• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

减氮配施抑制剂及鸡粪提高尿素氮在稻田土壤中的转化及利用

于春晓 张丽莉 杨立杰 武开阔 李文涛 宋玉超 李东坡 武志杰

引用本文:
Citation:

减氮配施抑制剂及鸡粪提高尿素氮在稻田土壤中的转化及利用

    作者简介: 于春晓 E-mail:chunxiao_yu@126.com;
    通讯作者: 张丽莉, E-mail:llzhang@iae.ac.cn
  • 基金项目: 国家自然科学基金项目(31971531);中国科学院战略性先导科技专项(A类)(XDA28090200);中国科学院重点部署项目(KFZD-SW-113);2020年度王宽诚率先人才计划“产研人才扶持项目”

Combining N-inhibitor and chicken manure with reduced N fertilizer to improve the conversion and utilization of fertilizer N in a paddy soil

    Corresponding author: ZHANG Li-li, E-mail:llzhang@iae.ac.cn ;
  • 摘要:   【目的】  探究氮肥减量配施氮肥抑制剂和鸡粪的情况下土壤及肥料氮素供应和利用状况,及其对土壤肥力和水稻产量的影响,为我国东北地区水稻生产中提高氮肥利用效率、实现节肥增效提供理论基础。  【方法】  采用15N同位素示踪技术,盆栽试验设不施氮肥处理 (CK)、常规氮肥 (15N示踪尿素) 处理 (N)、80%尿素氮+20%鸡粪氮处理 (NM)、80%尿素氮+抑制剂处理 (NI)、80%尿素氮+抑制剂+20%鸡粪氮处理 (NIM)。测定不同生长时期来自于土壤及肥料中的铵态氮、微生物量氮含量及植株含氮量,收获时测定水稻产量。  【结果】  1) NI处理在土壤及肥料来源的铵态氮供应能力方面与N处理相当,抑制剂添加对氮肥减施有一定的补偿作用。在分蘖期和灌浆期,NM处理供氮能力优于无机氮肥处理。NIM处理在铵态氮和硝态氮供应能力方面效果最好。与N处理相比,NIM处理在水稻返青期、分蘖期和灌浆期土壤铵态氮含量分别提高了19.2%、66.3%和36.5%,硝态氮含量分别提高了13.9%、12.7%和17.3%,15NH4+-N含量在分蘖期增加了14.59 mg/kg。2) 无机氮肥处理 (N、NI) 对土壤微生物量碳含量无显著影响,但添加鸡粪处理 (NM、NIM) 显著提高了返青期和灌浆期土壤微生物量氮含量 (P < 0.05)。与N处理相比,NIM处理在水稻返青期、分蘖期、灌浆期和成熟期土壤微生物量碳含量分别提高了32.61%、29.23%、53.46%和2.85%,微生物量氮含量分别提高了147.98%、22.97%、133.33%和24.63%,15N-微生物量氮含量在分蘖期增加了约22.56 mg/kg。3) 抑制剂及鸡粪添加均提高了水稻产量和生物量,NIM处理的水稻生物量、产量和吸氮量较N处理分别提高了83.59%、124.18%和46.66% (P < 0.05),土壤中肥料氮的残留量显著增加了56.48%,肥料氮的损失减少了约78.7%。NIM处理的氮素吸收利用率、氮肥农学效率等显著高于其他处理,抑制剂与鸡粪在提高肥料氮素利用率方面存在显著交互作用。  【结论】  在我国北方棕壤水稻土上,在尿素中添加抑制剂 (1%PPD+1%NBPT+2%DMPP) 或者用鸡粪替代20%的尿素均能改善土壤氮素供应,氮肥减量20%配施抑制剂和鸡粪不仅不会减产,还会在提高水稻产量的同时提高肥料利用率。从肥料氮释放及水稻吸收利用的角度综合考量,减少20%尿素投入,添加氮肥抑制剂,以及添加氮肥抑制剂的同时,用鸡粪替代20%的尿素的效果较好。
  • 图 1  减量尿素配施抑制剂和鸡粪对水稻生育期土壤铵态氮和硝态氮含量的影响

    Figure 1.  Effects of urea reduction combined with inhibitor and chicken manure on ammonium and nitrate nitrogen contents in paddy soil during rice growth

    图 2  减量尿素配施抑制剂和鸡粪对水稻生育期土壤中微生物量碳氮转化的影响

    Figure 2.  Effects of urea reduction combined with inhibitor and chicken manure on the transformation of soil microbial biomass carbon and nitrogen during rice growth

    图 3  抑制剂及鸡粪添加对水稻生育期尿素氮在铵态氮及微生物量氮中转化的影响

    Figure 3.  Effects of inhibitor and chicken manure addition on the conversion of urea-derived nitrogen in ammonium nitrogen and microbial biomass nitrogen during rice growth

    图 4  各指标之间的相关分析 (Pearson, n = 60)

