• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植茶年限降低土壤团聚体稳定性增加大团聚体中钾的释放

李露露 李婷 郎山鑫 魏巍 缪利 李智平 席铫

引用本文:
Citation:

植茶年限降低土壤团聚体稳定性增加大团聚体中钾的释放

    作者简介: 李露露 E-mail:lilulu_sc@163.com;
    通讯作者: 李婷, E-mail:lt_sicau@163.com
  • 基金项目: 四川农业大学科研兴趣培养计划(2019332)。

Tea plantation ages decrease the stability of soil aggregate and increase the release of potassium from large aggregates

    Corresponding author: LI Ting, E-mail:lt_sicau@163.com ;
  • 摘要:   【目的】   研究植茶年限对土壤团聚体稳定性以及供钾和释钾能力的影响,以期为指导茶园土壤施肥、促进茶园生态系统可持续发展提供科学依据。   【方法】   采集了四川省雅安市草坝镇茶园农业生态区植茶年限分别为5、10、15和30 a的原状土 (0—15 cm和15—30 cm),利用湿筛法分离出 > 2 mm、0.25~2 mm、0.053~0.25 mm和 < 0.053 mm四个粒级的土壤样品,并分析其稳定性、各粒级土壤速效钾和缓效钾含量,并采用四苯硼钠 (NaTPB) 浸提法探讨了其有效钾释放特征。   【结果】   各植茶年限土壤均以大团聚体 (> 0.25 mm) 为主,质量占比为75.87%~95.75%,但随植茶年限增加,土壤大团聚体比例显著减少 (P < 0.05),且各土层土壤团聚体平均重量直径 (MWD) 均明显减小。15和30 a的茶园土壤中不同粒级团聚体的土壤速效钾和缓效钾含量均显著高于5 a和10 a茶园 (P < 0.05)。5 a和10 a茶园土壤中各粒级团聚体中速效钾含量分布较为均匀,15 a和30 a的茶园土壤速效钾含量随大粒级团聚体的增加而增高。土壤缓效钾在各年限茶园均表现为微团聚体 (< 0.25 mm) 高于其他团聚体组分。各茶龄土壤不同粒级团聚体有效钾累积释放量在102.3~236.5 mg/kg之间,且呈现前期快、后期较稳定的趋势,释放过程均以扩散模型拟合程度最好。进一步比较表明,植茶15 a和30 a时的团聚体土壤有效钾累积释放量显著高于植茶5 a和10 a时的土壤。   【结论】   茶园土壤中以大团聚 (> 0.25 mm) 的比例最高,但随植茶年限的增加,微团聚体 (< 0.25 mm) 比例增加,土壤结构稳定性降低,特别是15—30 cm表层土壤。大团聚体的减少促进了土壤速效钾、缓效钾的释放,因而,植茶15 a和30 a的土壤速效钾含量较5a和10 a的茶园高,但是会耗竭土壤钾库,不利于茶园的可持续应用。
  • 图 1  不同植茶年限土壤各粒级团聚体中有效钾的累积释放量

    Figure 1.  Cumulative release of available K from each size of soil aggregate at different tea plantation years

    表 1  不同植茶年限土壤基本理化性质

    Table 1.  Basic physical and chemical properties of soil in different tea plantation ages

    土层
    Soil layer(cm)
    植茶年限 (a)
    Tea plantation age
    pH有机质 (g/kg)
    SOM
    速效钾 (mg/kg)
    RAK
    缓效钾 (mg/kg)
    SAK
    全钾 (g/kg)
    Total K
    全磷 (g/kg)
    Total P
    0—15 54.2248.7827.45176.63 9.860.96
    104.1130.3736.51184.6511.091.14
    154.0931.0560.52215.5111.270.93
    303.9926.7362.15227.2911.551.24
    15—30 54.3444.0922.43169.46 9.610.70
    104.2722.4535.75179.3111.330.53
    154.2221.5240.40194.1611.380.52
    304.1220.3653.35203.1611.790.90
    注(Note):RAK—Readily available potassium; SAK—Slow available potassium.
    下载: 导出CSV

    表 2  不同植茶年限土壤各粒级团聚体的质量比例

    Table 2.  Mass ratio of each size of soil aggregate in different ages of tea plantation

    土层 (cm)
    Soil layer
    植茶年限 (a)
    Tea plantation age
    土壤团聚体质量比例 Mass proportion of soil aggregates (%)平均重量直径 (mm)
    MWD
    > 2 mm0.25~2 mm0.053~0.25 mm < 0.053 mm
    0—15 555.07 ± 6.34 aA37.87 ± 4.96 bB5.54 ± 1.30 cC1.52 ± 0.37 cB3.74 ± 0.32 A
    1024.45 ± 5.51 bB58.53 ± 5.17 aA14.39 ± 2.29 cB2.63 ± 1.16 dB2.15 ± 0.28 B
    1522.24 ± 5.61 bB59.95 ± 8.34 aA14.74 ± 3.78 cB3.07 ± 0.94 dB2.03 ± 0.25 B
    3017.24 ± 2.12 bB60.25 ± 5.51 aA18.90 ± 5.16 bA3.61 ± 1.60 cA1.74 ± 0.09 C
    15—30 570.06 ± 4.70 aA25.69 ± 3.79 bB3.45 ± 0.93 cB0.80 ± 0.69 cC4.50 ± 0.24 A
    1016.92 ± 5.71 bB62.16 ± 2.06 aA18.66 ± 3.71 bA2.26 ± 0.48 cB1.74 ± 0.31 B
    1514.69 ± 2.77 bB66.21 ± 4.08 aA16.32 ± 3.45 bA2.78 ± 0.18 cB1.65 ± 0.14 B
    308.12 ± 1.36 cC67.75 ± 5.02 aA20.40 ± 4.09 bA3.73 ± 0.98 cA1.28 ± 0.06 C
    注(Note):MWD—Mean weight diameter. 数据后不同小写、大写字母分别表示不同粒级团聚体间、相同粒级团聚体不同植茶年限间在 P < 0.05 水平差异显著 Values followed by different small and capital letters indicate respectively significant differences among aggregate sizes under the dame plantation ages and among plantation ages under the same size of aggregate (P < 0.05).
    下载: 导出CSV

    表 3  不同植茶年限土壤团聚体速效钾含量分布

    Table 3.  content of readily available potassium in soil aggregates in different tea plantation ages

    土层 (cm)
    Soil layer
    植茶年限 (a)
    Plantation age
    各粒级土壤团聚体速效钾含量 Content of readily available K in each size of soil aggregates (mg/kg)
    > 2 mm0.25~2 mm0.053~0.25 mm < 0.053 mm
    0—15 540.19 ± 0.55 aC39.00 ± 0.62 aB30.48 ± 2.78 bC41.28 ± 3.33 aB
    1044.41 ± 0.32 aC39.72 ± 4.34 aB43.62 ± 5.70 aB42.37 ± 4.41 aB
    1570.80 ± 0.63 aB55.81 ± 2.95 bA51.20 ± 1.40 cA50.00 ± 1.26 cA
    3079.05 ± 5.00 aA60.46 ± 4.96 bA55.27 ± 3.16 bA54.36 ± 0.63 bA
    15—30 533.41 ± 3.74 aC29.53 ± 0.82 abC27.70 ± 2.22 bC35.64 ± 1.37 aB
    1035.24 ± 2.40 aC32.57 ± 1.72 aB37.51 ± 4.86 aB36.19 ± 5.04 aB
    1550.82 ± 0.84 aB49.02 ± 0.82 abA48.43 ± 1.11 bA41.64 ± 1.67 cA
    3056.14 ± 1.10 aA50.45 ± 1.64 bA49.72 ± 3.16 bA42.00 ± 1.09 cA
    注(Note):数据后不同小写、大写字母分别表示不同粒级团聚体间、相同粒级团聚体不同植茶年限间在 P < 0.05 水平差异显著 Values followed by different small and capital letters indicate respectively significant differences among aggregate sizes under the dame plantation ages and among plantation ages under the same size of aggregate (P < 0.05).
    下载: 导出CSV

    表 4  不同植茶年限土壤团聚体缓效钾含量

    Table 4.  Distribution of slow available potassium content in soil aggregates in different tea plantation ages

