• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市园林废弃物生物质炭对小白菜生长、 硝酸盐含量及氮素利用率的影响

张登晓 周惠民 潘根兴 李恋卿 郑金伟

引用本文:
Citation:

城市园林废弃物生物质炭对小白菜生长、 硝酸盐含量及氮素利用率的影响

    作者简介: 张登晓(1989—),男,河南夏邑人,博士研究生,主要从事农田碳与碳循环研究。E-mail: 2012203024@njau.edu.cn;
  • 基金项目:

    教育部博士点基金项目(20120097130003);农业科技成果转化资金项目(2013GB23600666)资助

  • 中图分类号: S141.4;S634.3

Effect of municipal green waste biochar addition on the growth, nitrate content and nitrogen use efficiency of greenhouse pakchoi

  • CLC number: S141.4;S634.3

  • 摘要: 【目的】我国温室种植蔬菜迅速发展,温室种植中肥料利用率低及蔬菜硝酸盐积累等问题日益突出。同时,我国城市化快速发展,城市园林废弃物日益增多,这些木质废弃物的处理也成为城市可持续发展的挑战。本文采用城市园林废弃物制成的生物质炭用于温室栽培生产,分析其对温室蔬菜产量和品质以及养分保持的影响,从而探索一种为绿色环保的现代城市农业服务的技术。【方法】本研究采用温室盆栽试验方法,以小白菜为研究对象,设置5个生物质炭添加水平。 C0 (0 g/kg, CK)、 C1(20 g/kg)、 C2(40 g/kg)、 C3(60 g/kg)和C4(80 g/kg)。研究生物质炭对小白菜产量、 植株硝酸盐含量、 土壤氮素含量与形态以及氮素保持效应的影响。【结果】与对照相比,添加不同比例的生物质炭均显著提高小白菜产量,其中,C3和C4处理下增产幅度达到75%,生物质炭添加量与产量呈显著正相关关系;生物质炭对小白菜植株地上部和地下部的影响并不一致,其中收获指数显著增加,提高幅度在2.5%~9.5%之间,有随着生物质炭用量增加而增加的趋势;对照处理小白菜地上部硝酸盐含量达504 mg/kg,各处理植株硝酸盐含量介于161~256 mg/kg之间,显著降低50%以上,特别是C1处理降低硝酸盐含量的幅度达到68%,而不同生物质炭添加量之间植株硝酸盐含量差异不显著;生物质炭的添加增加了土壤中总氮素的含量,氮素损失率由不施炭处理的5.6%降低到了3.3%以下,显著降低了42%,同时土壤氮素生产率较对照提高幅度大于35%;与C0相比较,生物质炭添加显著降低了土壤NO-3-N的积累,降低幅度在60%以上,生物质炭用量在4%左右时降低作用最大,达到80%,同时土壤NH+4-N在生物质炭添加下降低了77%,生物质炭对降低土壤中铵态氮和硝态氮的累积作用并不与其用量呈正相关,铵硝比随着生物质炭添加量而呈下降的趋势;同时从研究结果看,产量与土壤NH+4-N和NO-3-N含量呈负相关关系,与土壤全氮呈正相关关系,而蔬菜植株硝酸盐含量与土壤NH+4-N和NO-3-N含量具有相关性,但与土壤全氮含量相关性不显著。【结论】温室大棚栽培小白菜的土壤中, 加入不同量的生物质炭能显著提高小白菜产量,同时降低小白菜植株的硝酸盐含量,添加量在2%时效果最好;土壤硝态氮和铵态氮积累随生物质炭施入而降低;生物质炭显著降低氮素损失率而提高氮素生产率。本研究得出生物质炭通过降低损失、 吸持更多氮素而提高了氮素的持续供应,在增产的同时降低了蔬菜硝酸盐积累,提高了品质。因此,在温室大棚蔬菜生产的土壤中添加一定量生物质炭(本试验下添加2%~4%)可以达到高产和优质。
  • [1] 中国统计局. 中国统计年鉴(2009-2013)[M]. 北京:中国统计局.
    Chinese Statistical Bureau. China statistical year book (2009-2013)[M]. Beijing: Chinese Statistical Bureau.
    [2] Chang J, Wu X, Liu A et al. Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China[J]. Ecological Economics, 2011, 70(4): 740-748.
    [3] Chen Y, Huang B, Hu W et al. Environmental assessment of closed greenhouse vegetable production system in Nanjing, China[J]. Journal of Soils and Sediments, 2013, 13: 1418-1429.
    [4] Guo J H, Liu X J, Zhang Y et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
    [5] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924.
    Zhang F S, Wang J Q, Zhang W F et al. Nutrient use efficiencies of major cereal crop in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924.
    [6] Zhu J H, Li X L, Christie P, Li J L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems[J]. Agriculture, Ecosystems & Environment, 2005, 111: 70-80.
    [7] Ju X T, Kou C L, Christie P et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145(2): 497-506.
