[1] Wardle D A. The influence of biotic interactions on soil biodiversity[J]. Ecology Letters, 2006, 9: 870-886. [2] 张卫信, 陈迪马, 赵灿灿. 蚯蚓在生态系统中的作用[J]. 生物多样性, 2007, 15(2): 142-153. Zhang W X, Chen D M, Zhao C C. Functions of earthworm in ecosystem[J]. Biodiversity Science, 2007, 15(2): 142-153. [3] Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226: 175-185. [4] Wurst S, Dugassa-Gobena D, Langel R et al. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance[J]. New Phytologist, 2004, 163: 169-173. [5] Patron J C, Sanchez P, Brown G G et al. Phosphorus in soil and Brachialis decumbens plants as affected by the geophagous earthworm Pontoscolex corethrurus and P fertilization[J]. Pedobiologia, 1999, 43: 547-556. [6] Gormsen D, Olsson P A, Hedlund K. The influence of collembolans and earthworms on AM fungal mycelium[J]. Applied Soil Ecology, 2004, 27: 211-220. [7] Johansen A, Jakobsen I, Jensen E S. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels[J]. Plant and Soil, 1994, 160: 1-9. [8] Ravnskov S, Larsen J, Olsson P A et al. Effects of various organic compounds on growth and phosphorous uptake of an arbuscular mycorrhizal fungus[J]. New Phytologist, 1999, 141: 517-524. [9] Eisenhauer N, Knig S, Alexander C W et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated[J]. Soil Biology and Biochemistry, 2009, 41: 561-567. [10] Curry J P, Schmidt O. The feeding ecology of earthworms-a review[J]. Pedobiologia, 2007, 50: 463-477. [11] Magdoff F, Weil R R. Soil organic matter in sustainable agriculture[M]. Boca Raton: CRC Press, 2004, 15-21. [12] Jordan D, Kremer R J, Bergfield W A et al. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields[J]. Biology and Fertility of Soils, 1995, 19: 297-302. [13] Johansen A, Jakobsen I, Jensen E S. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels[J]. Plant and Soil, 1994, 160: 1-9. [14] Wangn L G, LI W J, Qiu J J et al. Effects of biological organic fertilizer on crops growth soil fertility and yield[J].Soil and Fertilizers,2004, (5): 12-16. [15] Eisenhauer N, Scheu S. Earthworms as drivers of the competition between grasses and legumes[J]. Soil Biology and Biochemistry, 2008, 40: 2650-2659. [16] Milcu A, Partsch S, Scherber C et al. Earthworms and legumes control litter decomposition in a plant diversity gradient[J]. Ecology, 2008, 89: 1872-1882. [17] Tiunov A V, Dobrovolskaya T G. Fungal and bacterial communities in Lumbricus terrestris burrow walls: a laboratory experiment[J]. Pedobiologia, 2002, 46: 595-605. [18] Tuffen F, Eason W R, Scullion J. The effect of earthworms and arbuscular mycorrhizal fungi on growth of and32P transfer between Allium porrum plants[J]. Soil Biology and Biochemistry, 2002, 34: 1027-1036. [19] Lawrence B, Fisk M C, Fahey T J. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum)[J]. New Phytologist, 2003, 157: 145-153. [20] Ortiz-Ceballos A I, Fragoso C, Brown G G. Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch[J]. Biology and Fertility of Soils, 2007, 44: 181-186. [21] Azcón R, Azcon-Aguilar C, Barea J M. Effect of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza[J]. New Phytologist, 1978, 80: 359-364. [22] Wurst S, Dugassa-Gobena D, Langel R et al. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance[J]. New Phytologist, 2004, 163: 169-173. [23] Koerselman W, Meuleman A F W. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441-1450. [24] Scheu S. Effects of earthworms on plant growth: patterns and perspectives[J]. Pedobiologia, 2003, 47: 846-856. [25] Abbott L K, Murphy D V. Soil biological fertility: A key to sustainable land use in agriculture[M]. New York, US: Springer-Verlag New York Inc., 2003. 99-102. [26] Singh J S, Singh D P, Kashyap A K. A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India[J]. Plant Soil and Environment, 2009, 55: 223-230. [27] Campbell C A, Biederbeck V O, Wen G et al. Seasonal trends in soil biochemical attributes: effects of crop rotations in the semi-arid prairie. Canadian Journal of Soil Science, 1999, 79: 73-84. [28] Johansson J F, Paul L R, Finlay R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbiology Ecology, 2004, 48: 1-13. [29] Van Aarle I M, Soderstrom B, Olsson P A. Growth and interactions of arbuscula rmycorrhizal fungi in soils from limestone and acid rock habitats[J]. Soil Biology and Biochemistry, 2003, 35: 1557-1564. [30] Svensson K, Friberg H. Changes in active microbial biomass by earthworms and grass amendments in agricultural soil[J]. Biology and Fertility of Soils, 2007, 44: 223-228. [31] Zarea M J, Ghalavand A, Goltapeh E M. Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria[J]. Pedobiologia, 2009, 4: 223-235. |