    土层 (cm)
    Soil layer
    植茶年限 (a)
    Plantation age
    土壤团聚体缓效钾含量 Slow available K content in soil aggregate (mg/kg)
    > 2 mm0.25~2 mm0.053~0.25 mm < 0.053 mm
    0—15 5109.27 ± 5.06 bC108.99 ± 9.34 bC134.58 ± 1.66 aC135.04 ± 3.33 aB
    10111.44 ± 0.32 cC112.28 ± 7.96 cC141.19 ± 1.96 bB172.54 ± 18.41 aA
    15130.36 ± 1.74 cB140.58 ± 4.49 bcB151.73 ± 4.51 bA184.21 ± 14.26 aA
    30166.79 ± 8.31 bA157.20 ± 1.43 bcA154.94 ± 3.96 cA190.14 ± 11.93 aA
    15—30 5100.74 ± 4.21 bC100.49 ± 4.09 bD120.79 ± 4.21 aB125.23 ± 6.67 aC
    10109.76 ± 6.77 cC114.21 ± 7.22 bcC129.46 ± 11.17 abAB140.13 ± 12.63 aBC
    15138.86 ± 6.31 bB130.98 ± 2.78 abB130.75 ± 13.03 bAB153.97 ± 13.15 aB
    30151.41 ± 6.81 bA150.46 ± 4.30 bA145.92 ± 7.32 bA169.05 ± 1.09 aA
    注(Note):数据后不同小写、大写字母分别表示不同粒级团聚体间、相同粒级团聚体不同植茶年限间在 P < 0.05 水平差异显著 Values followed different small and capital letters indicate respectively significant differences among aggregate sizes under the dame plantation ages and among plantation ages under the same size of aggregate (P < 0.05).
    下载: 导出CSV

    表 5  不同植茶年限各粒级土壤有效钾释放动力学特征

    Table 5.  Kinetic characteristics of available potassium release from different grain soils in different tea plantation ages

    植茶年限 (a)
    Plantation age
    粒级 (mm)
    Size
    一级动力学模型
    First order modle
    扩散模型
    Parabolic diffusion modle
    Elovich模型
    Elovich modle
    双常数模型
    Power function modle
    k R2 SE (mg/kg) k R2 SE (mg/kg) k R2 SE (mg/kg) k R2 SE (mg/kg)
    5 > 2 0.020 0.975 4.59 7.38 0.977 4.20 12.28 0.878 9.34 64.08 0.942 7.33
    2~0.25 0.017 0.959 4.02 5.63 0.978 3.06 9.07 0.814 8.85 66.27 0.876 7.71
    0.25~0.053 0.018 0.979 3.53 5.45 0.963 3.86 9.00 0.842 7.94 49.73 0.914 6.72
    < 0.053 0.016 0.948 5.39 6.16 0.973 4.43 10.04 0.831 9.23 53.01 0.913 7.74
    10 > 2 0.022 0.995 2.49 7.97 0.993 2.47 13.38 0.899 9.14 66.80 0.958 6.74
    2~0.25 0.018 0.930 8.73 6.80 0.981 3.13 11.27 0.857 8.65 68.32 0.921 7.27
    0.25~0.053 0.022 0.967 5.21 6.29 0.992 2.24 10.38 0.873 8.73 46.08 0.941 6.44
    < 0.053 0.018 0.931 7.14 7.28 0.974 4.29 12.05 0.855 10.10 50.22 0.937 8.00
    15 > 2 0.023 0.996 3.22 11.82 0.996 2.61 19.25 0.848 16.60 116.1 0.897 13.5
    2~0.25 0.020 0.955 10.2 10.45 0.982 5.16 17.74 0.907 11.58 101.2 0.960 8.90
    0.25~0.053 0.020 0.943 8.53 10.18 0.992 3.32 16.77 0.862 13.64 75.50 0.922 10.4
    < 0.053 0.021 0.973 4.85 9.10 0.985 4.09 15.40 0.905 10.16 68.44 0.959 7.19
    30 > 2 0.025 0.969 4.59 12.07 0.999 0.99 20.53 0.889 13.86 132.1 0.933 0.94
    2~0.25 0.023 0.976 2.52 11.59 0.975 6.94 19.30 0.904 10.28 106.7 0.955 10.5
    0.25~0.053 0.018 0.973 4.85 11.46 0.975 6.56 18.92 0.853 15.98 80.69 0.923 12.6
    < 0.053 0.018 0.956 3.72 10.14 0.986 4.29 16.52 0.840 14.66 78.26 0.916 11.8
    注(Note):k—各方程中的速率常数 Constant of potassium release in each modle; SE—标准误差 Standard error.
    下载: 导出CSV
  • [1] Rashid M I, Mujawar L H, Shahzad T, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils[J]. Microbiological Research, 2016, 183: 26–41. doi:  10.1016/j.micres.2015.11.007
    [2] 王志强, 刘英, 杨文亭, 等. 稻田复种轮作休耕对土壤团聚体分布及稳定性的影响[J]. 土壤学报, 2018, 55(05): 1143–1155. Wang Z Q, Liu Y, Yang W T, et al. Effects of rotation and fallow in paddy field on distribution and stability of soil aggregates[J]. Acta Pedologica Sinica, 2018, 55(05): 1143–1155.
    [3] 荣勤雷, 李若楠, 黄绍文, 等. 不同施肥模式下设施菜田土壤团聚体养分和微生物量特征[J]. 植物营养与肥料学报, 2019, 25(7): 1084–1096. Rong Q L, Li R N, Huang S W, et al. Characteristics of nutrients and microbial biomass in soil aggregates under different fertilization modes in greenhouse vegetable production[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1084–1096. doi:  10.11674/zwyf.18472
    [4] Yan Y C, Wang X, Guo Z J, et al. Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China[J]. Catena, 2018, 170: 159–168. doi:  10.1016/j.catena.2018.06.013
    [5] 金继运. 土壤钾素研究进展[J]. 土壤学报, 1993, 30(1): 94–101. Jin J Y. Advances in soil potassium research[J]. Acta Pedologica Sinica, 1993, 30(1): 94–101.
    [6] 朱丹丹, 王瑾, 丛日环, 李小坤. 粒径大小对含钾矿物钾素释放的影响[J]. 华中农业大学学报, 2018, 37(01): 64–68. Zhu D D, Wang J, Cong R H, Li X K. Effects of different particle size on potassium release of K-bearing minerals[J]. Journal of Huazhong Agricultural University, 2018, 37(01): 64–68.
    [7] 李婷, 王火焰, 陈小琴, 周健民. 土壤非交换性钾释放动力学特征及其生物有效性[J]. 土壤学报, 2015, 52(05): 1078–1087. Li T, Wang H Y, Chen X Q, Zhou J M. Release kinetics and bioavailability of non-exchangeable potassium in soil[J]. Acta Pedologica Sinica, 2015, 52(05): 1078–1087.
    [8] Hosseinpur A R, Motaghian H R. Application of kinetic models in describing soil potassium release characteristics and their correlations with potassium extracted chemical methods[J]. Podesphere, 2013, (4): 482–492.
    [9] Kurmi, B, Nath A J, La R, et al. Water stable aggregates and the associated active and recalcitrant carbon in soil under rubber plantation[J]. Science of the Total Environment, 2020, 703: 10.
    [10] 林诚, 郑祥洲, 郭宝玲, 等. 亚热带地区不同种植年限果园土壤团聚体结构及有机碳、氮分布特征[J]. 农业环境科学学报, 2019, 38(07): 1560–1566. Lin C, Zheng X Z, Guo B L, et al. Characteristics of soil aggregate structure and organic carbon and nitrogen distribution in orchards of different planting age in subtropical areas[J]. Journal of Agro-Environment Science, 2019, 38(07): 1560–1566.
    [11] 吴雯, 郑子成, 李廷轩, 刘涛. 退耕植茶地土壤团聚体及其无机磷组分分布特征[J]. 应用生态学报, 2016, 27(10): 3264–3272. Wu W, Zheng Z C, Li T X, Liu T. Characteristics of soil aggregates and inorganic phosphorus fractions in soils returned from cropland to tea[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3264–3272.
    [12] 王晟强, 郑子成, 李廷轩. 植茶年限对土壤团聚体氮、磷、钾含量变化的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1393–1402. Wang S Q, Zheng Z C, Li T X. Effects of ages of tea plantations on changes of nitrogen, phosphorus and potassium contents in soil aggregates[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(6): 1393–1402. doi:  10.11674/zwyf.2013.0613
    [13] 石岩松, 曹晶晶, 李琳琳, 刘建国. 长期连作棉田土壤团聚体有机碳及氮磷钾含量的变化[J]. 江苏农业科学, 2019, 47(19): 270–275. Shi Y S, Cao J J, Li L L, Liu J G. Effects of long-term cotton continuous cropping on soil organic carbon, nitrogen, phosphorus and potassium contents in soil aggregates[J]. Jiangsu Agricultural Sciences, 2019, 47(19): 270–275.
    [14] 代快, 李江舟, 张立猛, 等. 20年持续施钾对烤烟/油菜轮作土壤钾素Q/I关系的影响[J]. 土壤学报, 2019, 56(6): 1–14. Dai K, Li J Z, Zhang L M, et al. Effects of 20 consecutive years of potassium application on soil potassium quantity-intensity (Q/I) relationship in flue-cured tobacco-rape rotation system[J]. Acta Pedologica Sinica, 2019, 56(6): 1–14.
    [15] 陈旸, 谢修鸿, 杜鑫宇, 等. 种植年限对苹果梨园春季土壤团聚体分布的影响[J]. 江苏农业科学, 2018, 46(17): 153–155. Chen Y, Xie X H, Du X Y, et al. Effects of planting years on soil aggregate distribution in apple-pear orchard in spring[J]. Jiangsu Agricultural Sciences, 2018, 46(17): 153–155.
    [16] 王珊, 毛玲, 廖浩, 等. 种植年限对植烟土壤团聚体组成与稳定性的影响[J]. 西南农业学报, 2017, 30(6): 1421–1425. Wang S, Mao L, Liao H, et al. Effects of Soil aggregates composition and stability with different planting years in tobacco[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(6): 1421–1425.
    [17] 杜少平, 马忠明, 薛亮. 不同年限旱砂田土壤团聚体及其有机碳分布特征[J]. 应用生态学报, 2017, 28(5): 1619–1625. Du S P, Ma Z M, Xue L. Distribution characteristics of soil aggregates and their associated organic carbon in gravel-mulched land with different cultivation years[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1619–1625.
    [18] 吴洵. 第四纪低丘红壤茶园钾的成土迁移和丰缺诊断[J]. 茶叶科学, 1994, (1): 9–16. Wu X. Movement of potassium in the soil during its development from quaternary red clay and the diagnosis of potassium deficiency in tea gardens of low-hilly red-earth areas[J]. Journal of Tea Science, 1994, (1): 9–16.
    [19] 刘洁, 李茗, 吴立潮. 南方红壤区油茶林土壤肥力质量指标及评价[J]. 西北林学院报, 2017, 32(4): 73–80. Liu J, Li M, Wu L C. Soil fertility quality indicators and evaluation of the soil of camellia oleifera in southern China red regions[J]. Journal of Northwest Forestry University, 2017, 32(4): 73–80.
    [20] 张玉军, 黄绍敏, 李斌, 等. 长期施肥对潮土不同层次活性有机质及碳库管理指数的影响[J]. 水土保持学报, 2019, 33(3): 160–165. Zhang Y J, Huang S M, Li B, et al. Effects of long-term fertilization on the labile organic carbon and carbon pool management index at different layers in fluvo-aquic soil[J]. Journal of Soil and Water Conservation, 2019, 33(3): 160–165.
    [21] 赵英铭, 杨文斌, 雷渊才, 等. 绿洲节水型林带单株不同土层深度根生物量[J]. 中国水土保持科学, 2019, 17(3): 91–97. Zhao Y M, Yang W B, Lei Y C, et al. Root biomass per plant at different soil depths in oasis water-saving forest belt[J]. Science of Soil and Water Conservation, 2019, 17(3): 91–97.
    [22] Kahkonen M A, Hakulinen R. Hydrolytic enzyme activities, carbon dioxide production and the growth of litter degrading fungi in different soil layers in a coniferous forest in Northern Finland[J]. European Journal of Soil Biology, 2011, 47(2): 108–113. doi:  10.1016/j.ejsobi.2010.12.004
    [23] Li Q, Liu G B, Zhang Z, et al. Relative contribution of root physical enlacing and biochemistrical exudates to soil erosion resistance in the Loess soil[J]. Catena, 2017, 153: 61–65. doi:  10.1016/j.catena.2017.01.037
    [24] Elliot E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50: 518–524.
    [25] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业大学出版社, 2000.