    Figure 4.  Correlation analysis among various indexes

    表 1  不同施肥方式对水稻农学指标的影响

    Table 1.  Effects of fertilization treatments on agronomic indexes of rice

    处理
    Treatment
    生物量 Biomass (g/plant)穗数
    Panicle No.
    per plant
    产量
    Yield
    (g/plant)
    千粒重
    1000-grain weight
    (g)
    返青期 Returning green分蘖期 Tillering灌浆期 Filling成熟期 Maturing
    CK 0.17 ± 0.08 a2.28 ± 0.07 a18.44 ± 0.43 d30.52 ± 9.46 b4.00 ± 0.00 d10.65 ± 0.23 c15.7 ± 6.4 b
    N 0.18 ± 0.02 a2.77 ± 1.04 a35.10 ± 0.77 c30.65 ± 10.25 b6.33 ± 0.58 c12.53 ± 5.34 c22.6 ± 1.5 a
    NM 0.16 ± 0.04 a2.67 ± 1.28 a51.24 ± 0.73 a51.95 ± 7.20 a8.33 ± 1.53 ab25.81 ± 4.03 a22.7 ± 1.8 a
    NI 0.16 ± 0.04 a3.61 ± 0.62 a44.50 ± 3.74 b53.56 ± 13.95 a8.67 ± 0.58 ab23.74 ± 1.28 ab21.1 ± 3.0 a
    NIM0.18 ± 0.04 a3.60 ± 0.44 a44.13 ± 4.19 b56.27 ± 3.49 a9.33 ± 0.58 a28.09 ± 3.68 a21.1 ± 2.0 a
    注(Note):表中数值为平均值 ± 标准差 Values in the table are mean ± standard deviation (n = 3); CK—不施氮对照 No nitrogen control; N—常量尿素 Applying urea N 318 kg/hm2; NM—80% 常量尿素+20% 鸡粪氮 Applying 80% of urea and replace the left 20% with chicken manure; NI—80% 尿素+抑制剂 Applying 80% of urea and adding nitrogen inhibitor; NIM—80% 常量尿素+抑制剂+20% 鸡粪氮 NM plus nitrogen inhibitor in urea. 同列数据后不同小写字母代表处理间差异显著 (Duncan, P < 0.05) Different lowercase letters in the same column represent significant difference among treatments of the same index (Duncan, P < 0.05).
    下载: 导出CSV

    表 2  不同施肥方式对水稻氮素利用率的影响

    Table 2.  Effects of different fertilization treatments on N-use efficiencies of rice

    处理
    Treatment
    氮素籽粒生产效率
    NGPE
    (g/g)
    氮收获指数
    NHI
    肥料氮贡献率
    FCR
    (%)
    收获指数
    HI
    氮素吸收率
    NUE
    (%)
    氮肥农学效率
    NAE
    (g/g)
    氮肥偏生产力
    NPFP
    (g/g)
    CK 56.28 ± 2.44 a0.56 ± 0.02 a33.27 ± 2.02 b0.33 ± 0.02 b
    N 40.15 ± 7.71 b0.54 ± 0.06 a42.73 ± 5.22 a0.43 ± 0.05 a45.57 ± 5.28 c11.59 ± 5.62 c35.25 ± 5.62 b
    NM 48.54 ±5.46 ab0.59 ± 0.02 a43.18 ± 2.82 a0.43 ± 0.03 a64.69 ± 13.43 b27.76 ± 3.48 b51.42 ± 3.48 a
    NI 48.17 ± 4.76 ab0.59 ±0.05 a41.88 ± 3.13 a0.42 ± 0.03 a67.81 ± 7.81 b29.08 ± 2.84 b52.75 ± 2.84 a
    NIM48.44 ± 1.65 ab0.60 ± 0.03 a44.30 ± 1.26 a0.44 ± 0.01 a86.49 ± 13.21 a38.76 ± 8.19 a62.43 ±8.19 a
    注(Note):CK—不施氮对照 No nitrogen control; N—常量尿素 Applying urea N 318 kg/hm2; NM—80% 常量尿素+20% 鸡粪氮 Applying 80% of urea and replace the left 20% with chicken manure; NI—80% 尿素+抑制剂 Applying 80% of urea and adding nitrogen inhibitor; NIM—80% 常量尿素+抑制剂+20% 鸡粪氮 NM plus nitrogen inhibitor in urea. NGPE—Grain production efficiency of nitrogen; NHI—Nitrogen harvest index; FCR—Fertilizer N contribution rate; HI—Harvest index; NUE—N uptake efficiency; NAE—Agronomic efficiency of N fertilizer; NPFP—Nitrogen partial factor productivity. 表中数值为平均值 ± 标准差 Values in the table are mean ± standard deviation (n = 3). 同列数据后不同小写字母代表处理间差异显著 (Duncan, P < 0.05) Values followed by different lowercase letters in the same column represent significant difference among treatments (Duncan, P < 0.05).
    下载: 导出CSV

    表 3  不同施肥方式下肥料及土壤固有氮在水稻–土壤系统中的分配

    Table 3.  Distribution of fertilizer and soil source nitrogen in rice-soil system under different fertilization management

    处理
    Treatment
    土壤全氮
    Soil total N
    (g/kg)
    水稻吸收氮
    N uptake by rice
    (g/pot)
    土壤中肥料氮
    Fertilizer N in soil
    (mg/kg)
    水稻吸收肥料氮
    Urea N uptake by rice
    (mg/pot)
    土壤中肥料氮比例
    Urea N ratio in soil
    (%)
    水稻利用肥料氮比例
    Urea N uptake ratio by rice
    (%)
    肥料损失率
    Urea N loss ratio
    (%)
    CK 1.26 ± 0.07 a189.61 ± 11.73 d
    N 1.30 ± 0.02 a394.66 ± 23.78 c30.63 ± 1.14 c182.22 ± 14.97 b6.81 ± 0.25 c40.49 ± 3.33 c50.51 ± 4.06 a
    NM 1.27 ± 0.03 a480.72 ± 60.42 b39.97 ± 4.64 b191.20 ± 15.56 b8.88 ± 1.03 b63.73 ± 5.19 b22.10 ± 6.34 b
    NI 1.28 ± 0.05 a494.75 ± 35.15 b48.07 ± 5.50 a215.57 ± 4.84 ab10.68 ± 1.22 ab71.86 ± 1.61 ab12.17 ± 1.97 c
    NIM1.32 ± 0.04 a578.82 ± 59.43 a47.93 ± 3.62 a221.67 ± 17.61 a10.65 ± 0.80 a77.76 ± 8.65 a10.76 ± 5.75 c
    注(Note):表中数值为平均值 ± 标准差 Values in the table are mean ± standard deviation (n = 3); CK—不施氮对照 No nitrogen control; N—常量尿素 Applying urea N 318 kg/hm2; NM—80% 常量尿素+20% 鸡粪氮 Applying 80% of urea and replace the left 20% with chicken manure; NI—80% 尿素+抑制剂 Applying 80% of urea and adding nitrogen inhibitor; NIM—80% 常量尿素+抑制剂+20% 鸡粪氮 NM plus nitrogen inhibitor in urea. 同列数值后不同小写字母表示处理间差异显著 (Duncan, P < 0.05) Values followed by different lowercase letters in the same column represent significant difference among treatments (Duncan, P < 0.05).
    下载: 导出CSV
  • [1] 谢邵文, 芬杨, 冯含笑, 等. 中国化肥农药施用总体特征及减施效果分析[J]. 环境污染与防治, 2019, 41(4): 490–495. Xie S W, Fen Y, Feng H X, et al. General characteristics of the chemical fertilizers and pesticides use and the analysis of use reduction effect in China[J]. Environmental Pollution & Control, 2019, 41(4): 490–495.
    [2] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017.

