-
堆肥后土地利用是城市污泥等有机废物处理处置的重要途径之一。城市污泥堆肥可以提供给作物氮、磷、硫等可吸收的营养元素[1-2],改良土壤物理结构 (饱和导水率,堆积密度,总孔隙率,保水能力等)[3-4],降低土壤重金属污染危害[5]。但是,在污泥堆肥过程中会有大量的氮、硫损失,氮损失主要通过NH3、N2O挥发[6-7],硫损失主要通过H2S、CS2和甲硫醇、甲硫醚、二甲二硫醚 (Me2S) 等挥发性有机硫等物质的散失[8],这些挥发性气体,会刺激人体呼吸道,损害内分泌和神经系统,诱发癌症[9]。目前对有机物堆肥过程的氮循环研究比较充分,但关于硫循环的研究比较少,这与硫转化过程中间产物复杂有关。
虽然现代堆肥多采用好氧堆肥,但堆肥过程中常因供氧不足,堆体内部某些部位或在某个堆肥时段因缺氧而发生厌氧发酵,硫损失也主要发生在这一时期[10-11]。在厌氧条件下,城市污泥中硫的主要转化机制是半胱氨酸和蛋氨酸分别在蛋氨酸裂解酶和半胱氨酸裂解酶催化作业下,生物降解生成甲硫醇和H2S;H2S和甲硫醇经过甲基化能分别生成甲硫醇和甲硫醚;甲硫醇直接经过氧气等氧化物的非生物氧化生成Me2S[12-13]。除了有机硫的降解,污泥中一部分含硫有机化合物被微生物异化成硫酸根离子,一部分被异化成负二价硫 (HS−、S2−、H2S),硫酸根离子能在硫还原菌作用下转化成负二价硫 (HS−、S2−、H2S)[14-15]。
好氧条件下,城市污泥生物降解过程硫转化的生物机制更复杂,相关研究大多关注挥发性硫化物在堆肥过程的释放,而很少涉及堆体内的硫化物转化。城市污泥堆肥过程中,挥发性硫化物的产生主要受通风的影响,缺少氧气是H2S大量产生的重要原因,尤其在堆肥初期 (前40 h)[16-17]。有研究表明,保持堆体中的氧气浓度高于14%可以有效减少H2S的生成[16, 18]。Zang等[19]发现增大通风速率可以有效的减少猪粪与玉米芯混合堆肥过程中甲硫醚和Me2S的释放浓度。
硫是植物必需的营养元素,对提高作物产量,提升农产品品质非常关键[20-21]。农业上硫需求量和磷相当。调查发现中国耕地土壤缺硫现象比较普遍,如安徽省耕地土壤缺硫概率较大,有效硫含量处于极缺 (< 10 mg/kg)、缺乏 (10~16 mg/kg) 与较缺乏 (16~22 mg/kg) 水平的分别占总样本数的13.76%、20.91%和18.43%[22]。在城市污泥堆肥过程中,既要有效控制恶臭物质的产生,还要尽可能多的保留堆肥成品中的硫含量,对城市污泥堆肥处理设施环境环境卫生的改善和堆肥产品的肥效提升具有重要意义。因此,我们研究了不同通风条件下,城市污泥堆肥过程中堆体内部总硫、有效硫的变化,挥发性硫化物的产生为城市污泥堆肥过程中硫素含量提升和挥发性含硫恶臭物质的控制提供参考。
-
污泥取自郑州某污水处理厂二次沉淀池的脱水污泥 (含水率约80%),堆肥调理剂为锯末 (含水率约10%)。污泥与锯末混合比例为1∶0.3 (湿重)。
-
采用堆肥自动控制装置进行堆肥。堆肥自动控制装置由堆肥罐、风机 (旋涡式气泵 PG-250)、温度在线监测系统组成。堆肥罐制成材料为聚氯乙烯 (PVC),有效容积为340 L (高 1.2 m、内径60 cm),罐外部包裹有矿物棉保温材料。堆肥罐盖的制成材料与罐体相同,留有三个开孔,分别用于温度探头的插入、堆体内部气体采集和堆体外部废气的采集。温度探头采集的信息自动录入到计算机中,具体数值通过计算机自动化系统读取。通风方式为强制间歇式通风,每通风1 min间歇20 min。堆肥过程中通过改变鼓风机频率实现通风量的调节。本试验中,设定三个鼓风机频率,依次为10、13和16 Hz,对应的通风量为2.5、3.0和3.5 L/min。堆肥周期为15天,分别在堆肥的第0、1、2、3、5、7、9、11、13、15天进行堆体内部多点混合采样,同时进行H2S、挥发性有机硫化物和氧气的采样和测定。
-
采用采样袋外负压法进行有机硫化物的采样,采样器型号为SOC-01,采样袋为8 L聚酯气袋。采样袋连接便携式气相色谱质谱联用仪GC-MS,进行废气中挥发性有机硫化物定性和定量分析[23-25]。
利用便携式H2S检测仪 (量程0~200 μg/m3) 进行H2S浓度在线检测,检测时间分别为8:00、18:00,每次至少检测一个通风周期。利用填埋气在线检测仪 (Geotech,GA5000) 进行氧气在线检测,监测时间分别为8:00、18:00,每次至少检测一个通风周期。
-
总硫用分素分析仪 (FLASH 2000,Thermo Scientific) 测定[26]。物料有效硫含量测定时用Ca(H2PO4)2-HoAc溶液 (2 mol/L) 浸提,水土比为25∶1,浸提液用硫酸钡比浊法进行测定[27]。种子发芽指数 (GI) 测定方法:取物料浸提液15 mL于直径为12 cm放置有滤纸的培养皿中,培养皿内均匀放置20粒小白菜种子;放置完成后将培养皿放入培养箱中,在25℃恒温条件下避光培养48 h后再测种子的发芽率和根长;同时设置一组空白对照组,将15 mL蒸馏水加入直径为12 cm放置有滤纸的培养皿中,用上述方式进行培养和测定[28-29]。种子发芽指数公式如下:
$ GI\left(\% \right)=\frac{{\text{堆肥产物浸提液的种子发芽率}}\times {\text{堆肥产物浸提液的种子平均根长}}}{{\text{空白实验的种子发芽率}}\times {\text{空白实验的种子平均根长}}}\times 100 $ 除硫外,碳、氮等物质在堆肥过程中也会同时挥发损失,导致堆肥总质量下降,可能导致总硫浓度变化不明显。为了减少堆体质量下降而带来的误差,总硫计算时假定在堆肥全过程中灰分总量无损失,可得出堆肥过程中总硫计算公式如下:
$ {S_{{\rm{loss}}}} = 1 - \frac{{{A_{\rm{0}}} \times {S_{\rm{i}}}}}{{{A_{\rm{i}}} \times {S_{\rm{0}}}}} $ 式中,Sloss为硫损失率;A0为初始的灰分含量 (%);S0为初始全硫含量 (g/kg);Ai为第i天的灰分含量 (%);Si为第i天的全硫含量 (g/kg)。