    Bao S D. Soil and agro-chemical analysis[M]. Beijing: China Agriculture Press, 2000.
    [26] Wang H Y, Sun H X, Zhou J M, et al. Evaluating plant-available potassium in different soils using a modified sodium tetraphenylboron method[J]. Soil Science, 2010, 175(11): 544–551. doi:  10.1097/SS.0b013e3181fadf3a
    [27] 李欣雨, 夏建国, 田汶艳. 稻田植茶后土壤团聚体水稳性变化特征及影响因素分析[J]. 水土保持学报, 2017, 31(4): 148–153, 204. Li X Y, Xia J G, Tian W Y. Research on the water stability and the driving forces of soil aggregate after paddy field switched to tea garden[J]. Journal of Soil and Water Conservation, 2017, 31(4): 148–153, 204.
    [28] Gao L L, Wang J S, Li S P, et al. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China[J]. Catena, 2019, 173: 38–47. doi:  10.1016/j.catena.2018.09.043
    [29] 林绍霞, 张清海, 张珍明, 等. 不同垦植模式茶园土壤性状及团聚体特征研究[J]. 水土保持研究, 2012, 19(6): 45–49. Lin S X, Zhang Q H, Zhang Z M, et al. Research for soil properties and aggregates in tea plantation with different planting patterns[J]. Research of Soil and Water Conservation, 2012, 19(6): 45–49.
    [30] Hargreaves P R, Baker K L, Graceson A, et al. Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years[J]. European Journal of Agronomy, 2019, 109: 9.
    [31] 王峰, 王义祥, 江福英, 等. 丘陵山地茶园土壤团聚体及其碳含量分布特征研究[J]. 福建农业学报, 2012, 27(1): 87–92. Wang F, Wang Y X, Jiang F Y, et al. Distribution characteristics of soil aggregates and organic carbon in hill tea plantation[J]. Fujian Journal of Agricultural Sciences, 2012, 27(1): 87–92. doi:  10.3969/j.issn.1008-0384.2012.01.016
    [32] 王海斌, 陈晓婷, 丁力, 等. 连作茶树根际土壤自毒潜力、酶活性及微生物群落功能多样性分析[J]. 热带作物学报, 2018, 39(5): 852–857. Wang H B, Chen X T, Ding L, et al. Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years[J]. Chinese Journal of Tropical Crops, 2018, 39(5): 852–857. doi:  10.3969/j.issn.1000-2561.2018.05.004
    [33] 王学霞, 陈延华, 王甲辰, 等. 设施菜地种植年限对土壤理化性质和生物学特征的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1619–1629. Wang X X, Chen Y H, Wang J C, et al. Effects of vegetable planting ages on the physical and chemical and biological properties of greenhouse soils in Beijing[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1619–1629. doi:  10.11674/zwyf.18253
    [34] 苏芳莉, 赵光辉, 王铁良, 等. 不同土地利用方式下表层土壤大团聚体特征[J]. 草业科学, 2017, 34(05): 924–931. Su F L, Zhao G H, Wang T L, et al. Characteristics of surface soil macro aggregates under different land use patterns[J]. Pratacultural Science, 2017, 34(05): 924–931.
    [35] 朱仁欢, 郑子成, 李廷轩, 刘红兵. 植茶年限对土壤水稳性团聚体腐殖质组分特征的影响[J]. 环境科学研究, 2018, 31(6): 1096–1104. Zhu R H, Zheng Z C, Li T X, Liu H B. Effect of tea plantation age on humus fractions in soil water-stable aggregates[J]. Research of Environmental Sciences, 2018, 31(6): 1096–1104.
    [36] 张宁宁, 谭凯亮, 亢福仁, 刘普灵. 毛乌素沙地樟子松林恢复过程的土壤有机质含量变化特征[J]. 水土保持研究, 2019, 26(5): 95–99. Zhang N N, Tan K L, Kang F R, Liu P L. Change characteristics of soil organic matter in the recovery process of Pinus Sylvestris var. Mongolica in Mu Us sandy land[J]. Research of Soil and Water Conservation, 2019, 26(5): 95–99.
    [37] He P, Yang L P, Xu X P, et al. Temporal and spatial variation of soil available potassium in China (1990–2012)[J]. Field Crop Research, 2015, 173: 49–56. doi:  10.1016/j.fcr.2015.01.003
    [38] 张小琴, 赵华富, 姜艳艳, 等. 不同植茶年限茶园土壤有效营养元素分析[J]. 热带作物学报, 2017, 38(12): 2226–2231. Zhang X Q, Zhao H F, Jiang Y Y, et al. The effect of soil effective nutrient elements with different tea plantation ages[J]. Chinese Journal of Tropical Crops, 2017, 38(12): 2226–2231. doi:  10.3969/j.issn.1000-2561.2017.12.005
    [39] 陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤理化性质的影响[J]. 茶叶学报, 2018, 59(04): 205–210. Chen Y Z, Wang F, Wu Z D, et al. Effect of converting forestland to tea plantation on physiochemical properties of soil[J]. Acta Tea Sinica, 2018, 59(04): 205–210. doi:  10.3969/j.issn.1007-4872.2018.04.005
    [40] 张务帅, 陈宝成, 李成亮, 等. 控释氮肥控释钾肥不同配比对小麦生长及土壤肥力的影响[J]. 水土保持学报, 2015, 29(3): 178–183, 189. Zhang W S, Chen B C, Li C L, et al. Effects of different proportion of controlled release nitrogen and potassium fertilizers[J]. Journal of Soil and Water Conservation, 2015, 29(3): 178–183, 189.
    [41] 雷琼, 袁玲, 黄建国. 施钾对茶园土壤钾素及平衡的影响[J]. 植物营养与肥料学报, 2007, (2): 254–261. Lei Q, Yuan L, Huang J G. Effect of potassium fertilizer application on the potassium and its equilibrium in tea-grown soils[J]. Journal of Plant Nutrition and Fertilizers, 2007, (2): 254–261. doi:  10.3321/j.issn:1008-505X.2007.02.012
    [42] 何淑勤, 宫渊波, 郑子成, 孔祥东. 不同植被条件下土壤团聚体交换性K+、Na+的分布特征[J]. 水土保持学报, 2014, 28(6): 228–233. He S Q, Gong Y B, Zheng Z C, Kong X D. Distributions of exchangeable K+ and Na+ in soil aggregates under different vegetations[J]. Journal of Soil and Water Conservation, 2014, 28(6): 228–233.
    [43] 王晟强, 郑子成, 李廷轩, 李彦. 植茶年限对土壤团聚体中交换性盐基离子分布的影响[J]. 土壤学报, 2013, 50(5): 1013–1020. Wang S Q, Zheng Z C, Li T X, Li Y. Effect of age of tea plantations on distribution of exchangeable base cations in soil aggregates[J]. Acta Pedologica Sinica, 2013, 50(5): 1013–1020.