    National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2017.
    [3] 中华人民共和国农业农村部. 关于印发《到2020年化肥使用量零增长行动方案》的通知[EB/OL]. (2017−11−29) [2020−12−02]. http://www.moa.gov.cn/nybgb/2015/san/201711/t20171129_5923401.htm.

    Ministry of Agriculture and Rural Affairs, PRC. Notice on the issuance of the action plan for zero growth in fertilizer use by 2020 [EB/OL]. (2017−11−29)[2020−12−02]. http://www.moa.gov.cn/nybgb/2015/san/201711/t20171129_5923401.htm
    [4] Abalos D, Jeffery S, Alberto S C, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture, Ecosystems & Environment, 2014, 189: 136–144.
    [5] 孙祥鑫, 李东坡, 武志杰, 等. 持续施用缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征[J]. 应用生态学报, 2016, 27(6): 1901–1909. Sun X X, Li D P, Wu Z J, et al. Characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil under continuous application of different slow/controlled release urea[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1901–1909.
    [6] 武开阔, 张丽莉, 宋玉超, 等. 稳定性氮肥配合秸秆还田对水稻产量及N2O和CH4排放的影响[J]. 应用生态学报, 2019, 30: 1287–1294. Wu K K, Zhang L L, Song Y C, et al. Effects of stabilized N fertilizer combined with straw returning on rice yield and emission of N2O and CH4 in a paddy field[J]. Chinese Journal of Applied Ecology, 2019, 30: 1287–1294.
    [7] 卢婉芳, 陈苇. 稻田脲酶抑制剂对15N-尿素去向的影响[J]. 核农学报, 1997, 11: 151–156. Lu W F, Chen W. Effect of paddy urease inhibitors on fate of 15N-urea[J]. Journal of Nuclear Agricultural Sciences, 1997, 11: 151–156.
    [8] 张文学, 杨成春, 王少先, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响[J]. 中国水稻科学, 2017, 31: 417–424. Zhang W X, Yang C C, Wang S X, et al. Effects of urease inhibitor and nitrification inhibitor on nitrogen transformation in paddy soil[J]. Chinese Journal of Rice Science, 2017, 31: 417–424.
    [9] 王静, 王允青, 叶寅, 等. 脲酶/硝化抑制剂对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响[J]. 水土保持学报, 2019, 33: 211–216. Wang J, Wang Y Q, Ye Y, et al. Effects of urease/nitrification inhibitors on yield and nitrogen utilization efficiency of rice and soil nitrogen of paddy field in plain along the Huaihe River[J]. Journal of Soil and Water Conservation, 2019, 33: 211–216.
    [10] 朱文博, 刘鸣达, 肖珣, 等. 化肥配施有机肥对早稻产量及稻田氮素归趋的影响[J]. 沈阳农业大学学报, 2019, 50(6): 728–733. Zhu W B, Liu M D, Xiao X, et al. Effects of chemical fertilizer combined with organic manure on early rice yield and nitrogen fate in paddy field[J]. Journal of Shenyang Agricultural University, 2019, 50(6): 728–733.
    [11] 牛新胜, 巨晓棠. 我国有机肥料资源及利用[J]. 植物营养与肥料学报, 2017, 23(6): 1462–1479. Niu X S, Ju X T. Resources and utilization of organic fertilizer in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1462–1479. doi:  10.11674/zwyf.17430
    [12] 理鹏, 吴建强, 沙晨燕, 等. 粪肥和有机肥施用对稻田土壤微生物群落多样性影响[J]. 环境科学, 2020, 41(9): 4262–4272. Li P, Wu J Q, Sha C Y, et al. Effects of manure and organic fertilizer application on soil microbial community diversity in paddy fields[J]. Environmental Science, 2020, 41(9): 4262–4272.
    [13] Sheikha A E. Mixing manure with chemical fertilizers, why? and what is after?[J]. Nutrition Science and Food Technology, 2016, 2: 1–5. doi:  10.16966/2470-6086.112
    [14] Liu J, Xie Q, Shi Q, et al. Rice uptake and recovery of nitrogen with different methods of applying 15N-labeled chicken manure and ammonium sulfate[J]. Plant Production Science, 2015, 11(3): 271–277.
    [15] 朱菜红, 董彩霞, 沈其荣, 等. 配施有机肥提高化肥氮利用效率的微生物作用机制研究[J]. 植物营养与肥料学报, 2010, 16(2): 282–288. Zhu C H, Dong C X, Shen Q R, et al. Microbial mechanism on enhancement of inorganic fertilizer-N use efficiency for combined use of inorganic and organic fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 282–288. doi:  10.11674/zwyf.2010.0204
    [16] Liao H, Li Y, Yao H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates[J]. Journal of Soils and Sediments, 2017, 18(3): 1076–1086.
    [17] 李燕青, 温延臣, 林治安, 等. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响[J]. 植物营养与肥料学报, 2019, 25(10): 1669–1678. Li Y Q, Wen Y C, Lin Z A, et al. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1669–1678. doi:  10.11674/zwyf.18417
    [18] 李佳进, 肖丽霞, 刘银芬. 增施有机肥对土壤理化性状及水稻产量的影响[J]. 上海农业科技, 2020, (1): 107–108, 110. Li J J, Xiao L X, Liu Y F. Effects of organic fertilizer application on soil physical and chemical properties and rice yield[J]. Shanghai Agricultural Science and Technology, 2020, (1): 107–108, 110. doi:  10.3969/j.issn.1001-0106.2020.01.046
    [19] 杜加银, 美茹, 倪吾钟. 减氮控磷稳钾施肥对水稻产量及养分积累的影响[J]. 植物营养与肥料学报, 2013, 19(3): 523–533. Du J Y, Mei R, Ni W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(3): 523–533. doi:  10.11674/zwyf.2013.0301
    [20] 楼宇涛, 陈红金, 陆若辉, 等. 化肥减量对水稻产量和耕地质量的影响[J]. 浙江农业科学, 2020, 61: 17–19, 141. Lou Y T, Chen H J, Lu R H, et al. Effect of fertilizer reduction on rice yield and cultivated land quality[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61: 17–19, 141.
    [21] 付浩然, 李婷玉, 曹寒冰, 等. 我国化肥减量增效的驱动因素探究[J]. 植物营养与肥料学报, 2020, 26(3): 561–580. Fu H R, Li T Y, Cao H B, et al. Research on the driving factors of fertilizer reduction in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 561–580.
    [22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. 156–159.

