用强度,或通过高分子保水剂[53],吸附水溶性氮素,控制流失风险。且不论保氮效果,生物炭及金属盐类材料均可能存在重金属二次污染风险;而因堆肥具有酸碱缓冲能力,采用硫酸、过磷酸盐等物质调节酸碱度的长期效果存疑,且类似磷酸等化学保氮剂进入土壤后,不利于植物生长,腐蚀堆肥设备[11];高分子吸水剂在有效吸附氮素水溶液的同时,抑制堆体的水分散逸,可能降低堆肥效率,不利于肥料企业实际生产过程。本研究所采用的PASP则具有明显优势,如作为一种高分子氨基酸材料,其最终降解物为CO2和H2O,绿色无污染;其所具有的阻垢作用[38, 40-41],可在一定程度上减少堆肥设备腐蚀老化程度;由于其添加量仅为堆肥干基的0.24‰,成本很低,仅为2.5元/t。通过用于以干湿牛粪为主要原料的堆肥生产中,证实可减少氮素损失1 kg/t左右。

        为保证试验顺利进行,本研究选用的原料是经过干湿分离的牛粪,其细碎均匀,形似砻糠,但正由于干湿分离过程导致其初始氮素含量较低,导致PASP的氮素截留效果较为一般;而在补充研究中,显示在以鸡粪为主原料的好氧堆肥过程中PASP保氮效果相较CK显著提升20.2% (P < 0.05,待发表)。

      • PASP在堆肥的高温期,可通过侧链—COOH对铵态氮络合作用,抑制氨化反应活性,限制微生物繁殖活动强度,促使堆体提前4.0~4.6天进入后腐阶段 (P < 0.05),减少矿化作用强度;在降温期,基于高温期PASP对速效氮素固持累积作用,可满足微生物的氮素需求,降低矿化作用强度,且其可加强堆体相对芳香化程度 (P < 0.05),为腐殖化进程提供良好条件,综合实现氮素流失风险的有效控制。本研究结果表明,以干湿分离牛粪为原料制作堆肥,添加PASP 120 g/t可获得理想的效果。

    参考文献 (53)

    目录

      /

      返回文章
      返回