    [8] Min J, Zhao X, Shi W M et al. Nitrogen balance and loss in a greenhouse vegetable system in Southeastern China[J]. Pedosphere, 2011, 21(4): 464-472.
    [9] Zhou Z Y, Wang M J, Wang J S. Nitrate and nitrite contamination in vegetables in China[J]. Food Reviews International, 2000, 16(1): 61-76.
    [10] Min J, Shi W, Xing G et al. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling in Agroecosystems, 2011, 91: 31-39.
    [11] Constantin J, Mary B, Laurent F et al. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments[J]. Agriculture, Ecosystems & Environment, 2010, 135(4): 268-278.
    [12] Shi W M, Yao J, Yan F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China[J]. Nutrient Cycling in Agroecosystems, 2009, 83: 73-84.
    [13] Santamaria P. Nitrate in vegetables: toxicity, content, intake and EC regulation[J]. Journal of the Science of Food and Agriculture, 2006, 86(1): 10-17.
    [14] 都韶婷, 金崇伟, 章永松. 蔬菜硝酸盐积累现状及其调控措施研究进展[J]. 中国农业科学, 2010, 43(17): 3580-3589.
    Du S T, Jin C W, Zhang Y S. Current situations and research progress of nitrate pollution in vegetables and their regulating strategies[J]. Scientia Agriculturae Sinica, 2010, 43(17): 3580-3589.
    [15] Authority E F S. Nitrate in vegetables: scientific opinion of the panel on contaminants in the food chain[J]. The EFSA Journal, 2008, 689: 1-79.
    [16] 刘永刚, 陈利军, 武志杰. 蔬菜中硝酸盐的积累机制及其调控措施[J]. 土壤通报, 2006, 37(3): 612-616.
    Liu Y G, Chen L J, Wu Z J et al. Accumulation mechanisms of nitrate in vegetables and their regulation[J]. Chinese Journal of Soil Science, 2006, 37(3): 612-616.
    [17] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology and Fertility of Soils, 2002, 35(4): 219-230.
    [18] Isobe T. Suppression of nitrogen outflow from bedding plants soil by zeolite or charcoal[J]. Horticultural Research(Japan), 2002, 1: 45-48.
    [19] 曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3): 288-293.
    Qu J J, Zheng J W, Zheng J F et al. Effects of Wheat-Straw-Based Biochar on Yield of Rice and Nitrogen Use Efficiency of Late Rice[J]. Journal of Ecology and Rural Environment, 2012, 28(3): 288-293
    [20] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337: 1-18.
    [21] 王学奎. 植物生理生化实验原理和技术(第二版)[M]. 北京: 高等教育出版社, 2006. 122-123.
    Wang X K. Experimental principle and technipue for plant physiology and biochemistry[M]. Beijing: Higher Education Press, 2006. 122-123.
    [22] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000.
    Bao S D. Soil and Agro-chemistry Analysis(3rd Ed.)[M]. Beijing: China Agricultural Press, 2000.
    [23] 国家环境保护总局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002. 266-268.
    State Environmental Protection Administration. Analysis methods for water and wastewater (4th edition)[M]. Beijing: China Environmental Science Press, 2002. 266-268.