    Lu R K. Analysis method of soil agriculture chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. 156–159.
    [23] Joergensen R G. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value[J]. Soil Biology & Biochemistry, 1996, 28(1): 25–31.
    [24] Joergensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value[J]. Soil Biology & Biochemistry, 1996, 28(1): 33–37.
    [25] Sebilo M, Mayer B, Grably M, et al. The use of the ‘ammonium diffusion’ method for δ15N-NH4+ and δ15N-NO3- measurements: comparison with other techniques[J]. Environmental Chemistry, 2004, 1: 99. doi:  10.1071/EN04037
    [26] Cabrera M L, Beare M H. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts[J]. Soil Science Society of America Journal, 1993, 57: 1007–1012. doi:  10.2136/sssaj1993.03615995005700040021x
    [27] 聂彦霞, 李东坡, 李莉, 等. NBPT/DMPP对白浆土中尿素态氮转化调控效果研究[J]. 土壤通报, 2012, 44(6): 947–952. Nie Y X, Li D P, Li L, et al. Effects of NBPT and DMPP on regulating and controlling urea N transformation in albic soil[J]. Chinese Journal of Soil Science, 2012, 44(6): 947–952.
    [28] 唐贤, 陆太伟, 黄晶, 等. 脲酶/硝化抑制剂双控下红壤性水稻土氮素变化特征[J]. 中国土壤与肥料, 2018, (6): 30–37. Tang X, Lu T W, Huang J, et al. Characteristics of nitrogen changing in red paddy soil under different ratios of NBPT and DMPP to urea[J]. Soil and Fertilizer Sciences in China, 2018, (6): 30–37. doi:  10.11838/sfsc.20180605
    [29] 周博, 周建斌. 不同种类有机肥氮素有效性研究[J]. 中国农学通报, 2016, 32(2): 118–123. Zhou B, Zhou J B. Nitrogen availability of different types of organic manure[J]. Chinese Agricultural Science Bulletin, 2016, 32(2): 118–123. doi:  10.11924/j.issn.1000-6850.casb15070086
    [30] Liu M, Hu F, Chen X, et al. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments[J]. Applied Soil Ecology, 2009, 42(2): 166–175. doi:  10.1016/j.apsoil.2009.03.006
    [31] Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture, Ecosystems & Environment, 2009, 129(1–3): 344–348.
    [32] 张丽敏, 徐明岗, 娄翼来, 等. 长期有机无机肥配施增强黄壤性水稻土有机氮的物理保护作用[J]. 植物营养与肥料学报, 2015, 21(6): 1481–1486. Zhang L M, Xu M G, Lou Y L, et al. Combined application of chemical and organic fertilizers long-term increase physical protection of organic nitrogen in yellow paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1481–1486. doi:  10.11674/zwyf.2015.0613
    [33] Yu C X, Xie X S, Yang H Z, et al. Effect of straw and inhibitors on the fate of nitrogen applied to paddy soil[J]. Scientific Reports, 2020, 10: 21582. doi:  10.1038/s41598-020-78648-w
    [34] 孟琳. 施用有机-无机肥料对水稻产量和氮肥利用率以及土壤供氮特性的影响[D]. 南京: 南京农业大学硕士学位论文, 2008.

