• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非生物胁迫下植物水通道蛋白的应答与调控

孙琳琳 辛士超 强晓晶 程宪国

引用本文:
Citation:

非生物胁迫下植物水通道蛋白的应答与调控

    作者简介: 孙琳琳(1989—),女,山东滨州人,硕士,主要从事植物营养生理研究。E-mail:kernim@163.com;
  • 基金项目:

    国家转基因生物重大专项“钾养分高效利用小麦新品种培育”(2013/2014ZX08002-005);科研院所公益基金项目(IARRP-2014-403-15)资助。

  • 中图分类号: S945.17+1

Responsive regulation of aquaporins in the plants exposed to abiotic stresses

  • CLC number: S945.17+1

  • 摘要: 【目的】水分不仅是细胞中各类生命物质合成的必需底物,而且也参与植物体内的养分代谢和渗透平衡的调节。植物中水分的跨膜转运主要是由水通道蛋白(AQPs)所介导的,因此,无论是在植物整体水平还是细胞水平上,水分的吸收以及跨细胞膜系统的转运对于植物的生长发育都是至关重要的。近年来,水通道蛋白作为调节水分的吸收与转运的关键,已成为植物营养与分子生物学特别关注和研究的热点之一。本文从水通道蛋白的种类结构,底物特异性,基因表达特征和调控机制四个方面对水通道蛋白转运水分的机理和转运水分过程中对胁迫的响应机制进行了详细阐述;从水通道蛋白的水分运输和渗透调节功能及其养分运输功能两方面说明了水通道蛋白在植物生长过程中的生理作用;阐述了光照、干旱和低温与水通道蛋白功能之间的关系,明确了水通道蛋白通过表达量的增加或者降低来响应相应环境条件的变化。【主要机理】 水通道蛋白通过保持一定结构及对底物运输的特异性来实现对水分的高效运输,通过调整基因的表达量和翻译后修饰等过程实现对水分的高效转运;同时,水通道蛋白可以通过水分的运输实现植物渗透平衡的调节,对部分小分子养分的吸收等功能更是实现了对植物生理和养分吸收的调节;另外,水通道蛋白不仅可以提高植物的抗旱、抗盐能力,对低温胁迫也有一定的响应,还可以与多类逆境胁迫蛋白发生相互作用,共同调节植物的水分和渗透平衡,提高植物应对逆境胁迫的能力,表明植物水通道蛋白对非生物胁迫下的应答机制有待于进一步探索,为植物水通道蛋白的应用研究提供科学的理论支持与材料支撑。
  • [1] Obroucheva N V, Sin'kevich I A. Aquaporins and cell growth[J]. Russia Journal of Plant Physiology, 2010, 57(2): 153-165.
    [2] Otto B, Uehlein N, Sdorra S et al. Aquaporin tetramer composition modifies the function of tobacco aquaporins[J]. Journal of Biological Chemistry, 2010, 285(41): 31253-31260.
    [3] Heckwolf M, Pater D, Hanson D T et al. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator[J]. The Plant Journal, 2011, 67(5): 795-804.
    [4] Yool A J, Campbell E M. Structure, function and translational relevance of aquaporin dual water and ion channels[J]. Molecular Aspects of Medicine, 2012, 33(5-6): 553-561.
    [5] Chen S, Polle A. Salinity tolerance of Populus[J]. Plant Biology, 2010, 12(2): 317-333.
    [6] Ruiz-Lozano J M, Porcel R, Azcón C et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies[J]. Journal of Experimental Botany, 2012, 63(11): 4033-4044.
    [7] Maurel C, Verdoucq L, Luu D T et al. Plant aquaporins: membrane channels with multiple integrated functions[J]. Annual Review of Plant Biology, 2008, 59: 595-624.
    [8] 牛洪斌,吕军朋,邓德芝,等. 小麦AQPs蛋白TaPIP1基因cDNA克隆及其表达分析[J]. 麦类作物学报, 2010, 30(1): 1-5.
    Niu H B, Lü J P, Deng D Z et al. Cloning of TaPIP1 cDNA from wheat and its expression[J]. Journal of Triticeae Crops, 2010, 30(1): 1-5.
    [9] Maurel C, Reizer J, Schroeder J I et al. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes[J]. The EMBO Journal, 1993, 12(6): 2241-2247.
    [10] Chaumont F, Barrieu F, Wojcik E et al. Aquaporins constitute a large and highly divergent protein family in maize[J]. Plant Physiology, 2001, 125(3): 1206-1215.
    [11] Johanson U, Karlsson M, Johansson I et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiology, 2001, 126(4): 1358-1369.
    [12] Sakurai J, Ishikawa F, Yamaguchi T et al. Identification of 33 rice aquaporin genes and analysis of their expression and function[J]. Plant & Cell Physiology, 2005, 46(9): 1568-1577.
    [13] Park W, Scheffler B E, Bauer P J et al. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.)[J]. BMC Plant Biology, 2010, 10(1): 142.