    [24] Asai H, Samson B K, Stephan H M et al. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111: 81-84.
    [25] Major J, Rondon M, Molina D et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333: 117-128.
    [26] Haefele S M, Konboon Y, Wongboon W et al. Effects and fate of biochar from rice residues in rice-based systems[J]. Field Crops Research, 2011, 121(3): 430-440.
    [27] Zhang A, Liu Y, Pan G et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351(1-2): 263-275.
    [28] 张万杰, 李志芳, 张庆忠, 等. 生物质炭和氮肥配施对菠菜产量和硝酸盐含量的影响[J]. 农业环境科学学报, 2011, 30(10): 1946-1952.
    Zhang W J, Li Z F, Zhang Q Z et al. Impacts of biochar and nitrogen fertilizer on spinach yield and tissue nitrate content from a pot experiment[J]. Journal of Agro-Environment Science. 2011, 30(10): 1946-1952.
    [29] Pudasaini K, Ashwath N, Walsh K, Bhattarai T. Biochar Improves Plant Growth and Reduces Nutrient Leaching in Red Clay Loam and Sandy Loam[J]. Hydro Nepal: Journal of Water, Energy and Environment, 2012, 11(1): 86-90.
    [30] 姜琳琳, 韩立思, 韩晓日, 等. 氮素对玉米幼苗生长, 根系形态及氮素吸收利用效率的影响[J]. 植物营养与肥料学报, 2011, 17(1): 247-253.
    Jiang L l, Han L S, Han X R et al. Effects of nitrogen on growth, root morphological traits, nitrogen uptake and utilization efficiency of maize seedlings[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 247-253.
    [31] Reich P. Root-shoot relations: optimality in acclimation and adaptation or the “Emperor’s new clothes”[A].Waisel Y, Eshel A, Kafkafi U. Plant roots, the hidden half[C]. New York: Marcel Dekker, 2002. 205-220.
    [32] Vamerali T, Saccomani M, Bona S et al. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids[J]. Plant Soil, 2003, 255: 157-167.
    [33] Spokas K A, Baker J M, Reicosky D C. Ethylene: Potential key for biochar amendment impacts[J]. Plant and Soil, 2010, 333: 443-452.
    [34] Kuzyakov Y, Subbotina I, Chen H et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2): 210-219
    [35] Jones D L, Murphy D V, Khalid M et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry, 2011, 43(8): 1723-1731.
    [36] Dempster D N, Gleeson D B, Solaiman Z M et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354: 311-324.
    [37] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems-a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
    [38] Taghizadeh-Toosi A, Clough T J, Sherlock R R, Condron L M. A wood based low-temperature biochar capturesNH3-N generated from ruminant urine-N, retaining its bioavailability[J]. Plant and Soil, 2012, 353: 73-84.
    [39] Lehmann J, Joseph S. Biochar for environmental management: science and technology[M]. London, UK: Earthscan, 2009. 1-29,107-157.