    Meng L. Effects of application of organic-inorganic mixed fertilizers on the yields of rice and nitrogen use efficiency and soil nitrogen supply[D]. Nanjing: MS Thesis of Nanjing Agricultural University, 2008.
    [35] 周江明. 有机/无机肥配施对水稻产量、品质及氮素吸收的影响[J]. 植物营养与肥料学报, 2012, 18(1): 234–240. Zhou J M. Effect of combined application of organic and mineral fertilizers on yield, quality and nitrogen uptake of rice[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(1): 234–240. doi:  10.11674/zwyf.2012.11186
    [36] 欧杨虹, 徐阳春, 沈其荣. 有机氮部分替代无机氮对水稻产量和氮素利用率的影响[J]. 江苏农业学报, 2009, 25(1): 106–111. Ou Y H, Xu Y C, Shen Q R. Effect of combined use of organic and inorganic nitrogen fertilizer on rice yield and nitrogen use efficiency[J]. Jiangsu Journal of Agricultural Sciences, 2009, 25(1): 106–111. doi:  10.3969/j.issn.1000-4440.2009.01.020
    [37] 汪吉东, 张辉, 张永春, 等. 连续施用不同比例鸡粪氮对水稻土有机质积累及土壤酸化的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1178–1185. Wang J D, Zhang H, Zhang Y C, et al. Effect of different ratios of chicken manure N on organic matter accumulation and acidification of paddy soils[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1178–1185. doi:  10.11674/zwyf.2014.0514
    [38] 黄晶, 刘立生, 马常宝, 等. 近30年中国稻区氮素平衡及氮肥偏生产力的时空变化[J]. 植物营养与肥料学报, 2020, 26(6): 987–998. Huang J, Liu L S, Ma C B, et al. Spatial-temporal variation of nitrogen balance and partial factor productivity of nitrogen in rice region of China over the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 987–998. doi:  10.11674/zwyf.19410
    [39] Meng X, Li Y, Yao H, et al. Nitrification and urease inhibitors improve rice nitrogen uptake and prevent denitrification in alkaline paddy soil[J]. Applied Soil Ecology, 2020, 154: 103665. doi:  10.1016/j.apsoil.2020.103665
  • [1] 刘小媛杨劲松姚荣江 . 化肥减量配施黄腐酸降低盐渍农田NaCl含量提高氮磷养分有效性的协同效应. 植物营养与肥料学报, 2021, 27(8): 1339-1350. doi: 10.11674/zwyf.2021030
    [2] 张文学王少先夏文建孙刚刘增兵李祖章刘光荣 . 脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响. 植物营养与肥料学报, 2019, 25(6): 897-909. doi: 10.11674/zwyf.18237
    [3] 何翠翠李贵春尹昌斌张洋 . 有机肥氮投入比例对土壤微生物碳源利用特征的影响. 植物营养与肥料学报, 2018, 24(2): 383-393. doi: 10.11674/zwyf.17179
    [4] 王玉雯郭九信孔亚丽张瑞卿宋立新刘振刚张俊王建中郭世伟 . 氮肥优化管理协同实现水稻高产和氮肥高效. 植物营养与肥料学报, 2016, 22(5): 1157-1166. doi: 10.11674/zwyf.15434
    [5] 山楠杜连凤毕晓庆安志装赵丽平赵同科 . 用15N肥料标记法研究潮土中玉米氮肥的利用率与去向. 植物营养与肥料学报, 2016, 22(4): 930-936. doi: 10.11674/zwyf.15099
    [6] 徐新朋周卫梁国庆孙静文王秀斌何萍徐芳森余喜初 . 氮肥用量和密度对双季稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2015, 21(3): 763-772. doi: 10.11674/zwyf.2015.0324
    [7] 陈海飞冯洋蔡红梅徐芳森周卫刘芳庞再明李登荣 . 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20(6): 1319-1328. doi: 10.11674/zwyf.2014.0601
    [8] 陈海飞冯洋徐芳森蔡红梅周卫刘芳庞再明李登荣 . 秸秆还田下氮肥管理对低中产田水稻产量和氮素吸收利用影响的研究. 植物营养与肥料学报, 2014, 20(3): 517-524. doi: 10.11674/zwyf.2014.0301
    [9] 冯洋陈海飞胡孝明蔡红梅徐芳森 . 高、中、低产田水稻适宜施氮量和氮肥利用率的研究. 植物营养与肥料学报, 2014, 20(1): 7-16. doi: 10.11674/zwyf.2014.0102
    [10] 陈贤友吴良欢韩科峰李金先应金耀 . 包膜尿素和普通尿素不同掺混比例对水稻产量与氮肥利用率的影响. 植物营养与肥料学报, 2010, 16(4): 918-923. doi: 10.11674/zwyf.2010.0421
    [11] 周江明赵琳董越勇徐进边武英毛杨仓章秀福 . 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16(2): 274-281. doi: 10.11674/zwyf.2010.0203
    [12] 徐明岗李菊梅李冬初丛日环秦道珠申华平 . 控释氮肥对双季水稻生长及氮肥利用率的影响. 植物营养与肥料学报, 2009, 15(5): 1010-1015. doi: 10.11674/zwyf.2009.0504
    [13] 徐富贤熊洪谢戎张林朱永川郭晓艺杨大金周兴兵刘茂 . 水稻氮素利用效率的研究进展及其动向. 植物营养与肥料学报, 2009, 15(5): 1215-1225. doi: 10.11674/zwyf.2009.0533
    [14] 敖和军邹应斌申建波彭少兵唐启源冯跃华 . 早稻施氮对连作晚稻产量和氮肥利用率及土壤有效氮含量的影响. 植物营养与肥料学报, 2007, 13(5): 772-780. doi: 10.11674/zwyf.2007.0503
    [15] 郑圣先刘德林聂军戴平安肖剑 . 控释氮肥在淹水稻田土壤上的去向及利用率. 植物营养与肥料学报, 2004, 10(2): 137-142. doi: 10.11674/zwyf.2004.0205
    [16] 史春余张夫道张树清李辉付成高 . 有机-无机缓释肥对番茄产量和氮肥利用率的影响. 植物营养与肥料学报, 2004, 10(6): 584-587. doi: 10.11674/zwyf.2004.0605
    [17] 艾应伟刘学军张福锁毛达如曾祥忠吕世华潘家荣 , . 不同覆盖方式对旱作水稻氮肥肥效的影响. 植物营养与肥料学报, 2003, 9(4): 416-419. doi: 10.11674/zwyf.2003.0407
    [18] 郑圣先聂军熊金英肖剑罗尊长易国英 . 控释肥料提高氮素利用率的作用及对水稻效应的研究. 植物营养与肥料学报, 2001, 7(1): 11-16. doi: 10.11674/zwyf.2001.0102
    [19] 符建荣 . 控释氮肥对水稻的增产效应及提高肥料利用率的研究. 植物营养与肥料学报, 2001, 7(2): 145-152. doi: 10.11674/zwyf.2001.0205
    [20] 唐建阳翁伯琦何萍林永辉陈炳焕 . 提高稻田尿素氮利用率若干方法与机理探讨. 植物营养与肥料学报, 1998, 4(3): 242-248. doi: 10.11674/zwyf.1998.0307
  • 加载中
图(4)表(3)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  268
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 网络出版日期:  2021-10-09
  • 刊出日期:  2021-09-25