    [44] Wang J, Fu B J, Qiu Y, et al. Soil nutrients in relation to land use and slope position in the semi-arid small watershed on loess plateau in China[J]. Journal of Arid Environment, 2001, 48: 537–550. doi:  10.1006/jare.2000.0763
    [45] 王瑾, 李小坤, 鲁剑巍, 等. 不同酸提取条件下几种含钾矿物中钾释放动力学研究[J]. 中国农业科学, 2012, 45(22): 4643–4650. Wang J, Li X K, Lu J W, et al. Study on potassium release kinetics of several K-bearing minerals by sequential extraction of different acid solution[J]. Scientia Agricultura Sinica, 2012, 45(22): 4643–4650. doi:  10.3864/j.issn.0578-1752.2012.22.010
    [46] 黄传琴, 周琴, 谭文峰. 不同农业利用条件对黄土胶结物质组成与团聚特征的影响[J]. 华中农业大学学报, 2017, 36(4): 43–49. Huang C Q, Zhou Q, Tan W F. Effects of agricultural utilization on composition of binding agents and cementation characteristics of loess[J]. Journal of Huazhong Agricultural University, 2017, 36(4): 43–49.
    [47] Simth S J, Scott A D. Extractable potassium in grunditeillite: I. Method of extraction[J]. Soil Science Society of America Journal, 1966, 102: 115–122.
    [48] Cox A E, Joern B C, Brouder S M, et al. Plant-available potassium assessment with a modified sodium tetraphenylboron method[J]. Soil Science Society of America Journal, 1999, 63(4): 902–911. doi:  10.2136/sssaj1999.634902x
    [49] Carey P L, Metherell A K. Rates of release of non-exchangeable potassium in New Zealand soils measured by a modified sodium tetraphenyl-boron method[J]. New Zealand Journal of Agricultural Research, 2003, 46(3): 185–197. doi:  10.1080/00288233.2003.9513546
    [50] Li J F, Zhang W J, Li S Y, et al. Effects of citrate on the dissolution and transformation of biotite, analyzed by chemical and atomic force microscopy[J]. Applied Geochemistry, 2014, 51: 101–108. doi:  10.1016/j.apgeochem.2014.10.001
    [51] Li T, Wang H Y, Zhou Z J, et al. A nano-scale study of the mechanisms of non-exchangeable potassium release from micas[J]. Applied Clay Science, 2015, 118: 131–137. doi:  10.1016/j.clay.2015.09.013
    [52] 李婷, 王火焰, 陈小琴, 周健民. 四种常规方法提取伊利石有效钾的机制比较[J]. 土壤学报, 2016, 53(3): 654–662. Li T, Wang H Y, Chen X Q, Zhou J M. Mechanisms of four conventional methods extracting available potassium in illite[J]. Acta Pedologica Sinica, 2016, 53(3): 654–662.
    [53] 岳龙凯, 蔡泽江, 徐明岗, 等. 长期施肥红壤钾素在有机无机复合体中的分布[J]. 植物营养与肥料学报, 2015, 21(6): 1551–1562. Yue L K, Cai Z J, Xu M G, et al. Distribution of potassium in the organo-mineral complexes of red soils under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1551–1562. doi:  10.11674/zwyf.2015.0622
    [54] 郑志斌, 江秋菊, 张跃强, 石孝均. 长期施用化肥和秸秆对紫色土非交换性钾释放特性研究[J]. 西南大学学报(自然科学版), 2017, 39(9): 139–144. Zheng Z B, Jiang Q J, Zhang Y Q, Shi X J. Study of the effects of long-term chemical fertilization and straw returning on the characteristics of non-exchangeable potassium release in purple soil[J]. Journal of Southwest University (Natural Science Edition), 2017, 39(9): 139–144.
  • [1] 韩上武际李敏陈峰王允青程文龙唐杉王慧郭熙盛卢昌艾 . 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, doi: 10.11674/zwyf.19154
    [2] 宋燕凤张前前吴震段鹏鹏熊正琴 . 田间陈化生物质炭提高稻田土壤团聚体稳定性和磷素利用率. 植物营养与肥料学报, doi: 10.11674/zwyf.19277
    [3] 王俊李强任禾刘春光高洪军张秀芝朱平彭畅 . 吉林省西部不同耕作模式下秸秆还田土壤团聚体特征. 植物营养与肥料学报, doi: 10.11674/zwyf.19280
    [4] 张楠闫国超叶木军樊小平肖卓熙陈好彭苗梁永超 . 野生型水稻及其低硅突变体中植硅体和植硅体碳的含量与分布特征. 植物营养与肥料学报, doi: 10.11674/zwyf.18056
    [5] 李伟代镇张光鑫刘杨韩娟 . 生物炭和氮肥配施提高土团聚体稳定性及作物产量. 植物营养与肥料学报, doi: 10.11674/zwyf.18191
    [6] 荣勤雷李若楠黄绍文周春火唐继伟王丽英张彦才 . 不同施肥模式下设施菜田土壤团聚体养分和微生物量特征. 植物营养与肥料学报, doi: 10.11674/zwyf.18472
    [7] 王小东许自成解燕刘领樊献玲张欣惠 . 云南曲靖烟区优质烤烟的适宜土壤有效硫和烟叶硫含量研究. 植物营养与肥料学报, doi: 10.11674/zwyf.17237
    [8] 刘文祥李勇于寒青 . 草灌植被恢复提高坡地土壤水稳性团聚体和碳、 氮含量的有效性: 退耕年限的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.14598
    [9] 李清华王飞林诚何春梅李昱钟少杰林新坚 . 长期施肥对黄泥田土壤微生物群落结构及团聚体组分特征的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2015.0627
    [10] 李景吴会军武雪萍蔡典雄姚宇卿吕军杰郑凯刘志平 . 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用. 植物营养与肥料学报, doi: 10.11674/zwyf.2015.0212
    [11] 王秀斌唐栓虎荣勤雷张倩孙静文梁国庆周卫杨少海 . 不同措施改良反酸田及水稻产量效果. 植物营养与肥料学报, doi: 10.11674/zwyf.2015.0215
    [12] 樊红柱秦鱼生陈庆瑞陈琨涂仕华 . 长期施肥紫色水稻土团聚体稳定性及其固碳特征. 植物营养与肥料学报, doi: 10.11674/zwyf.2015.0612
    [13] 付鑫王俊刘全全李蓉蓉 . 不同覆盖材料及旱作方式土壤团聚体和有机碳含量的变化. 植物营养与肥料学报, doi: 10.11674/zwyf.2015.0606
    [14] 李婕杨学云孙本华张树兰* . 不同土壤管理措施下塿土团聚体的大小分布及其稳定性. 植物营养与肥料学报, doi: 10.11674/zwyf.2014.0210
    [15] 王晟强郑子成李廷轩* . 植茶年限对土壤团聚体氮、磷、钾含量变化的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2013.0613
    [16] 彭思利申鸿郭涛 . 接种丛枝菌根真菌对土壤水稳性团聚体特征的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2010.0326
    [17] 庞夙李廷轩王永东余海英吴德勇 . 土壤速效氮、磷、钾含量空间变异特征及其影响因子 . 植物营养与肥料学报, doi: 10.11674/zwyf.2009.0116
    [18] 娄翼来关连珠王玲莉胡克伟何琳 . 不同植烟年限土壤pH和酶活性的变化. 植物营养与肥料学报, doi: 10.11674/zwyf.2007.0328
    [19] 许自成张婷马聪马京民程昌新黄平俊 . 打顶后烤烟叶片酶活性、钾及烟碱含量的调控技术研究. 植物营养与肥料学报, doi: 10.11674/zwyf.2006.0516
    [20] 金继运高广领王泽良王莲池张乃凤 . 不同土壤钾素释放动力学及其供钾特征的研究. 植物营养与肥料学报, doi: 10.11674/zwyf.1994.0105
  • 加载中
WeChat 点击查看大图
图(1)表(5)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-14