-
本研究所使用的嗅觉评估方法是基于气味化合物的嗅阈值。气体样品的理论臭气浓度是气体样品中典型致臭物质的稀释倍数之和[30],计算方法如下所示:
$ {D_i} = \frac{{{C_i}}}{{C_i^T}}$ $ O{U_T} = \sum\limits_{i = 1}^n {{D_i}} $ 式中,Di是恶臭物质i的理论臭气浓度 (无量纲);Ci是恶臭物质i的浓度;CiT是恶臭物质i的嗅阈值;n是恶臭物质的数量,这里n为3 (H2S、甲硫醚和CS2);OUT是气体样品的理论臭气浓度,为各种恶臭物质的理论臭气浓度的加和[31]。
-
pH是影响物料中的微生物活动的重要因素,pH介于7.0~8.0之间时最有利于物料的堆肥进程[32]。整个堆肥周期堆体内部的pH变化如图1所示。在堆肥的第1天pH稍有降低,但第2天迅速上升,之后随着堆肥的进行,pH值变化趋于平稳并有降低的趋势。总体来看,通风量对堆体内部pH变化没有明显影响。电导率反映物料中可利用盐的含量和盐的矿化程度,电导率过高会导致植物毒性[33]。电导率在堆肥初期有一个短暂的上升阶段,之后呈持续下降趋势。试验结果表明,通风量对物料的电导率变化也没有明显影响。
-
堆肥过程中,堆体内部温度上升是微生物对堆体中有机物旺盛分解的结果,反映了微生物活性[34]。整个堆肥周期堆体内部的温度变化如图2所示。低、中、高风量处理的堆体分别在堆肥的第2、3、4天进入高温期 (> 50℃),并分别在此温度水平持续了4天、3天、3天。从温度随时间的变化趋势看,各处理在堆肥后期重新升温到50℃以上,表明存在二次发酵。结果表明,在高通风量的条件下,堆肥过程升温速率较慢,可能因为风量大导致带走的堆体内部的热量也较大,不利于堆体内部积温。
图 2 不同通风处理条件下堆体内部温度和含水率随时间变化
Figure 2. Changes of temperature and moisture content in sludge composting piles under different ventilation conditions
物料的含水率是堆肥过程中的重要工艺参数,影响堆体内部微生物的新陈代谢。试验结果表明,堆肥初期物料的含水率有小幅上升的趋势,但随着后续的生物降解,含水率呈逐渐下降趋势。在低、中、高通风条件下,堆体物料的含水率从第0天的73.6%、71.9%、72.5%分别下降到第15天的68.5%、66.7%、65.8%,表明高通风量有利于堆体内部的水分脱除。
-
堆体内部O2浓度变化反映了堆肥过程微生物活性变化,表征了有机物的降解程度和堆肥进程,同时也是影响堆肥过程挥发性硫化物产生的重要因素[35]。整个堆肥周期堆体内部的氧气变化如图3所示。堆体内部的平均氧气浓度在整个堆肥周期呈先下降后上升的趋势,主要原因是:堆肥初期,微生物活动不旺盛,氧气消耗低,但随着堆肥的进行,微生物新陈代谢活跃,有机物充足,耗氧速率逐渐增大,非通风期堆体内部氧气浓度下降[16]。随着堆肥进程的持续,堆料的有机物降解,特别是易降解有机质的大量消耗,微生物耗氧量逐渐减少,加上堆体水分蒸发,孔隙度增大,堆体内氧气含量又逐渐增加。
-
腐熟度是反映堆肥过程稳定化程度的指标,也是判断堆肥产品施用安全性的标准。物料堆肥结束后的种子发芽指数如图4所示。低通风条件下,堆肥成品的种子发芽指数为94%;中通风条件下,堆肥成品的种子发芽指数为86%;高通风条件下,堆肥成品的种子发芽指数为85%。不同通风处理的污泥经过堆肥处理后,堆肥产品的种子发芽指数均超过80%,表明污泥已经腐熟,满足土地利用要求[36]。
-
不同通风条件下H2S、CS2和Me2S (甲硫醚) 释放的变化趋势在整个堆肥周期基本相同,释放峰值都集中在堆肥前期 (图5)。低、中等通风量下H2S的浓度峰值出现在堆肥的第2天,分别为45.6 μg/m3、49.7 μg/m3;高通风量下H2S的浓度峰值出现在堆肥的第3天,峰值为27 μg/m3。H2S的峰值浓度在高通风量下相较于低、中等通风量下降了约50%。低通风量条件下Me2S的释放峰值浓度出现在第4天,为182.8 μg/m3;中等通风量条件下Me2S的释放峰值浓度出现在第3天,为224.6 μg/m3;高通风量条件下Me2S的释放峰值浓度出现在第5天,为1079.9 μg/m3。Me2S的峰值浓度在中通风量和高通风量处理下分别增加了22.9%和490.8%。低通风量条件下CS2的释放峰值浓度出现在第3天,为3237.8 μg/m3;中等通风量条件下CS2的释放峰值浓度出现在第3天,为1752.8 μg/m3;高通风量条件下CS2的释放峰值浓度出现在第4天,为732.1 μg/m3。CS2的峰值浓度在中、高风量下分别下降了46%和77%。
图 5 不同通风处理条件下污泥堆肥过程中挥发性硫化物的浓度动态变化
Figure 5. Dynamic of volatile sulfide compounds concentrations during sewage sludge composting under different ventilation conditions
城市污泥堆肥过程中增大通风量,可以显著减少H2S、CS2的峰值浓度,但增大了Me2S的峰值浓度。有研究表明当通风量增加到0.2 L/(kg·min), DM) 可以显著抑制厨余垃圾堆肥过程挥发性硫化物的生成[37],但在本研究中还观察到Me2S的峰值浓度反而增加。高通风量下堆体内部O2浓度较高,导致硫还原菌的代谢活动下降[38],同时H2S被氧气氧化或者被好氧微生物作用下生成单质硫或者SO42-[39-40],从而降低了H2S的峰值浓度。Me2S的生成机理较为复杂,主要来源于甲硫醇的氧化[12],有研究发现堆体中的生物稳定程度和通风氧气含量对Me2S的生成影响不大,其生成主要来源于非生物反应[41]。
-
相比低通风处理,在中、高通风量条件下,整个堆肥周期的H2S的累积释放量分别增加了73.9%和45.4%,Me2S的累积释放量分别提高了209%、398%,而CS2的累积释放量分别下降了31.6%、57.8% (图6)。