减氮配施抑制剂及鸡粪提高尿素氮在稻田土壤中的转化及利用

    作者简介:于春晓 E-mail:chunxiao_yu@126.com
    通讯作者: 张丽莉, llzhang@iae.ac.cn
  • 1. 中国科学院沈阳应用生态研究所,辽宁沈阳 110016
  • 2. 中国科学院烟台海岸带研究所,山东烟台 264003
  • 3. 沈阳化工研究院有限公司,辽宁沈阳 110021
  • 基金项目: 国家自然科学基金项目(31971531);中国科学院战略性先导科技专项(A类)(XDA28090200);中国科学院重点部署项目(KFZD-SW-113);2020年度王宽诚率先人才计划“产研人才扶持项目”
  • 摘要:   【目的】  探究氮肥减量配施氮肥抑制剂和鸡粪的情况下土壤及肥料氮素供应和利用状况,及其对土壤肥力和水稻产量的影响,为我国东北地区水稻生产中提高氮肥利用效率、实现节肥增效提供理论基础。  【方法】  采用15N同位素示踪技术,盆栽试验设不施氮肥处理 (CK)、常规氮肥 (15N示踪尿素) 处理 (N)、80%尿素氮+20%鸡粪氮处理 (NM)、80%尿素氮+抑制剂处理 (NI)、80%尿素氮+抑制剂+20%鸡粪氮处理 (NIM)。测定不同生长时期来自于土壤及肥料中的铵态氮、微生物量氮含量及植株含氮量,收获时测定水稻产量。  【结果】  1) NI处理在土壤及肥料来源的铵态氮供应能力方面与N处理相当,抑制剂添加对氮肥减施有一定的补偿作用。在分蘖期和灌浆期,NM处理供氮能力优于无机氮肥处理。NIM处理在铵态氮和硝态氮供应能力方面效果最好。与N处理相比,NIM处理在水稻返青期、分蘖期和灌浆期土壤铵态氮含量分别提高了19.2%、66.3%和36.5%,硝态氮含量分别提高了13.9%、12.7%和17.3%,15NH4+-N含量在分蘖期增加了14.59 mg/kg。2) 无机氮肥处理 (N、NI) 对土壤微生物量碳含量无显著影响,但添加鸡粪处理 (NM、NIM) 显著提高了返青期和灌浆期土壤微生物量氮含量 (P < 0.05)。与N处理相比,NIM处理在水稻返青期、分蘖期、灌浆期和成熟期土壤微生物量碳含量分别提高了32.61%、29.23%、53.46%和2.85%,微生物量氮含量分别提高了147.98%、22.97%、133.33%和24.63%,15N-微生物量氮含量在分蘖期增加了约22.56 mg/kg。3) 抑制剂及鸡粪添加均提高了水稻产量和生物量,NIM处理的水稻生物量、产量和吸氮量较N处理分别提高了83.59%、124.18%和46.66% (P < 0.05),土壤中肥料氮的残留量显著增加了56.48%,肥料氮的损失减少了约78.7%。NIM处理的氮素吸收利用率、氮肥农学效率等显著高于其他处理,抑制剂与鸡粪在提高肥料氮素利用率方面存在显著交互作用。  【结论】  在我国北方棕壤水稻土上,在尿素中添加抑制剂 (1%PPD+1%NBPT+2%DMPP) 或者用鸡粪替代20%的尿素均能改善土壤氮素供应,氮肥减量20%配施抑制剂和鸡粪不仅不会减产,还会在提高水稻产量的同时提高肥料利用率。从肥料氮释放及水稻吸收利用的角度综合考量,减少20%尿素投入,添加氮肥抑制剂,以及添加氮肥抑制剂的同时,用鸡粪替代20%的尿素的效果较好。

    English Abstract

    • 肥料在我国农业生产中占有非常重要的地位。目前,由于存在化肥不合理使用、盲目施肥等现象,导致作物肥料利用率低,土壤肥力下降,进而对粮食持续增产、农业提质增效产生严重影响[1]。2017年我国氮素施用量已达到2978.19万t[2]。氮肥用量大和吸收利用率相对较低,不仅导致资源浪费,还给生态环境带来负面影响。农业农村部提出到2020年我国农业要实现“一控两减三基本”,即控制农业用水总量,减少化肥农药使用量,化肥、农药用量实现零增长,基本实现畜禽养殖排泄物资源化利用等[3]。截止到2016年,我国化肥用量实现了负增长[1]。因此,科学合理的施肥方式,提高肥料资源利用率,是我国可持续发展的关键举措之一,抑制剂及有机肥能从减少损失和增加固持两方面提高土壤氮素供应能力,是目前较为有效的提高肥料利用率的举措。