植茶年限降低土壤团聚体稳定性增加大团聚体中钾的释放

  • 基金项目: 四川农业大学科研兴趣培养计划(2019332)。
  • 摘要:    【目的】   研究植茶年限对土壤团聚体稳定性以及供钾和释钾能力的影响,以期为指导茶园土壤施肥、促进茶园生态系统可持续发展提供科学依据。   【方法】   采集了四川省雅安市草坝镇茶园农业生态区植茶年限分别为5、10、15和30 a的原状土 (0—15 cm和15—30 cm),利用湿筛法分离出 > 2 mm、0.25~2 mm、0.053~0.25 mm和 < 0.053 mm四个粒级的土壤样品,并分析其稳定性、各粒级土壤速效钾和缓效钾含量,并采用四苯硼钠 (NaTPB) 浸提法探讨了其有效钾释放特征。   【结果】   各植茶年限土壤均以大团聚体 (> 0.25 mm) 为主,质量占比为75.87%~95.75%,但随植茶年限增加,土壤大团聚体比例显著减少 (P < 0.05),且各土层土壤团聚体平均重量直径 (MWD) 均明显减小。15和30 a的茶园土壤中不同粒级团聚体的土壤速效钾和缓效钾含量均显著高于5 a和10 a茶园 (P < 0.05)。5 a和10 a茶园土壤中各粒级团聚体中速效钾含量分布较为均匀,15 a和30 a的茶园土壤速效钾含量随大粒级团聚体的增加而增高。土壤缓效钾在各年限茶园均表现为微团聚体 (< 0.25 mm) 高于其他团聚体组分。各茶龄土壤不同粒级团聚体有效钾累积释放量在102.3~236.5 mg/kg之间,且呈现前期快、后期较稳定的趋势,释放过程均以扩散模型拟合程度最好。进一步比较表明,植茶15 a和30 a时的团聚体土壤有效钾累积释放量显著高于植茶5 a和10 a时的土壤。   【结论】   茶园土壤中以大团聚 (> 0.25 mm) 的比例最高,但随植茶年限的增加,微团聚体 (< 0.25 mm) 比例增加,土壤结构稳定性降低,特别是15—30 cm表层土壤。大团聚体的减少促进了土壤速效钾、缓效钾的释放,因而,植茶15 a和30 a的土壤速效钾含量较5a和10 a的茶园高,但是会耗竭土壤钾库,不利于茶园的可持续应用。

    English Abstract

    • 土壤团聚体是在生物与非生物的单独或共同作用下通过团聚或破碎交替过程而形成的土壤结构单元,其数量和分布不仅影响土壤的孔隙度、持水性、通透性和抗蚀性,而且会导致土壤养分汇集和供应能力发生差异[1-4]。钾素作为植物生长必需的大量营养元素之一,由于不同粒径土壤团聚体中含钾矿物组成与含量存在较大差异,其含钾量和钾素有效性也有所不同[5-6]。然而,土壤钾素的有效性又主要取决于其释放速率[7-8]。因此在农业生产中,研究土壤团聚体中钾分布及其释放特征对于指导土壤结构管理、钾库管理和钾肥合理施用具有重要意义。

      土壤团聚体粒径大小与分布不仅受自然过程影响,还与作物种植年限紧密相关,且随着种植年限增加,土壤团聚体中各养分含量也会产生一定变化[9-12]。总体而言,目前有关土壤团聚体组分中的养分研究较多集中在碳、氮、磷等方面。如Kurmi等[9]认为在0—10 cm土层,土壤大团聚体中活性碳含量随橡胶树种植年限增加而降低;林诚等[10]研究发现不同种植年限果园土壤各粒级团聚体含量无显著差异,但各粒级团聚体有机碳和全氮含量会随着种植年限的延长呈增加趋势,且C/N值呈下降趋势;吴雯等[11]研究结果则表明,对各土壤有机磷组分贡献率最大的是 > 5 mm粒径团聚体,且其贡献率会随退耕种植年限的延长逐渐增加。近年来也有不少学者对土壤团聚体钾展开了研究。如王晟强等[12]认为各粒径团聚体速效钾含量随种植年限的增加会有所降低,但全钾含量变化不明显;石岩松等[13]研究表明各粒径土壤团聚体的全钾含量随着棉花种植年限的增加总体呈现先降低后增加的趋势。但较少涉及团聚体钾释放特征的研究,然而植物生长所需的钾素在自然条件和绝大多数农业生产条件下必须通过根系从土壤中吸收,因此准确地评价土壤释钾和供钾能力对于农业生产非常重要[14]

      目前,有关种植年限对土壤团聚体稳定性及养分含量影响的研究主要集中于果树、烟草等经济作物以及其他粮食作物,有关对茶树种植年限的研究相对较少[15-17]。茶树为多年生常绿木本植物,是我国重要的经济作物之一。钾能提高茶叶产量、改善茶叶品质。但在我国南方由于气温较高、雨水充沛,土壤风化淋溶作用强烈,易导致南方茶园区土壤钾素亏缺,速效钾含量总体偏低,作为土壤速效钾储备库的非交换性钾则成为南方茶树吸收钾素的主要来源[18-19]。且不同土层由于受施肥、淋溶以及根系、微生物状态等差异会对土壤结构及性质产生差异[20-23]。因此,本文以四川省雅安市草坝镇典型茶园区为研究区域,分析植茶年限对不同土层土壤团聚体稳定性、钾含量分布以及表层土壤钾素释放特征的影响,以期为指导南方茶园土壤施肥、促进茶园生态系统可持续发展提供科学依据。

      • 研究区位于四川盆地西缘,隶属于雅安市雨城区草坝镇。该区属亚热带湿润季风气候,多年年平均气温16.1℃,年均降水量约1800 mm,年平均日照时数约1000 h,无霜期290 天左右。区域内地带性植被为亚热带常绿阔叶林,地形以丘陵台地为主,土壤类型为第四纪老冲积物发育而成的黄壤。目前研究区内以福鼎大白茶为主,形成了一定规模不同植茶年限的茶园,且各茶园均由稻田改造而成,植茶前施肥、耕作等管理措施基本一致。