    [14] Wallace I S, Choi W G, Roberts D M. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2006, 1758(8): 1165-1175.
    [15] Gustavsson S, Lebrun A S, Nordén K et al. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels[J]. Plant Physiology, 2005, 139(1): 287-295.
    [16] Tuskan G A, Difazio S, Jansson S et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-1604.
    [17] Fujiyoshi Y, Mitsuoka K, de Groot B L et al. Structure and function of water channels[J]. Current Opinion in Structural Biology, 2002, 12(4): 509-515.
    [18] Tornroth-Horsefield S, Wang Y, Hedfalk K et al. Structural mechanism of plant aquaporin gating[J]. Nature, 2006, 439(7077): 688-694.
    [19] Nyblom M, Frick A, Wang Y et al. Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating[J]. Journal of Molecular Biology, 2009, 387(3): 653-668.
    [20] HIll A, Shachar-Hill B, Shachar-Hill Y. What are aquaporins for?[J]. The Journal of Membrane Biology, 2004, 197(1): 1-32.
    [21] Holm L M, Jahn T P, Mller A L et al. NH3 and NH+4 permeability in aquaporin-expressing Xenopus oocytes[J]. European Journal of Physiology, 2005, 450(6): 415-428.
    [22] Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a member CO2 pore with physiological functions[J]. Nature, 2003, 425: 734-737.
    [23] Li X, Wang X, Yang Y et al. Single-molecule analysis ofPIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation[J]. The Plant Cell, 2011, 23(10): 3780-3797.
    [24] 李嵘,牛向丽,苗雁文,等. 水通道蛋白基因OsPIP2;6的功能分析[J]. 中国农业科学, 2013, 46(15): 3079-3086.
    Li R, Niu X L, Miao Y W et al. Functional characterization of the plasma intrinsic protein gene OsPIP2;6 in rice[J]. Scientia Agricultura Sinica, 2013,46(15): 3079-3086.
    [25] Sharp R E, Poroyko V, Hejlek L G et al. Root growth maintenance during water deficits: physiology to functional genomics[J]. Journal of Experimental Botany, 2004, 55(407): 2343-2351.
    [26] Gerbeau P, Guclu J, Ripoche P et al. Aquaporin NtTIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes[J]. Plant Journal, 1999, 18(6): 577-587.
    [27] Santoni V, Verdoucq L, Sommerer N et al. Methylation of aquaporins in plant plasma membrane[J]. Biochemical Journal, 2006, 400: 189-197.
    [28] Miao G, Hong Z, Verma D. Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane[J]. The Journal of Cell Biology, 1992, 118(2): 481-490.
    [29] Vera-Estrella R, Barkla B J, Bohnert H S, Pantoja O. Novel regulation of aquaporins during osmotic stress[J]. Plant Physiology, 2004, 135(4): 2318-2329.
    [30] Fetter K, Van Wilder V, Moshelion M et al. Interactions between plasma membrane aquaporins modulate their water channel activity[J]. The Plant Cell Online, 2004, 16(1): 215-228.
    [31] Zelazny E, Borst J W, Muylaert M et al. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization[J]. Proceedings of the National Academy of Sciences, 2007, 104(30): 12359-12364.
    [32] Temmei Y, Uchida S, Hoshino D et al. Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation[J]. FEBS Letters, 2005, 579(20): 4417-4422.
    [33] Dhonukshe P, Aniento F, Hwang I et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis[J]. Current Biology, 2007, 17(6): 520-527.