      抑制剂的施用是提高肥料利用率,减少化肥施用量的有效途径。研究表明,在稻田中施用脲酶抑制剂能增产8.5%~16.1%,节肥3.8%~8.4%,施用硝化抑制剂能增产3.9%~12.4%,增效11.1%~25.0%,节肥25.0%[4]。且脲酶硝化抑制剂组合能有效减少稻田土壤中氨挥发和温室气体的排放[5-6],还能提高尿素氮的利用效率,促进水稻增产[7],脲酶硝化抑制剂 (NBPT+DMPP) 配合施用效果最为理想[8-9]。不同抑制剂类型及组合对氮素转化及氮的利用效率影响不同,对于两种脲酶抑制剂与硝化抑制剂组合 (NBPT+PPD+DMPP) 在稻田中的应用是否能进一步提高肥料利用率和增加水稻产量?尤其是在氮肥减量施用条件下,抑制剂在外源肥料氮素的提质增效方面有待于进一步研究。

      我国有机肥料实物量约57亿t,折合氮量约3000万t,有机肥资源量大,养分含量丰富,有机肥还田在补充土壤养分方面作用巨大[10-13]。有机无机肥配施在提高肥料利用率、改善土壤性状等方面产生良好的效果[14]。朱菜红等[15]利用15N示踪技术研究化肥配施鸡粪后15N的利用状况,其利用率大于60%,而单施化肥处理15N利用率仅为39%[16]。李燕青等[17]研究表明,氮肥减量配施有机肥能够实现与化肥相当的氮素利用效率,同时提升土壤肥力。实施化肥减量配施有机肥,是推进农业可持续发展的重大措施,也是促进节本增效、农业资源再利用的现实需求。减施无机肥增施有机肥能有效改善土壤理化性状,提升土壤质量[18],还能显著降低稻田氨挥发累积排放量,减少径流损失氮量,可有效抑制N2O排放[10]。故化肥减量并不会对水稻和秸秆产量产生不利影响,还能显著提升耕地质量,增加土壤碳氮储量[19],减量施肥+有机肥处理的综合效果最好[20]。合理的有机肥化肥配施能确保养分在水稻各个时期的持续供应,增加水稻总吸氮量,协调水稻产量各构成因素,促进茎叶和籽粒产量全面提高。在我国稻田生态系统中,化肥配施鸡粪的研究已有部分报道。研究表明,施用鸡粪能节肥约20%[21]。但氮肥减量配施抑制剂或鸡粪及两者配施,在提高土壤氮素供应及提高肥料氮素利用效率方面是否有协同增效作用?还有待于进一步研究。

      为探究抑制剂组配有机物料鸡粪在氮肥减施条件下对肥料氮的补偿及增效作用,本研究借助于15N同位素示踪技术,采用盆栽试验,以我国北方棕壤发育的水稻土为供试土壤,探究在氮肥减量配施鸡粪或抑制剂及与两者配施的情况下,土壤氮素及肥料氮素供应状况及与水稻需氮关系,结合水稻产量及氮肥利用率,探究复配的可行性及最佳的施肥方式。

      • 供试土壤为棕壤水稻土,土壤质地为砂壤土,采自沈阳农业大学水稻研究所试验地 (41°8′N、123°38′E)。盆栽试验在中科院沈阳应用生态研究所野外实验站 (43°31′N、123°22′E) 网室进行,该站位于辽河平原南部,气候类型为温带大陆性季风气候,年均气温在7℃~8℃,大于10℃的活动积温为3100℃~3400℃,年降水量为650~700 mm,无霜期为147~164天。供试土壤基本理化性质如下:容重为1.3 g/cm3,pH为6.7,全氮1.2 g/kg,碱解氮84.5 mg/kg,速效钾158 mg/kg,速效磷15.9 mg/kg。

      • 供试鸡粪基本理化性质为:全氮29.5 g/kg,有机碳314 g/kg,碳氮比10.63,20%化肥氮所需鸡粪添加量为5.05 g/kg,相当于每kg土添加纯氮30 mg。

      • 2019年5—10月进行盆栽试验。选用直径18 cm、高20 cm的塑料盆,每盆称相当于3 kg干土重量的鲜土,与有机无机肥混合均匀后装盆,淹水一夜,第二天进行水稻移栽,每盆移栽水稻3穴,每穴2株,共6株,水稻品种为‘美锋 9’。氯化钾和过磷酸钙作为底肥一次性施入,添加量分别为120和150 mg/kg,相当于田间施磷量212 kg/hm2、施钾量 318 kg/hm2。氮肥为15N标记尿素 (丰度为10.02%),常规施氮量为N 150 mg/kg土,相当于田间施氮量318 kg/hm2,按基肥、返青肥和分蘖肥40%、30%和30%的比例施用。抑制剂为苯基磷酰二胺 (PPD) +N-丁基硫代磷酰三胺 (NBPT) +3,4-二甲基吡唑磷酸盐 (DMPP)组合,抑制剂添加量均按尿素纯氮量的1%、1%和2%添加。试验设5个处理:不施氮对照 (CK)、常量尿素 (N)、80%常量尿素+20%鸡粪氮 (NM)、80%常量尿素+抑制剂 (NI)、80%常量尿素+抑制剂+20%鸡粪氮 (NIM)。

      • 水稻秧苗于3月下旬在大棚温室中采用育苗盘进行育苗,秧苗长至5个叶片时进行移栽。水稻于2019年5月29日定植,水稻管理同大田水分管理。分别于返青期 (2019年6月4日)、分蘖期 (2019年6月25日)、灌浆期 (2019年8月12日) 和成熟期 (2019年9月21日) 进行破坏性取样,每个处理各取3盆。返青期和分蘖期分别在施肥后7 天进行取样。每盆水稻收获所有6株样品 (茎和穗)。土壤选用五点取样法采集,除去水稻根系后充分混匀待测。测定土壤铵态氮、硝态氮、微生物生物量碳氮、肥料来源的铵态氮 (15NH4+-N) 及微生物量氮 (15N-MBN),以及水稻地上部分生物量和吸氮量、水稻对肥料氮的吸收利用等指标。