        研究区各茶园均采用基肥和追肥相结合的施肥方式。基施猪粪肥16000 kg/hm2,45% K2SO4型复合肥700 kg/hm2。每年9月底茶季结束后,在茶树一侧、树冠边缘滴水线下开沟15 cm,施入上述猪粪肥和复合肥后覆土。每年春、夏、秋3次追肥。其中春追肥在2月上旬 (春茶采摘前30 天左右),施入复合肥1200 kg/hm2,尿素 (含N 46%) 800 kg/hm2;夏、秋追肥分别在5月、7月下旬,均施复合肥700 kg/hm2,尿素450 kg/hm2。追肥方式同为开沟施入后覆土,其位置与基肥相同。

      • 选取四川省雅安市草坝镇茶园农业生态区,在野外调查的基础上,选择了自然生态条件相同、施肥管理措施基本一致的植茶年限分别为5、10、15和30 a的茶园土壤为采样对象。在各植茶年限茶园中布设4个典型样方 (10 m × 20 m),每一样方内按“S”形随机设置5个采样点,具体采样点设在距茶树根系30 cm左右并避开施肥点处,分0—15 cm和15—30 cm两个层次采集原状土样。将采集的原状土样沿自然结构轻轻掰成直径约1 cm的小土块,除去植物根际残体、小石块和蚯蚓等,在室内自然风干。采样点基本情况见表1

        表 1  不同植茶年限土壤基本理化性质

        Table 1.  Basic physical and chemical properties of soil in different tea plantation ages

        土层
        Soil layer(cm)
        植茶年限 (a)
        Tea plantation age
        pH有机质 (g/kg)
        SOM
        速效钾 (mg/kg)
        RAK
        缓效钾 (mg/kg)
        SAK
        全钾 (g/kg)
        Total K
        全磷 (g/kg)
        Total P
        0—15 54.2248.7827.45176.63 9.860.96
        104.1130.3736.51184.6511.091.14
        154.0931.0560.52215.5111.270.93
        303.9926.7362.15227.2911.551.24
        15—30 54.3444.0922.43169.46 9.610.70
        104.2722.4535.75179.3111.330.53
        154.2221.5240.40194.1611.380.52
        304.1220.3653.35203.1611.790.90
        注(Note):RAK—Readily available potassium; SAK—Slow available potassium.
      • 土壤团聚体采用Elliott[24]湿筛法。首先称取100 g风干土样,摊平放在最大孔径筛上 (套筛孔径自上而下依次为2、0.25、0.053 mm),加入蒸馏水并浸泡10 min;然后以40次/min频率振荡套筛5 min,分别得到各粒级的水稳性团聚体;最后,将留在各孔径筛子上的土样用蒸馏水分别轻轻冲洗到铝盒中,在65℃下干燥48 h后称重并计算。

        各级水稳性团聚体的质量分数计算公式为:

        $w_i = W{w_i}/W \times 100{\text \%} $

        式中:wi为第i级土壤团聚体质量百分比;Wwi为第i级别团聚体质量 (g);W为土壤样品总质量 (g)。

        土壤团聚体平均重量直径 (MWD) 计算公式为:

        $MWD = \sum\limits_{i = 1}^n {\bar d_iw_i \bigg/\sum\nolimits_{i = 1}^n {w_i} } $

        式中:${\rm{\bar di}}$为第i粒级土壤团聚体平均直径。

      • 土壤团聚体速效钾、缓效钾分别采用NH4AOC、沸HNO3浸提法[25]。土壤团聚体钾素释放特征采用NaTPB[26]浸提法。称取0.50 g各粒级土样于50 mL的离心管中,准确加入3 mL的0.2 mol/L NaTPB与0.01 mol/L EDTA的混合剂,分别振荡0.5、2、4、12、24、48和96 h,取出加入25 mL终止剂 (0.5 mol/L NH4Cl + 0.14 mol/L CuCl2),摇匀后置于沸水浴中煮沸60 min,离心管冷却后于5000 r/min–1离心5 min,上清液过滤后加入1 mL 6 mol/L的HCl,用火焰光度计测定。

        土壤有效钾的释放特征采用一级动力学模型、扩散模型、Elovich模型、双常数模型进行模拟,并以拟合决定系数 (R2) 和标准误差 (SE) 作为评判各模型适用性程度的依据,即R2越大,SE越小,则拟合程度越好[7]。双常数模型中的参数a以及其他模型中的参数b表征有效钾的释放速率常数。各模型表达式如下:

        一级动力学模型:

        $ \ln (C_{\rm{0}} - C_t) = a + bt $

        扩散模型:

        $ {C_t} = a + b{t^{1/2}} $

        Elovich模型:

        $ C_t = a + b\ln t $

        双常数模型:

        $ C_t = a{t^b} $

        公式 (3)~(6) 中:ab均为动力学模型中的常数;t为释放时间 (h);C0为土壤有效钾累积释放量 (mg/kg);Ctt时刻土壤有效钾释放量 (mg/kg)。

      • 采用Excel 2016 进行数据统计整理,使用SPSS Statistics 22.0 软件通过最小显著性差异法 (LSD) 进行试验数据的差异显著性水平 (P < 0.05) 检验;图表制作采用OriginPro 2017和Excel 2016。

      • 植茶年限显著改变了土壤团聚体的分布特征 (表2)。随植茶年限增加,各土层MWD均呈现明显减小趋势,其中植茶10 a和15 a时MWD值差异较小;土壤大团聚体 (> 0.25 mm) 含量显著减少 (P < 0.05),土壤微团聚体 (< 0.25 mm) 含量明显增加,团聚体稳定性有所降低。植茶5 a时,15—30 cm土层MWD明显高于0—15 cm土层,其他植茶年限土层间MWD差异则呈现相反规律。

        表 2  不同植茶年限土壤各粒级团聚体的质量比例

        Table 2.  Mass ratio of each size of soil aggregate in different ages of tea plantation

        土层 (cm)
        Soil layer
        植茶年限 (a)
        Tea plantation age
        土壤团聚体质量比例 Mass proportion of soil aggregates (%)平均重量直径 (mm)
        MWD
        > 2 mm0.25~2 mm0.053~0.25 mm < 0.053 mm
        0—15 555.07 ± 6.34 aA37.87 ± 4.96 bB5.54 ± 1.30 cC1.52 ± 0.37 cB3.74 ± 0.32 A
        1024.45 ± 5.51 bB58.53 ± 5.17 aA14.39 ± 2.29 cB2.63 ± 1.16 dB2.15 ± 0.28 B
        1522.24 ± 5.61 bB59.95 ± 8.34 aA14.74 ± 3.78 cB3.07 ± 0.94 dB2.03 ± 0.25 B
        3017.24 ± 2.12 bB60.25 ± 5.51 aA18.90 ± 5.16 bA3.61 ± 1.60 cA1.74 ± 0.09 C
        15—30 570.06 ± 4.70 aA25.69 ± 3.79 bB3.45 ± 0.93 cB0.80 ± 0.69 cC4.50 ± 0.24 A
        1016.92 ± 5.71 bB62.16 ± 2.06 aA18.66 ± 3.71 bA2.26 ± 0.48 cB1.74 ± 0.31 B
        1514.69 ± 2.77 bB66.21 ± 4.08 aA16.32 ± 3.45 bA2.78 ± 0.18 cB1.65 ± 0.14 B
        308.12 ± 1.36 cC67.75 ± 5.02 aA20.40 ± 4.09 bA3.73 ± 0.98 cA1.28 ± 0.06 C
        注(Note):MWD—Mean weight diameter. 数据后不同小写、大写字母分别表示不同粒级团聚体间、相同粒级团聚体不同植茶年限间在 P < 0.05 水平差异显著 Values followed by different small and capital letters indicate respectively significant differences among aggregate sizes under the dame plantation ages and among plantation ages under the same size of aggregate (P < 0.05).