    [34] Paciorek T, Zazimalova E, Ruthardt N et al. Auxin inhibits endocytosis and promotes its own efflux from cells[J]. Nature, 2005, 435(7046): 1251-1256.
    [35] Guenther J F, Chanmanivone N, Galetovic M P et al. Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals[J]. The Plant Cell, 2003, 15(4): 981-991.
    [36] Gerbeau P, Amodeo G, Henzler T et al. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH[J]. The Plant Journal, 2002, 30(1): 71-81.
    [37] Alleva K, Niemietz C M, Sutka M et al. Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations[J]. Journal of Experimental Botany, 2006, 57(3): 609-621.
    [38] Tournaire-Roux C, Sutka M, Javot H et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins[J]. Nature, 2003, 425(6956): 393-397.
    [39] Ye Q, Wiera B, Steudle E. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration[J]. Journal of Experimental Botany, 2004, 55(396): 449-461.
    [40] Henzler T, Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals[J]. Plant, Cell & Environment, 2004, 27(9): 1184-1195.
    [41] Barrieu F, Chaumont F, Chrispeels M J. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize[J]. Plant Physiology, 1998, 117(4): 1153-1163.
    [42] Karlsson M, Johansson I, Bush M et al. An abundant TIP expressed in mature highly vacuolated cells[J]. The Plant Journal, 2000, 21(1): 83-90.
    [43] Kaldenhoff R, Fischer M. Functional aquaporin diversity in plants[J]. Biochimica et Biophysica Acta-Biomembranes, 2006, 1758(8): 1134-1141.
    [44] Azad A K, Sawa Y, Ishikawa T et al. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant Cell Physiol, 2004, 45(5): 608-617.
    [45] Bots M, Feron R, Uehlein N et al. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development[J]. Journal of Experimental Botany, 2005, 56(409): 113-121.
    [46] Bots M, Vergeldt F, Wolters-Arts M et al. Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco[J]. Plant Physiology, 2005, 137(3): 1049-1056.
    [47] Fleurat-Lessard P, Michonneau P, Maeshima M et al. The distribution of aquaporin subtypes (PIP1, PIP2 and γ-TIP) is tissue dependent in soybean (Glycine max) root nodules[J]. Ann Bot-London, 2005, 96(3): 457-460.
    [48] Fleurat-Lessard P, Frangne N, Maeshima M et al. Increased expression of vacuolar aquaporin and H+-ATPase related to motor cell function in Mimosa pudica L.[J]. Plant Physiology, 1997, 114(3): 827-834.
    [49] Maurel C. Aquaporins and water permeability of plant membranes[J]. Annual Review of Plant Biology, 1997, 48(1): 399-429.
    [50] Hoh B, Hinz G, Jeong B K et al. Protein storage vacuoles form de novo during pea cotyledon development[J]. Journal of Cell Science, 1995, 108(1): 299-310.
    [51] Prudent S, Marty F, Charbonnier M. The yeast osmo sensitive mutant fps1Δtransformed by the cauliflower BobTIP1;1 aquaporin withstand a hypo-osmotic shock[J]. FEBS Letters, 2005, 579(18): 3872-3880.
    [52] Clarkson D T, Carvajal M, Henzler T et al. Root hydraulic conductance: diural aquaporin expression and the effects of nutrient stress[J]. Journal of Experimental Botany, 2000, 51(342): 61-70.
    [53] Wang Y H, Garvin D F, Kochian L Y. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition[J]. Plant Physiology, 2001, 127: 345-359.