    [40] 刘莹莹, 秦海芝, 李恋卿, 潘根兴, 等. 不同作物原料热裂解生物质炭对溶液中Cd2+ 和Pb2+的吸附特征[J]. 生态环境学报, 2012, 21(1): 146-152.
    Liu Y Y, Qin H Z, Li L Q, Pan G X et al. Adsorption of Cd2+ and Pb2+ in aqueous solution by biochars produced from the pyrolysis of different crop feedstock[J]. Ecology and Environmental Sciences, 2012, 21(1): 146-152.
  • [1] 张维霞高爽王俊玲陈倩倩薛占军高志奎 . Na+与Cl-浓度平衡供应最有利于小白菜的干物质积累及营养品质形成. 植物营养与肥料学报, 2022, 28(): 1-13. doi: 10.11674/zwyf.2021456
    [2] 柯贤林恽壮志刘铭龙刘晓雨卞荣军李恋卿潘根兴 . 不同来源生物质废弃物热解炭化农业应用潜力分析:生物质炭产率、性质及促生效应. 植物营养与肥料学报, 2021, 27(7): 1113-1128. doi: 10.11674/zwyf.20583
    [3] 卢琪宋天琦潘维徐茜茹吴蔡楠宋必秀都韶婷 . NO浓度对小白菜生长和品质的影响. 植物营养与肥料学报, 2019, 25(3): 453-460. doi: 10.11674/zwyf.18092
    [4] 刘会朱占玲彭玲陈倩刘相阳葛顺峰姜远茂 . 生物质炭改善果园土壤理化性状并促进苹果植株氮素吸收. 植物营养与肥料学报, 2018, 24(2): 454-460. doi: 10.11674/zwyf.17155
    [5] 肖婧王传杰黄敏孙楠张文菊徐明岗 . 生物质炭对设施大棚土壤性质与果蔬产量影响的整合分析. 植物营养与肥料学报, 2018, 24(1): 228-236. doi: 10.11674/zwyf.17132
    [6] 李丽王雪艳田彦芳王耀生李贵桐林启美赵小蓉 . 生物质炭对土壤养分及设施蔬菜产量与品质的影响. 植物营养与肥料学报, 2018, 24(5): 1237-1244. doi: 10.11674/zwyf.17483
    [7] 沈欣李燕婷袁亮赵秉强林治安杨相东李娟 . 氨基酸与锌配合喷施提高小白菜生物量、品质及锌利用效率. 植物营养与肥料学报, 2017, 23(1): 181-188. doi: 10.11674/zwyf.16090
    [8] 马茹茹卜玉山史晓凯 . 施肥和外源砷对小白菜生长和抗性生理的影响. 植物营养与肥料学报, 2012, 18(5): 1221-1228. doi: 10.11674/zwyf.2012.11058
    [9] 都韶婷章永松 . 增施CO2降低小白菜硝酸盐积累的机理研究. 植物营养与肥料学报, 2010, 16(6): 1509-1514. doi: 10.11674/zwyf.2010.0630
    [10] 赵首萍张永志叶雪珠郑纪慈 . 小白菜硝酸盐积累量基因型差异机理研究. 植物营养与肥料学报, 2010, 16(3): 681-687. doi: 10.11674/zwyf.2010.0324
    [11] 闵炬施卫明 . 不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响 . 植物营养与肥料学报, 2009, 15(1): 151-157. doi: 10.11674/zwyf.2009.0122
    [12] 王强姜丽娜*符建荣汪建妹马军伟 , . 氮素形态、用量及施用时期对小青菜产量和硝酸盐含量的影响 . 植物营养与肥料学报, 2008, 14(1): 126-131. doi: 10.11674/zwyf.2008.0120
    [13] 都韶婷李玲玲章永松林咸永 . 不同基因型小白菜硝酸盐积累差异及筛选研究. 植物营养与肥料学报, 2008, 14(5): 969-975. doi: 10.11674/zwyf.2008.0524
    [14] 徐坤范李明玉艾希珍 . 氮对日光温室黄瓜呈味物质、硝酸盐含量及产量的影响. 植物营养与肥料学报, 2006, 12(5): 717-721. doi: 10.11674/zwyf.2006.0519
    [15] 张英鹏徐旭军林咸永章永松都韶婷李刚 . 氮素形态对菠菜可食部分硝酸盐和草酸累积的影响. 植物营养与肥料学报, 2006, 12(2): 227-232. doi: 10.11674/zwyf.2006.0214
    [16] 秦鱼生涂仕华冯文强孙锡发陈庆瑞 . 有机无机肥料对蔬菜产量和硝酸盐累积的影响. 植物营养与肥料学报, 2005, 11(5): 670-674. doi: 10.11674/zwyf.2005.0517
    [17] 罗金葵陈巍张攀伟沈其荣 . 小白菜适当增铵下硝酸盐累积机理研究. 植物营养与肥料学报, 2005, 11(6): 800-803. doi: 10.11674/zwyf.2005.0615
    [18] 苏胜齐王正银李会合叶学见 . 几种化学物质配施对小白菜硝酸盐和营养品质的影响. 植物营养与肥料学报, 2004, 10(4): 407-412. doi: 10.11674/zwyf.2004.0413
    [19] 董晓英李式军 . 采前营养液处理对水培小白菜硝酸盐积累的影响. 植物营养与肥料学报, 2003, 9(4): 447-451. doi: 10.11674/zwyf.2003.0413
    [20] 汪李平向长萍王运华 . 小白菜硝酸盐含量基因型差异的遗传行为研究. 植物营养与肥料学报, 2003, 9(4): 442-446. doi: 10.11674/zwyf.2003.0412
  • 加载中
计量
  • 文章访问数:  3078
  • HTML全文浏览量:  179
  • PDF下载量:  865
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-22
  • 录用日期:  2014-12-12
  • 刊出日期:  2014-12-25