        不同植茶年限土壤均以大团聚体为主,占质量比例达75.87%~95.75% (表1)。但随植茶年限增加,各粒级团聚体质量分布发生了一定的改变。在0—15 cm土层中,植茶10、15和30 a时土壤大团聚体含量比植茶5 a时分别减少了10.72%、11.57%和16.62%,其中 > 2 mm团聚体含量相比植茶5 a分别减少了55.60%、59.62%、68.69%;土壤微团聚体含量分别增加了141.08%、152.27%、218.84%,其中 < 0.053 mm团聚体含量相比植茶5 a分别增加了73.03%、101.97%、137.50%。在15—30 cm土层,不同植茶年限的土壤团聚体分布与0—15 cm土层呈相似规律。在植茶5 a时,15—30 cm土层中 > 2 mm团聚体含量高于0—15 cm土层,其他粒级均低于0—15 cm土层;而其余植茶年限各粒级质量分布在土层间差异则呈相反变化趋势。

      • 植茶年限的增加土壤速效钾含量产生显著差异 (P < 0.05,表3)。在0—15 cm土层中,植茶10、15和30 a的土壤在 > 2 mm、0.25~2 mm、0.053~0.25 mm以及 < 0.053 mm粒级团聚体中速效钾含量比植茶5 a的分别增加了10.50%~96.69%、1.85%~55.03%、43.11%~81.33%和2.64%~31.69%,且植茶15和30 a的土壤各粒径速效钾含量与植茶5a的差异达到显著水平 (P < 0.05)。在不同粒级团聚体中,0.053~0.25 mm粒级中的土壤速效钾在植茶5 a时显著低于其余各粒级中其含量;植茶10 a时的土壤各粒级团聚体速效钾含量无显著差异 (P > 0.05);植茶15和30 a时土壤速效钾含量随团聚体粒径的增大而增高,且 > 2 mm粒级中含量显著高于其他粒级中其含量 (P < 0.05)。不同植茶年限15—30 cm土层中各粒级速效钾含量分布与0—15 cm土层呈相同规律,但其速效钾含量总体较低。

        表 3  不同植茶年限土壤团聚体速效钾含量分布

        Table 3.  content of readily available potassium in soil aggregates in different tea plantation ages

        土层 (cm)
        Soil layer
        植茶年限 (a)
        Plantation age
        各粒级土壤团聚体速效钾含量 Content of readily available K in each size of soil aggregates (mg/kg)
        > 2 mm0.25~2 mm0.053~0.25 mm < 0.053 mm
        0—15 540.19 ± 0.55 aC39.00 ± 0.62 aB30.48 ± 2.78 bC41.28 ± 3.33 aB
        1044.41 ± 0.32 aC39.72 ± 4.34 aB43.62 ± 5.70 aB42.37 ± 4.41 aB
        1570.80 ± 0.63 aB55.81 ± 2.95 bA51.20 ± 1.40 cA50.00 ± 1.26 cA
        3079.05 ± 5.00 aA60.46 ± 4.96 bA55.27 ± 3.16 bA54.36 ± 0.63 bA
        15—30 533.41 ± 3.74 aC29.53 ± 0.82 abC27.70 ± 2.22 bC35.64 ± 1.37 aB
        1035.24 ± 2.40 aC32.57 ± 1.72 aB37.51 ± 4.86 aB36.19 ± 5.04 aB
        1550.82 ± 0.84 aB49.02 ± 0.82 abA48.43 ± 1.11 bA41.64 ± 1.67 cA
        3056.14 ± 1.10 aA50.45 ± 1.64 bA49.72 ± 3.16 bA42.00 ± 1.09 cA
        注(Note):数据后不同小写、大写字母分别表示不同粒级团聚体间、相同粒级团聚体不同植茶年限间在 P < 0.05 水平差异显著 Values followed by different small and capital letters indicate respectively significant differences among aggregate sizes under the dame plantation ages and among plantation ages under the same size of aggregate (P < 0.05).
      • 各植茶年限在同一粒级团聚体中土壤缓效钾与上述速效钾含量分布规律一致 (表4)。在0—15 cm土层中,植茶10、15和30 a土壤 > 2 mm、0.25~2 mm、0.053~0.25 mm以及 < 0.053 mm粒级团聚体中土壤缓效钾含量比植茶5 a时分别增加了1.99%~52.64%、3.02%~44.23%、4.91%~15.13%和27.77%~40.80%。植茶10 a时仅微团聚体 (< 0.25 mm) 中土壤缓效钾含量显著高于植茶5 a时的含量 (P < 0.05);植茶15和30 a时所有粒级的土壤缓效钾含量均显著高于与植茶5 a时各粒级其含量 (P < 0.05)。同一植茶年限,各粒级土壤缓效钾含量各异,但均表现为在微团聚体中缓效钾含量较高,且均为 < 0.053 mm粒级中缓效钾含量高于其他粒级。不同植茶年限15—30 cm土层中缓效钾含量变化规律与0—15 cm土层一致,但土壤缓效钾含量总体低于0—15 cm其含量。

        表 4  不同植茶年限土壤团聚体缓效钾含量

        Table 4.  Distribution of slow available potassium content in soil aggregates in different tea plantation ages

        土层 (cm)
        Soil layer
        植茶年限 (a)
        Plantation age
        土壤团聚体缓效钾含量 Slow available K content in soil aggregate (mg/kg)
        > 2 mm0.25~2 mm0.053~0.25 mm < 0.053 mm
        0—15 5109.27 ± 5.06 bC108.99 ± 9.34 bC134.58 ± 1.66 aC135.04 ± 3.33 aB
        10111.44 ± 0.32 cC112.28 ± 7.96 cC141.19 ± 1.96 bB172.54 ± 18.41 aA
        15130.36 ± 1.74 cB140.58 ± 4.49 bcB151.73 ± 4.51 bA184.21 ± 14.26 aA
        30166.79 ± 8.31 bA157.20 ± 1.43 bcA154.94 ± 3.96 cA190.14 ± 11.93 aA
        15—30 5100.74 ± 4.21 bC100.49 ± 4.09 bD120.79 ± 4.21 aB125.23 ± 6.67 aC
        10109.76 ± 6.77 cC114.21 ± 7.22 bcC129.46 ± 11.17 abAB140.13 ± 12.63 aBC
        15138.86 ± 6.31 bB130.98 ± 2.78 abB130.75 ± 13.03 bAB153.97 ± 13.15 aB
        30151.41 ± 6.81 bA150.46 ± 4.30 bA145.92 ± 7.32 bA169.05 ± 1.09 aA
        注(Note):数据后不同小写、大写字母分别表示不同粒级团聚体间、相同粒级团聚体不同植茶年限间在 P < 0.05 水平差异显著 Values followed different small and capital letters indicate respectively significant differences among aggregate sizes under the dame plantation ages and among plantation ages under the same size of aggregate (P < 0.05).
      • 不同植茶年限显著增加了团聚体各粒级土壤有效钾释放能力 (图1)。植茶10、15和30 a的土壤有效钾比植茶5 a时在 < 0.053 mm粒级中分别增加6.10%、35.16%和54.61%;在0.053~0.25 mm粒级中分别增加5.79%、65.58%和84.39%;在0.25~2 mm粒级中分别增加6.53%、65.00%和80.87%;在 > 2 mm粒级中分别增加5.27%、68.14%和77.84%。在不同粒级中,在植茶5和10 a时均以0.25~2 mm粒级土壤有效钾累积释放量最低,其余各粒级差异较小;植茶15和30 a时,其累积释放量随粒级增大而升高,并在大团聚体中含量显著高于微团聚体中其含量 (P < 0.05)。

        图  1  不同植茶年限土壤各粒级团聚体中有效钾的累积释放量

        Figure 1.  Cumulative release of available K from each size of soil aggregate at different tea plantation years

        各植茶年限不同粒级团聚体土壤钾素释放均呈现出前期快速释放、后期较稳定释放的特征 (图1)。采用一级动力学模型、扩散模型、Elovich模型和双常数模型对不同植茶年限各粒级团聚体土壤有效钾释放动力学过程进行拟合 (表5)。结果表明,四种模型均能描述土壤有效钾的释放过程,但以扩散模型拟合程度最好,Elovich模型拟合程度最差,其余模型的拟合性则介于其间。说明不同植茶年限各粒级土壤有效钾释放过程均以扩散控制为主。扩散模型中的速率常数能够表征土壤有效钾的释放能力,植茶10 a、15 a和30 a时的土壤有效钾平均释放速率常数分别比植茶5 a增加15.11%、68.77%和83.83%,表明植茶年限的增加可提高土壤有效钾的释放能力。

        表 5  不同植茶年限各粒级土壤有效钾释放动力学特征

        Table 5.  Kinetic characteristics of available potassium release from different grain soils in different tea plantation ages