    [54] Liu L H, Ludewig U, Gassert B et al. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis[J]. Plant Physiology, 2003, 133(3): 1220-1228.
    [55] Aroca R, Porcel R, Ruiz-Lozano J M. Regulation of root water uptake under abiotic stress conditions[J]. Journal of Experimental Botany, 2012, 63: 43-57.
    [56] Wang L L, Chen A P, Zhong N Q et al.The Thellungiella salsuginea tonoplast aquaporin TsTIP1; 2 functions in protection against multiple abiotic stresses[J]. Plant and Cell Physiology, 2014, 55(1): 148-161.
    [57] Alexandersson E, Sjvall-Larsen S et al. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005, 59(3): 469-484.
    [58] Sarda X, Tousch D, Ferrare K et al. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells[J]. The Plant Journal, 1997, 12(5): 1103-1111.
    [59] Cochard H, Venisse J S, Barigah T S et al. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light[J]. Plant Physiology, 2007, 143(1): 122-133.
    [60] Lo Gullo M A, Nardini A, Trifilò P, Salleo S. Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees[J]. Tree Physiology, 2005, 25(4): 505-512.
    [61] Cochard H, Venisse J S, Barigah T S et al.Putative tole of aquaporin in variable hydraulic conductance of leaves in response to light[J]. Plant Physiology, 2007, 143(1): 122-133.
    [62] Kim Y X, Steudle E. Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays[J]. Journal of Experimental Botany, 2007, 58(15-16): 4119-4129.
    [63] Kim Y X, Steudle E. Gating of aquaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays[J]. Journal of Experimental Botany, 2009, 60(2): 547-556.
    [64] Gaspar M l, Bousser A, Sissoeff I et al. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea[J]. Plant Science, 2003, 165(1): 21-31.
    [65] Lee S H, Singh A P, Chung G C. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport[J]. Journal of Experimental Botany, 2004, 55(403): 1733-1741.
    [66] Steudle E. Water uptake by plant roots: an integration of views[J]. Acta Physiologiae Plantrum, 2004, 26(3): 77.
    [67] Lee S H, Chung G C, Steudle E. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd[J]. Journal of Experimental Botany, 2005, 56(413): 985-995.
    [68] Azad A K, Sawa Y, Ishikawa T, Shibata H. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant and Cell Physiology, 2004, 45: 608-617.
    [69] Ma J F, Tamai K, Yamaji N et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691.
    [70] Jang J Y, Lee S H, Rhee J Y et al. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses[J]. Plant Molecular Biology, 2007, 64(6): 621-632.
    [71] Lovisolo C, Schubert A. Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach[J]. New Phytologist, 2006, 172(3): 469-478.
    [72] Alexandersson E, Fraysse L, Sjvall-Larsen S et al. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005, 59(3): 469-484.
    [73] Maathuis F J M, Filatov V, Herzyk P et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress.[J]. Plant Journal, 2003, 35: 675-692.
    [74] Guo L, Wang Z Y, Lin H et al. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family[J]. Cell Research, 2006, 16(3): 277-286.