图 6 污泥堆肥不同通风处理条件下挥发性硫化物累积释放量
Figure 6. Cumulative release amount of volatile sulfide from the sewage sludge composting piles under different ventilation conditions
在城市污泥堆肥过程增大通风量一方面通过降低堆体内部的厌氧程度降低了H2S、Me2S的浓度峰值,另一方面也因为风量增多稀释了其浓度,但风量加大导致废气排放总体积增大。在多数情况下Me2S的生成主要是非生物反应,高水平氧会增大Me2S的释放[12, 16, 41]。增大通风量虽然减少了Me2S的重要前体物H2S的生成,但有可能增强H2S在好氧条件下甲基化生成甲硫醇,甲硫醇进一步被氧化为Me2S[41]。张玉冬和沈玉君等[17, 42]的研究中也有类似的发现,堆肥过程通风量的增大会导致H2S峰值浓度的降低和累积释放量的增加。
-
整个堆肥周期堆体物料的有效硫含量、总硫含量和总硫损失变化如图7所示。堆体中有效硫浓度在堆肥第1天呈明显上升趋势,随后呈较平稳的上升趋势。低、中、高通风条件下,物料堆肥结束后有效硫浓度相较于堆肥前分别上升了19.5%、19.1%、36.1%,但总硫含量随着挥发性硫化物的挥发损失,在整个堆肥周期呈连续下降趋势。低、中、高风量处理的物料总硫的初始含量分别为3.34 g/kg、3.28 g/kg、3.33 g/kg,堆肥结束后,物料总硫的最终含量为2.61 g/kg、2.49 g/kg、2.49 g/kg。综合考虑有机质挥发导致的堆体物料损失的情况,在堆肥结束后硫素分别损失了18.6%、20.6%和22.5%。不同通风处理的堆体中,高通风量处理硫元素损失更大,但高通风处理堆肥成品中的有效硫含量增加最多。Bao等[43]对畜禽粪便堆肥过程堆体中的有效硫含量在堆肥的前28天呈持续增加趋势,其有效硫含量增加了0.26~0.76 g/kg。
图 7 不同通风处理条件下污泥堆肥的总硫、总硫损失和有效硫含量变化
Figure 7. Changes of the S content and loss in the sewage sludge composting piles under different ventilation conditions
在堆肥前期硫的损失速度更快,是因为CS2、甲硫醚以及H2S等挥发性硫化物集中于堆肥前期释放[44]。造成高通风量下总硫含量下降最多的原因之一是甲硫醚、H2S等挥发性硫化物累积释放量更大。有效硫是主要的作物硫营养来源,包括水溶态硫、吸附态硫、游离氨基酸态硫[43, 45],高通风量时污泥堆肥产品中的总硫含量虽然减少但其硫肥效力更高。土壤有效硫的量受土壤、有机质、黏土矿物类型和表面特性、阴离子浓度和其他阳离子的浓度等因素所控制[46]。
-
整个堆肥周期不同通风处理的挥发性硫化合物理论臭气浓度变化呈先增加后降低趋势,理论臭气浓度峰值在堆肥中期出现,理论臭气浓度在堆肥7天后几乎为0 (图8)。堆肥前期H2S的臭气浓度占挥发性硫化物的理论臭气浓度的90%以上,而堆肥中期甲硫醚的臭气浓度占挥发性硫化物的理论臭气浓度80%以上。由挥发性硫化物造成的恶臭污染主要集中在堆肥前期和中期,H2S是堆肥前期主要的致臭含硫化合物,甲硫醚是堆肥中期主要的致臭含硫化合物。
图 8 不同通风处理条件下污泥堆肥过程中挥发性硫化物理论臭气浓度变化
Figure 8. Changes of volatile sulfur compounds’ theoretical odor concentration under different ventilation conditions during sewage sludge composting
在高通风条件下,由挥发性硫化物造成城市污泥堆肥的理论臭气浓度最高,挥发性硫化物的理论臭气浓度最大释放浓度达到了1028;其次是中等通风量,臭气峰值浓度为646;低通风量下臭气浓度最低,臭气峰值浓度仅为194。原因是高通风量处理导致甲硫醚的浓度显著增加,从而导致其理论臭气浓度显著高于其余两种通风处理。Zhao等[8]也有类似的发现,在堆肥车间测得的甲硫醚臭气浓度区间在23.14~513.85,其臭气浓度贡献率相较于其他挥发性硫化物中在堆肥的第5天最大。
-
城市污泥堆肥结束后物料的有效硫浓度在低、中、高通风量条件下相较于堆肥前均明显升高。增加通风量可以降低城市污泥堆肥过程H2S的浓度峰值约50%,但其累积释放量增大。相比较低风量处理,增加通风量促进了城市污泥堆肥过程甲硫醚的释放,其峰值浓度和累积释放量均显著增加。提高通风量会抑制堆肥过程CS2的释放,相较于低通风量条件下的堆体,中、高风量处理的堆体CS2的峰值浓度分别下降了46%和77%,其累积释放量分别下降了31.6%、57.8%。高通风处理全量硫的损失最大,释放的挥发性硫化合物增加,理论臭气浓度增大,对堆肥过程的臭气控制较不利,但增加通风有利于增加堆肥产品中可直接被植物吸收的有效硫含量。
不同通风量下城市污泥堆肥过程中硫素的转化特征
Conversion of sulfur during sewage sludge composting under different ventilation conditions
-
摘要:
【目的】 研究通风量对城市污泥堆肥过程中硫素转化和挥发性硫化物释放的影响,为有效控制挥发性含硫恶臭物质,保留污泥堆肥产品中的硫素营养提供理论依据和方法。 【方法】 城市污泥和调理剂 (锯末) 以3∶1 (湿重) 的比例混合后,采用自动好氧堆肥控制装置进行15天的堆肥试验,通过改变鼓风机频率实现不同堆体的通风量调节。设置鼓风机工作频率10、13、16 Hz三个处理,相应的通风量为2.5、3.0和3.5 L/min。在堆肥的第0、1、2、3、5、7、9、11、13、15天进行堆体内部多点混合采样,进行挥发性硫化物的浓度测定,研究城市污泥不同堆肥阶段中硫素的转化情况。 【结果】 相较于低通风量 (13 Hz),高通风量 (16 Hz) 下H2S的峰值浓度下降了约50%,但其累积释放量增加了37.7%;甲硫醚的累积释放量提高了398%,峰值浓度增加了490.8%;CS2的累积释放量增加了57.8%,其峰值浓度下降了77%。堆肥产品中有效硫浓度在低、中、高通风量条件下相较于堆肥前分别上升了19.5%、19.1%、36.1%。 【结论】 城市污泥堆肥过程中,提高通风量可以降低H2S的浓度峰值,但增加了H2S的累积释放量,甲硫醚的峰值浓度和累积释放量均显著增加;提高通风量可以抑制城市污泥堆肥过程CS2的释放。在低、中、高三种通风量条件下,堆肥产品的有效硫浓度相较于堆肥前都明显升高。高通风处理虽然全量硫的损失最大,但更有利于提高堆肥产品中可直接被植物吸收的有效硫含量。 Abstract:【Objectives】 The sulfur transformation and the release of volatile sulfide during sewage sludge composting process were studied under different ventilation conditions. This study was conducted to provide a reference for the retention of higher sulfur content in the compost and the control of malodorous substances. 【Methods】 A composting experiment was conducted for 15 days in a composting device with automatic ventilating system. The frequency of the blower was set into 10, 13, and 16 Hz to achieve low, medium, and strong ventilation treatments, respectively. In all the three ventilation treatments, the sewage sludge and sawdust were mixed in 3∶1 (wet weight), and the ventilation was set to an interval of 20 minutes every 1 minute. Multi-point mixed samples were collected, and the emission of volatile sulfides was determined in the beginning and in days 1, 2, 3, 5, 7, 9, 11, 13, and 15 of the composting process. 【Results】 The peak concentration of H2S decreased by about 50% while the cumulative release increased by 37.7% in the strong ventilation treatment. The cumulative release of methyl sulfide increased by 398%, and the peak concentration increased by 490.8% in strong ventilation treatment. In strong ventilation treatment, the cumulative release of CS2 increased by 57.8%, and the peak concentration decreased by 77%, incontrast to the low ventilation treatment. The concentrations of available sulfur in the final product increased by 19.5%, 19.1%and 36.1% under low, medium, and strong ventilation, respectively, as compared with those before composting. 【Conclusions】 In the process of composting, strong ventilation intensity reduced the peak concentration of H2S, but increased the cumulative release of H2S. Strong ventilation also promoted the release of methyl sulfide, and increased the peak concentration and cumulative release of methyl sulfide. Thus, it can be concluded that strong ventilation aids increase in available sulfur content in sewage sludge compost. -
Key words:
- sewage sludge /
- composting /
- ventilation /
- sulfur /
- volatile sulfur compounds
-
-