        植茶年限 (a)
        Plantation age
        粒级 (mm)
        Size
        一级动力学模型
        First order modle
        扩散模型
        Parabolic diffusion modle
        Elovich模型
        Elovich modle
        双常数模型
        Power function modle
        k R2 SE (mg/kg) k R2 SE (mg/kg) k R2 SE (mg/kg) k R2 SE (mg/kg)
        5 > 2 0.020 0.975 4.59 7.38 0.977 4.20 12.28 0.878 9.34 64.08 0.942 7.33
        2~0.25 0.017 0.959 4.02 5.63 0.978 3.06 9.07 0.814 8.85 66.27 0.876 7.71
        0.25~0.053 0.018 0.979 3.53 5.45 0.963 3.86 9.00 0.842 7.94 49.73 0.914 6.72
        < 0.053 0.016 0.948 5.39 6.16 0.973 4.43 10.04 0.831 9.23 53.01 0.913 7.74
        10 > 2 0.022 0.995 2.49 7.97 0.993 2.47 13.38 0.899 9.14 66.80 0.958 6.74
        2~0.25 0.018 0.930 8.73 6.80 0.981 3.13 11.27 0.857 8.65 68.32 0.921 7.27
        0.25~0.053 0.022 0.967 5.21 6.29 0.992 2.24 10.38 0.873 8.73 46.08 0.941 6.44
        < 0.053 0.018 0.931 7.14 7.28 0.974 4.29 12.05 0.855 10.10 50.22 0.937 8.00
        15 > 2 0.023 0.996 3.22 11.82 0.996 2.61 19.25 0.848 16.60 116.1 0.897 13.5
        2~0.25 0.020 0.955 10.2 10.45 0.982 5.16 17.74 0.907 11.58 101.2 0.960 8.90
        0.25~0.053 0.020 0.943 8.53 10.18 0.992 3.32 16.77 0.862 13.64 75.50 0.922 10.4
        < 0.053 0.021 0.973 4.85 9.10 0.985 4.09 15.40 0.905 10.16 68.44 0.959 7.19
        30 > 2 0.025 0.969 4.59 12.07 0.999 0.99 20.53 0.889 13.86 132.1 0.933 0.94
        2~0.25 0.023 0.976 2.52 11.59 0.975 6.94 19.30 0.904 10.28 106.7 0.955 10.5
        0.25~0.053 0.018 0.973 4.85 11.46 0.975 6.56 18.92 0.853 15.98 80.69 0.923 12.6
        < 0.053 0.018 0.956 3.72 10.14 0.986 4.29 16.52 0.840 14.66 78.26 0.916 11.8
        注(Note):k—各方程中的速率常数 Constant of potassium release in each modle; SE—标准误差 Standard error.
      • 种植年限会导致土壤团聚体粒径大小和分布产生差异,从而引起土壤的供钾和释钾能力的不同。因此,本文以四川省雅安市草坝镇典型茶园区为研究区域,分析植茶年限对土壤团聚体稳定性、钾素分布及其释放特征的影响。结果表明,植茶5 a后,各土层土壤大团聚体含量明显降低,MWD值明显减小,即土壤团聚体稳定性明显降低。这主要是因为每年开沟施肥对土壤结构的扰动,茶叶采摘和茶树修剪等管理过程对土壤的压实以及其他人为活动对土壤大团聚体结构具有较强的破坏作用[27-30];另一方面由于研究区常年多雨易溅散大团聚体,且地表产生的超渗径流会进一步冲蚀表土,致使茶园土壤有机物质流失加重,这也在一定程度上破坏了土壤团粒结构[31];除此以外,长期植茶连作导致茶园土壤微生物群落单一,有机物质分解困难,不利于形成稳定的团粒结构[32-33]。但随着植茶年限的增加,由施肥带入和茶叶凋落物归还的有机物质以及根系分泌物产生的多糖、有机酸等胶结物质不断积累,促使土壤结构有所好转,因此在植茶15 a时土壤大团聚体含量仅比植茶10 a时减少0.79%[34];但总体来说,其破坏程度高于上述植茶的积极效应,从而使土壤大团聚体含量、MWD值仍然呈降低趋势,导致在植茶30 a时土壤大团聚体含量及MWD值比植茶15 a时明显降低,微团聚体含量显著 (P < 0.05) 增加。植茶5 a时,15—30 cm土层大团聚体含量比0—15 cm土层增加了2.81%,MWD增加了0.76。表明15—30 cm土层团聚能力更强,这可能归因于表层的人为干扰破坏作用在植茶年限较短时相对强于深层[35];其余植茶年限则以0—15 cm土层土壤团聚体稳定性更高,这是因为随着植茶年限增加,深层土壤的有机物质较表层土壤来源更少,使得团聚体结构难以恢复[36]

        土壤速效钾在各粒级团聚体的含量为27.70~79.05 mg/kg,均低于植物生长临界值80 mg/kg[37]。其分布特征总体表现为随种植年限增加呈上升趋势,一方面是因为长期施用的钾肥主要以速效态存在[38-40];另一方面,茶树凋落物分解也积累了一定的钾素,且其积累量会随种植年限增加而增加[12];除此以外,在植茶年限较短时,即使投入了较多钾肥,但每年因采收茶叶而输出的钾素约100 mg/kg,因此其累积剩余量仍然较低[41]。植茶5和10 a时,各粒级团聚体中土壤速效钾分布较为均匀,但在植茶15和30 a时,土壤速效钾含量在大团聚体中明显增加,表明随着植茶年限增加,土壤速效钾含量有向大团聚体转移的趋势[42];同时,K+为很好的分散剂,对土壤结构和稳定性有一定的不良影响,其在大团聚体中含量的增加,会导致土壤大团聚体结构破坏,MWD值降低以及稳定性下降,这与上述土壤团聚体质量分布规律一致[43]。不同植茶年限各粒级总体表现为0—15 cm土层高于15—30 cm土层速效钾含量,主要是因为肥料的施用深度主要集中在表层,同时深层土壤中速效钾还可通过茶树根系等作用向上部转移[44]

        土壤缓效钾在各粒级团聚体的分布特征同样表现为随种植年限增加呈上升趋势,这是因为大量的有机酸会随植茶年限的增加而累积,并会通过分解和螯合作用增加土壤中含钾矿物的释钾量[45-46]。在不同粒级团聚体中,各植茶年限均变现为以微团聚体中其缓效钾含量最高,而大团聚体中含量最低,一方面是因为大团聚体孔隙大和通气状况良好,更有利于其向速效钾转化,因而大团聚体中缓效钾总体含量较低;另一方面,钾素主要存在于土壤中矿物的晶层表面、晶层间以及缺口边缘,在微团聚体中,矿物的缺口边缘增加,释放的钾离子也增加[47]

        植茶年限的增加显著提升了土壤有效钾的累积释放量 (P < 0.05),而各植茶年限不同粒级土壤有效钾释放过程均以扩散模型拟合程度最高,说明土壤中钾素释放均以扩散控制为主。这主要是因为采用NaTPB法提取土壤钾素时,Na+先扩散进入并置换层间钾,使其成为活动的K+,然后TPB-与K+形成KTPB沉淀,促使溶液中K+浓度降低,活动的K+与外部溶液间的K+浓度差提供驱动力使K+扩散出矿物晶格[26,48-49]。茶园土壤随植茶年限的增加会分泌大量有机酸,游离的H+可水解矿物表面的Si-O-Si或A1-O-Al,中和了矿物结构中由同晶代换产生的电荷,使得原本平衡电荷的K+释放出来,并导致了矿物结构的崩解[29,50-51],但李婷等[52]研究表明常温下农田土壤中钾素的释放仍以层间置换为主。因此,各植茶年限不同粒级土壤有效钾释放过程以扩散模型最为适合。各植茶年限不同粒级间速率常数大小则与上述速效钾含量、累积释放量呈现的规律相似,这可能是因为随植茶年限增加,钾肥不断累积,从而提高了土壤中有效钾释放累积量以及释放速率[53-54]。另一方面,随植茶年限增加,可能有含钾矿物向大团聚体转移趋势,从而使得植茶15和30 a时的大团聚体释放能力明显提高。

      • 茶园土壤中均以大团聚 (> 0.25 mm) 的比例最高,但随植茶年限的增加,微团聚体 (< 0.25 mm) 比例增加,土壤结构稳定性降低,特别是15—30 cm表层土壤。大团聚体的减少促进了土壤速效钾、缓效钾的释放,因而,植茶15 a和30 a的土壤速效钾含量较5 a和10 a的茶园高,但是会耗竭土壤钾库,不利于茶园的可持续利用。

    参考文献 (54)
    WeChat 关注分享

    返回顶部

    目录

      /

      返回文章
      返回