城市园林废弃物生物质炭对小白菜生长、 硝酸盐含量及氮素利用率的影响

    作者简介:张登晓(1989—),男,河南夏邑人,博士研究生,主要从事农田碳与碳循环研究。E-mail: 2012203024@njau.edu.cn
  • 1. 南京农业大学农业资源与生态环境研究所,江苏南京 210095
  • 基金项目:

    教育部博士点基金项目(20120097130003);农业科技成果转化资金项目(2013GB23600666)资助

  • 摘要: 【目的】我国温室种植蔬菜迅速发展,温室种植中肥料利用率低及蔬菜硝酸盐积累等问题日益突出。同时,我国城市化快速发展,城市园林废弃物日益增多,这些木质废弃物的处理也成为城市可持续发展的挑战。本文采用城市园林废弃物制成的生物质炭用于温室栽培生产,分析其对温室蔬菜产量和品质以及养分保持的影响,从而探索一种为绿色环保的现代城市农业服务的技术。【方法】本研究采用温室盆栽试验方法,以小白菜为研究对象,设置5个生物质炭添加水平。 C0 (0 g/kg, CK)、 C1(20 g/kg)、 C2(40 g/kg)、 C3(60 g/kg)和C4(80 g/kg)。研究生物质炭对小白菜产量、 植株硝酸盐含量、 土壤氮素含量与形态以及氮素保持效应的影响。【结果】与对照相比,添加不同比例的生物质炭均显著提高小白菜产量,其中,C3和C4处理下增产幅度达到75%,生物质炭添加量与产量呈显著正相关关系;生物质炭对小白菜植株地上部和地下部的影响并不一致,其中收获指数显著增加,提高幅度在2.5%~9.5%之间,有随着生物质炭用量增加而增加的趋势;对照处理小白菜地上部硝酸盐含量达504 mg/kg,各处理植株硝酸盐含量介于161~256 mg/kg之间,显著降低50%以上,特别是C1处理降低硝酸盐含量的幅度达到68%,而不同生物质炭添加量之间植株硝酸盐含量差异不显著;生物质炭的添加增加了土壤中总氮素的含量,氮素损失率由不施炭处理的5.6%降低到了3.3%以下,显著降低了42%,同时土壤氮素生产率较对照提高幅度大于35%;与C0相比较,生物质炭添加显著降低了土壤NO-3-N的积累,降低幅度在60%以上,生物质炭用量在4%左右时降低作用最大,达到80%,同时土壤NH+4-N在生物质炭添加下降低了77%,生物质炭对降低土壤中铵态氮和硝态氮的累积作用并不与其用量呈正相关,铵硝比随着生物质炭添加量而呈下降的趋势;同时从研究结果看,产量与土壤NH+4-N和NO-3-N含量呈负相关关系,与土壤全氮呈正相关关系,而蔬菜植株硝酸盐含量与土壤NH+4-N和NO-3-N含量具有相关性,但与土壤全氮含量相关性不显著。【结论】温室大棚栽培小白菜的土壤中, 加入不同量的生物质炭能显著提高小白菜产量,同时降低小白菜植株的硝酸盐含量,添加量在2%时效果最好;土壤硝态氮和铵态氮积累随生物质炭施入而降低;生物质炭显著降低氮素损失率而提高氮素生产率。本研究得出生物质炭通过降低损失、 吸持更多氮素而提高了氮素的持续供应,在增产的同时降低了蔬菜硝酸盐积累,提高了品质。因此,在温室大棚蔬菜生产的土壤中添加一定量生物质炭(本试验下添加2%~4%)可以达到高产和优质。

    English Abstract

    参考文献 (1)

    目录

      /

      返回文章
      返回