[1] 冀拯宇, 周吉祥, 郭康莉, 等. 连续施用无害化污泥堆肥对沙质潮土肥力的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1276–1284. Ji Z, Zhou J, Guo K, et al. Effects of continuous application of non-hazardous sewage sludge compost on fertility of sandy fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1276–1284. doi: 10.11674/zwyf.18005 [2] 聂二旗, 郑国砥, 高定, 等. 适量通风显著降低鸡粪好氧堆肥过程中氮素损失[J]. 植物营养与肥料学报, 2019, 25(10): 1773–1780. Nie E, Zheng G, Gao D, et al. Moderate intensity of ventilation can significantly reduce nitrogen loss during aerobic composting of chicken manure[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1773–1780. doi: 10.11674/zwyf.18432 [3] 柏彦超, 汪莉, 陶天云, 等. 施用生活污泥改良滩涂土壤理化性状的探讨[J]. 植物营养与肥料学报, 2012, 18(4): 1019–1025. Bai Y, Wang L, Tao T, et al. Study on the amendment of physicochemical properties of tidal flat soil by using sewage sludge[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 1019–1025. doi: 10.11674/zwyf.2012.11421 [4] Aggelides S M, Londra P A. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil[J]. Bioresource Technology, 2000, 71(3): 253–259. doi: 10.1016/S0960-8524(99)00074-7 [5] Kulikowska D, Gusiatin Z M, Bułkowska K, et al. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil[J]. Chemosphere, 2015, 136: 42–49. doi: 10.1016/j.chemosphere.2015.03.083 [6] Zhang W, Lau A. Reducing ammonia emission from poultry manure composting via struvite formation[J]. Journal of Chemical Technology & Biotechnology, 2007, 82(6): 598–602. [7] Han Z, Qi F, Wang H, et al. Odor assessment of NH3 and volatile sulfide compounds in a full-scale municipal sludge aerobic composting plant[J]. Bioresource Technology, 2019, 282: 447–455. doi: 10.1016/j.biortech.2019.03.062 [8] Zhao S, Yang X, Zhang W, et al. Volatile sulfide compounds (VSCs) and ammonia emission characteristics and odor contribution in the process of municipal sludge composting[J]. Journal of the Air & Waste Management Association, 2019, 69(11): 1368–1376. [9] Mustafa M F, Liu Y, Duan Z, et al. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste[J]. Journal of Hazardous Materials, 2017, 327: 35–43. doi: 10.1016/j.jhazmat.2016.11.046 [10] Zhu Y L, Zheng G, Gao D, et al. Odor composition analysis and odor indicator selection during sewage sludge composting[J]. Journal of the Air & Waste Management Association, 2016, 66(9): 930–940. [11] Zhao Y, Lu W, Wang H. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution[J]. Journal of Hazardous Materials, 2015, 300: 695–701. doi: 10.1016/j.jhazmat.2015.07.081 [12] Higgins M J, Chen Y C, Yarosz D P, et al. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors[J]. Water Environment Research, 2006, 78(3): 243–252. doi: 10.2175/106143005X90065 [13] Chin H W, Lindsay R C. Volatile sulfur compounds formed in disrupted tissues of different cabbage cultivars[J]. Journal of Food Science, 2006, 58: 835–839. [14] Xia F F, Su Y, Wei X M, et al. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils[J]. Letters in Applied Microbiology, 2014, 59(1): 26–34. doi: 10.1111/lam.12240 [15] Higgins M, Adams G, Card T, et al. Relationship between biochemical constituents and production of odor causing compounds from anaerobically digestion biosolids[J]. Proceedings of Water Environment Federation, 2004, (3): 471–486. [16] Chen J, Chen T B, Gao D, et al. Reducing H2S production by O2 feedback control during large-scale sewage sludge composting[J]. Waste Management, 2011, 31(1): 65–70. doi: 10.1016/j.wasman.2010.08.020 [17] 张玉冬, 张红玉, 顾军, 等. 通风量对厨余垃圾堆肥过程中H2S和NH3排放的影响[J]. 农业环境科学学报, 2015, 34(7): 1371–1377. Zhang Y D, Zhang H Y, Gu J, et al. Influence of ventilation on H2S and NH3 emissions during kitchen waste compositing[J]. Journal of Agro-Environment Science, 2015, 34(7): 1371–1377. doi: 10.11654/jaes.2015.07.020 [18] Wu T, Wang X, Li D, et al. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes[J]. Atmospheric Environment, 2010, 44(39): 5065–5071. doi: 10.1016/j.atmosenv.2010.09.019 [19] Zang B, Li S, Michel F, et al. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting[J]. Waste Management, 2016, 56: 498–505. doi: 10.1016/j.wasman.2016.06.026 [20] 王小东, 许自成, 解燕, 等. 云南曲靖烟区优质烤烟的适宜土壤有效硫和烟叶硫含量研究[J]. 植物营养与肥料学报, 2018, 24(2): 528–534. Wang X D, Xu Z C, Xie Y, et al. Suitable soil available sulfur and tobacco leaf sulfur contents for high quality tobacco production in Qujing area, Yunnan Province[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 528–534. doi: 10.11674/zwyf.17237 [21] 段玉, 张君, 安昊, 等. 基施钾肥有效提高内蒙古河套灌区向日葵产量和油分品质[J]. 植物营养与肥料学报, 2018, 24(5): 1349–1356. Duan Y, Zhang J, An H, et al. Effectively increasing the yield and oil quality of sunflower by basal application of potassium fertilizers in Hetao irrigation area, Inner Mongolia[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1349–1356. doi: 10.11674/zwyf.17320 [22] 钱晓华, 杨平, 周学军, 等. 安徽省土壤有效硫现状及时空分布[J]. 植物营养与肥料学报, 2018, 24(5): 1357–1364. Qian X, Yang P, Zhou X, et al. Current situation and spatial-temporal distribution of soil available sulfur in Anhui Province[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1357–1364. doi: 10.11674/zwyf.17429 [23] Bouvier-Brown N C, Carrasco E, Karz J, et al. A portable and inexpensive method for quantifying ambient intermediate volatility organic compounds[J]. Atmospheric Environment, 2014, 94: 126–133. doi: 10.1016/j.atmosenv.2014.05.004 [24] 封跃鹏, 房丽萍, 邱赫男, 等. 