    [75] Fricke W, Akhiyarova G, Wei W et al. The short-term growth response to salt of the developing barley leaf[J]. Journal of Experimental Botany, 2006, 57(5): 1079-1095.
    [76] Hose E, Steudle E, Hartung W. Abscisic acid and hydraulic conductivity of maize roots: a study using cell-and root-pressure probes[J]. Planta, 2000, 211(6): 874-882.
    [77] Lian H L, Yu X, Ye Q et al. The role of aquaporin RWC3 in drought avoidance in rice[J]. Plant and Cell Physiology, 2004, 45(4): 481-489.
    [78] Lian H L, Yu X, Lane D et al. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment[J]. Cell Research, 2006, 16(7): 651-660.
    [79] Xin S C, Yu G H, Sun L L et al. Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins[J]. Journal of Plant Research, 2014, 127: 695-708.
  • [1] 黄丽雅李方剑张亚楠麦翠珊王金祥 . 植物响应低硫胁迫的分子生物学机制研究进展. 植物营养与肥料学报, 2022, 28(4): 732-742. doi: 10.11674/zwyf.2021417
    [2] 邱洁雅袁梦朱攀攀凌丽俐曹立付行政彭良志 . 不同柑橘砧木对锰过量胁迫的耐受性及生理响应. 植物营养与肥料学报, 2021, 27(1): 109-121. doi: 10.11674/zwyf.20249
    [3] 张喆慧王昕金可默程凌云王宝兰申建波 . 一氧化氮在植物发育及植物–微生物互作中的作用机制研究进展. 植物营养与肥料学报, 2021, 27(4): 706-718. doi: 10.11674/zwyf.20305
    [4] 师新新张佳祺张雨萌王妮马金荣肖凯 . 小麦钾离子通道蛋白基因TaPC1介导植株抵御低钾逆境功能研究. 植物营养与肥料学报, 2020, 26(5): 840-849. doi: 10.11674/zwyf.19381
    [5] 欧斯艳张亚楠王金祥 . 植物响应低磷胁迫的蛋白质泛素化途径研究进展. 植物营养与肥料学报, 2020, 26(11): 2060-2069. doi: 10.11674/zwyf.20112
    [6] 徐慧敏邵景侠李秧秧 . 小麦旗叶叶脉特征对水氮供应的响应及其与叶水力生理功能的关系. 植物营养与肥料学报, 2020, 26(9): 1636-1646. doi: 10.11674/zwyf.20086
    [7] 谢昶琰彭莉润金昕龚雪徐阳春董彩霞 . 不同梨砧木对缺铁胁迫的生理响应差异研究. 植物营养与肥料学报, 2018, 24(3): 779-789. doi: 10.11674/zwyf.17313
    [8] 李伟韩娇黄升财何蕊王冰程宪国 . 小盐芥 TsPIP1;1TsTIP1;1 基因增强转基因水稻耐盐性. 植物营养与肥料学报, 2017, 23(4): 957-963. doi: 10.11674/zwyf.17063
    [9] 徐芳森王运华 . 我国作物硼营养与硼肥施用的研究进展. 植物营养与肥料学报, 2017, 23(6): 1556-1564. doi: 10.11674/zwyf.17241
    [10] 米少艳路斌张颖杜欢白志英李存东 . 小麦代换系幼苗根系对低磷胁迫的生理响应暗示的染色体效应. 植物营养与肥料学报, 2016, 22(5): 1204-1211. doi: 10.11674/zwyf.15303
    [11] 张美俊乔治军杨武德冯美臣肖璐洁王冠段云 . 不同糜子品种对低氮胁迫的生物学响应. 植物营养与肥料学报, 2014, 20(3): 661-669. doi: 10.11674/zwyf.2014.0318
    [12] 徐娜辛士超强晓晶于国红马雪峰程宪国* . 番茄SlMIP基因参与转基因拟南芥的渗透调节. 植物营养与肥料学报, 2014, 20(1): 195-204. doi: 10.11674/zwyf.2014.0122
    [13] 高雁李春娄恺 . 干旱胁迫条件下加工番茄对喷施甜菜碱的生理响应. 植物营养与肥料学报, 2012, 18(2): 426-432. doi: 10.11674/zwyf.2012.11320
    [14] 邢承华吴韶辉梅忠陈雪罗小会 . 黑豆边缘细胞对干旱胁迫的响应和对根系生理特性的影响. 植物营养与肥料学报, 2012, 18(2): 332-337. doi: 10.11674/zwyf.2012.11285
    [15] 宋奇超曹凤秋巩元勇程晓园毕昕媛刘来华 . 高等植物氨基酸吸收与转运及生物学功能的研究进展. 植物营养与肥料学报, 2012, 18(6): 1511-1521. doi: 10.11674/zwyf.2012.12057
    [16] 卢军邢小军朱利泉王勇殷红袁建君 . 高温干旱共胁迫下外源甜菜碱和CaCl2对烟草生理响应的影响. 植物营养与肥料学报, 2011, 17(6): 1437-1443. doi: 10.11674/zwyf.2011.1054
    [17] 张波梁永超褚贵新危常州冶军马腾飞李志强 . 小麦幼苗对氧乐果胁迫的生理学响应. 植物营养与肥料学报, 2010, 16(6): 1387-1393. doi: 10.11674/zwyf.2010.0613
    [18] 杨忠义范春晖郭平毅 . 氮肥与多效唑对冬小麦叶片生理功能的调控. 植物营养与肥料学报, 2008, 14(5): 947-950. doi: 10.11674/zwyf.2008.0520
    [19] 柯世省金则新 . 干旱胁迫和复水对夏蜡梅幼苗光合生理特性的影响. 植物营养与肥料学报, 2007, 13(6): 1166-1172. doi: 10.11674/zwyf.2007.0629
    [20] 朱新广王强张其德卢从明匡廷云 . 冬小麦光合功能对盐胁迫的响应. 植物营养与肥料学报, 2002, 8(2): 177-180. doi: 10.11674/zwyf.2002.0209
  • 加载中
计量
  • 文章访问数:  3196
  • HTML全文浏览量:  318
  • PDF下载量:  1865
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-15
  • 录用日期:  2015-08-04
  • 刊出日期:  2015-07-25

非生物胁迫下植物水通道蛋白的应答与调控

    作者简介:孙琳琳(1989—),女,山东滨州人,硕士,主要从事植物营养生理研究。E-mail:kernim@163.com
  • 1. 沈阳农业大学土地与环境学院,辽宁沈阳 110866;
  • 2. 中国农业科学院农业资源与农业区划研究所,北京 100081)
  • 基金项目:

    国家转基因生物重大专项“钾养分高效利用小麦新品种培育”(2013/2014ZX08002-005);科研院所公益基金项目(IARRP-2014-403-15)资助。

  • 摘要: 【目的】水分不仅是细胞中各类生命物质合成的必需底物,而且也参与植物体内的养分代谢和渗透平衡的调节。植物中水分的跨膜转运主要是由水通道蛋白(AQPs)所介导的,因此,无论是在植物整体水平还是细胞水平上,水分的吸收以及跨细胞膜系统的转运对于植物的生长发育都是至关重要的。近年来,水通道蛋白作为调节水分的吸收与转运的关键,已成为植物营养与分子生物学特别关注和研究的热点之一。本文从水通道蛋白的种类结构,底物特异性,基因表达特征和调控机制四个方面对水通道蛋白转运水分的机理和转运水分过程中对胁迫的响应机制进行了详细阐述;从水通道蛋白的水分运输和渗透调节功能及其养分运输功能两方面说明了水通道蛋白在植物生长过程中的生理作用;阐述了光照、干旱和低温与水通道蛋白功能之间的关系,明确了水通道蛋白通过表达量的增加或者降低来响应相应环境条件的变化。【主要机理】 水通道蛋白通过保持一定结构及对底物运输的特异性来实现对水分的高效运输,通过调整基因的表达量和翻译后修饰等过程实现对水分的高效转运;同时,水通道蛋白可以通过水分的运输实现植物渗透平衡的调节,对部分小分子养分的吸收等功能更是实现了对植物生理和养分吸收的调节;另外,水通道蛋白不仅可以提高植物的抗旱、抗盐能力,对低温胁迫也有一定的响应,还可以与多类逆境胁迫蛋白发生相互作用,共同调节植物的水分和渗透平衡,提高植物应对逆境胁迫的能力,表明植物水通道蛋白对非生物胁迫下的应答机制有待于进一步探索,为植物水通道蛋白的应用研究提供科学的理论支持与材料支撑。

    English Abstract

    参考文献 (1)

    目录

      /

      返回文章
      返回