便携式气相色谱质谱测定水中挥发性有机物再现性和准确度研究[J]. 中国环境监测, 2013, 29(6): 117–122. Feng Y, Fang L, Qiu H, et al. Study on reproducibility and accuracy of determining volatile organic compounds in water by portable GC–MS[J]. Environmental Monitoring in China, 2013, 29(6): 117–122. doi: 10.3969/j.issn.1002-6002.2013.06.023 [25] 邵珠泽, 郑国砥, 王元刚, 等. 生活垃圾堆肥设施VOCs排放特征及臭氧生成潜势分析[J]. 环境科学, 2017, 38(5): 1783–1791. Shao Z Z, Zheng G D, Wang Y G, et al. Emission Characteristics and ozone formation potential of VOCs from a municipal solid waste composting plant[J]. Environment Science, 2017, 38(5): 1783–1791. [26] 牛明杰, 郑国砥, 朱彦莉, 等. 城市污泥与调理剂混合堆肥过程中有机质组分的变化[J]. 植物营养与肥料学报, 2016, 22(4): 1016–1023. Niu M, Zheng G, Zhu Y, et al. Dynamic of organic matter fractions during sewage sludge and bulking agent composting[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 1016–1023. doi: 10.11674/zwyf.15463 [27] Ghani A, McLaren R G, Swift R S. Sulphur mineralisation in some New Zealand soils[J]. Biology and Fertility of Soils, 1991, 11(1): 68–74. doi: 10.1007/BF00335838 [28] 胡克伟, 贾冬艳, 郝长红, 等. 猪粪堆腐对不同种子发芽指数的影响[J]. 北方园艺, 2011, (7): 42–45. Hu K, Jia D, Hao C, et al. Effect of pig manure during composting on germination index of different seed[J]. Northern Horticulture, 2011, (7): 42–45. [29] Yang F, Li G X, Yang Q Y, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7): 1393–1399. doi: 10.1016/j.chemosphere.2013.07.002 [30] Lu W, Duan Z, Dong L, et al. Characterization of odor emission on the working face of landfill and establishing of odorous compounds index[J]. Waste Management, 2015, 42: 74–81. doi: 10.1016/j.wasman.2015.04.030 [31] Capelli L, Sironi S, Del Rosso R, et al. A comparative and critical evaluation of odour assessment methods on a landfill site[J]. Atmospheric Environment, 2008, 42(30): 7050–7058. doi: 10.1016/j.atmosenv.2008.06.009 [32] Sundberg C, Smårs S, Jönsson H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting[J]. Bioresource Technology, 2004, 95(2): 145–150. doi: 10.1016/j.biortech.2004.01.016 [33] Aslam D N, Horwath W, Vander Gheynst J S. Comparison of several maturity indicators for estimating phytotoxicity in compost–amended soil[J]. Waste Management, 2008, 28(11): 2070–2076. doi: 10.1016/j.wasman.2007.08.026 [34] Hoang V N T, Maeda M. Nitrous Oxide and Carbon Dioxide Emissions from Vietnamese Soil Amended with Different Compost Types at High Temperature[J]. Communications in Soil Science and Plant Analysis, Taylor & Francis, 2018, 49(7): 848–861. [35] 刘斌, 陈同斌, 郑国砥, 等. 污泥堆肥处理过程中氧气消耗的动态变化与分布特征[J]. 环境科学学报, 2009, 29(5): 968–973. Liu B, Chen T, Zheng G, et al. Rates and distribution of oxygen consumption during composting of different sludges[J]. Acta Scientiae Circumstantiae, 2009, 29(5): 968–973. doi: 10.3321/j.issn:0253-2468.2009.05.013 [36] 郑玉琪, 陈同斌, 孔建松, 等. 利用耗氧速率判断好氧堆肥腐熟度的探讨[J]. 环境科学学报, 2004, 24(5): 930–935. Zheng Y, Chen T, Kong J, et al. Maturity assessment by oxygen consumption rate in aerobic composting[J]. Acta Scientiae Circumstantiae, 2004, 24(5): 930–935. doi: 10.3321/j.issn:0253-2468.2004.05.029 [37] Zhang H, Li G, Gu J, et al. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste[J]. Waste Management, 2016, 58: 369–375. doi: 10.1016/j.wasman.2016.08.022 [38] Kjeldsen K U, Joulian C, Ingvorsen K. Oxygen tolerance of sulfate–reducing bacteria in activated sludge[J]. Environmental Science & Technology, 2004, 38(7): 2038–2043. [39] Liu C, Shao S, Fan C, et al. Removal of volatile organic sulfur compounds by aeration during algae–induced black blooms in shallow lakes[J]. Journal of Water Supply, 2016, 65(2): 172–180. [40] Munter R, Vilu H. Drinking water production from well water with high sulfur and sulfur bacteria content[J]. Journal of Environmental Engineering, 2008, 134(5): 376–381. doi: 10.1061/(ASCE)0733-9372(2008)134:5(376) [41] He P, Wei S, Shao L, et al. Emission potential of volatile sulfur compounds (VSCs) and ammonia from sludge compost with different bio–stability under various oxygen levels[J]. Waste Management, 2018, 73: 113–122. doi: 10.1016/j.wasman.2017.12.028 [42] 沈玉君, 张朋月, 孟海波, 等. 通风方式对猪粪堆肥主要臭气物质控制的影响研究[J]. 农业工程学报, 2019, 35(7): 203–209. Shen Y J, Zhang P Y, Meng H B, et al. Effects of ventilation modes on control of main odor substances in pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 203–209. doi: 10.11975/j.issn.1002-6819.2019.07.025 [43] Bao Y, Guan L, Zhou Q, et al. Varioussulphur fractions changes during different manure composting[J]. Bioresource Technology, 2010, 101(20): 7841–7848. doi: 10.1016/j.biortech.2010.05.037 [44] Zang B, Li S, Michel F C, et al. Control of dimethyl sulfide and dimethyl disulfide odors during pig manure composting using nitrogen amendment[J]. Bioresource Technology, 2017, 224: 419–427. doi: 10.1016/j.biortech.2016.11.023 [45] 刘崇群. 中国南方土壤硫的状况和对硫肥的需求[J]. 磷肥与复肥, 1995, 10(3): 14–18. Liu C Q. Status and demand for sulfur in the Southern China[J]. Phosphate and Compound Fertilizer, 1995, 10(3): 14–18. [46] Luo L, Xu C, Ma Y, et al. Sulfur speciation in an arable soil as affected by sample pretreatments and sewage sludge application[J]. Soil Science Society of America Journal, 2014, 78(5): 1615–1623. doi: 10.2136/sssaj2013.11.0506 -