      • 土壤基本理化指标参照鲁如坤[22]的方法测定。土壤铵态氮和硝态氮含量测定:取10 g采集的新鲜土壤样品,用100 mL 2 mol/L氯化钾溶液浸提 (土∶液=1∶10),在160 r/min的震荡器中震荡1 h,过滤浸提液,使用AA3型连续流动分析仪分别在波长660和540 nm处测定土壤铵态氮和硝态氮含量。土壤微生物量碳、氮含量采用氯仿熏蒸法测定:称取20 g新鲜土壤2份,一份在黑暗处熏蒸24 h,一份不做熏蒸,两份样品均加入80 mL 0.5 mol/L K2SO4浸提液进行往复震荡浸提,采用TOC分析仪 (Vario TOC Cube, Elementar, Germany) 测定熏蒸和未熏蒸样品,微生物量碳、氮计算分别采用熏蒸系数0.45和0.54[23-24]。在水稻成熟期,分别收获每盆水稻秸秆和穗,于烘箱中65℃下烘干至恒重,测定水稻籽粒产量、生物产量、穗数、千粒重等生物学指标。将烘干后的水稻植株样品 (秸秆、籽粒),用球磨仪 (RETSCH MM 400,Germany) 粉碎过0.074 mm筛。采用Vario Macro元素分析仪测定土壤和植株的有机碳和全氮含量。土壤及植株中的15N丰度采用过筛后的样品,用锡舟包样,植物样称样量为2.5 mg,土壤样品称样量为18 mg,用同位素比例质谱仪 (253 MAT, Thermo Finnigan, Germany) 进行检测,测定顺序按照丰度从低到高测定,减少污染。15NH4+-N采用扩散包法进行提取[25]15N-MBN采用过硫酸钾碱液消煮法和扩散包法进行提取[26],提取结束后的扩散包在−60℃冰箱中冷冻0.5 h,然后采用冷冻干燥仪 (ALPHA 1-2 LDplus, Germany) 冷冻干燥,将扩散包中玻璃纤维包在锡舟中,采用同位素比例质谱仪 (253 MAT, Thermo Finnigan, Germany) 检测扩散包中15N丰度。

      • 水稻氮素累积吸收量 (g/pot) = 植株氮素含量 × 植株干物质质量;

        氮素籽粒生产效率 (g/g) = 籽粒产量/植株氮素累积吸收量;

        氮收获指数= 籽粒氮素累积量/地上部干物质氮素累积吸收量;

        肥料氮贡献率 (%) = (施氮产量-不施氮产量)/施氮产量 × 100;

        收获指数= 籽粒产量/地上部干物质量;

        氮素吸收率 (%) = (施氮吸氮量-不施氮吸氮量)/施氮量 × 100;

        氮肥农学效率 (g/g) = (施氮处理籽粒产量-不施氮处理籽粒产量)/施氮量 ;

        氮肥偏生产力 (g/g) = 施氮处理籽粒产量/氮肥施用量;

        土壤或植株中15N丰度=检测15N丰度值 × 土壤或植株中全氮含量/尿素中15N丰度;

        土壤肥料来源的氮含量 (mg/kg) = 氮库中15N丰度 × 该形态氮的含量/尿素中15N 丰度;

        15N残留 (%) = 收获后土壤残留15N量/加入的15N 量 × 100。

      • 用Microsoft office 2010软件进行数据处理和计算,用SPSS 18.0进行差异显著性方差分析 (Duncan, P < 0.05),并运用Pearson相关性分析,用Origin 2020进行图表制作。

      • 图1可知,减量尿素配施抑制剂和鸡粪处理 (NIM) 显著影响了土壤中铵态氮含量,但是对硝态氮含量影响不显著。在返青期、分蘖期乃至灌浆期,80%尿素配施抑制剂 (NI) 与常规氮肥 (N) 处理铵态氮供应无显著差异 (P > 0.05),与鸡粪配施 (NIM) 后提高了土壤铵态氮的含量。在返青期,NIM处理铵态氮含量显著高于NM和CK处理;在分蘖期,NIM处理显著高于N、NI处理 (P < 0.05),但与NM处理之间差异不显著 (P > 0.05)。与N处理相比,NM、NI处理铵态氮含量分别提高了43.6%、4.9%;在灌浆期和成熟期,各处理差异不显著 (P > 0.05)。与N处理相比,NIM处理在水稻返青期、分蘖期和灌浆期土壤中铵态氮含量分别提高了 19.2%、66.3% 和36.5%,15NH4+-N含量在分蘖期增加了14.59 mg/kg。表明在施肥初期,抑制剂添加在延缓氮素释放方面作用显著,其抑制效果高于鸡粪的供氮能力,但在分蘖期,鸡粪的铵态氮补偿能力要显著高于抑制剂,在水稻生长后期,抑制剂添加和鸡粪替代对铵态氮的影响较小。稻田土壤硝态氮含量较低,NM处理在返青期和成熟期硝态氮含量最高,显著高出N处理57.65%。NIM处理在生育时期内均有较低的硝态氮含量,但与N处理差异不显著 (P > 0.05),与N处理相比,NIM处理在水稻返青期、分蘖期和灌浆期土壤中硝态氮含量分别提高 13.87%、12.70% 和17.30%,这表明硝化抑制剂在抑制硝化作用方面效果显著。综合无机氮含量,NIM处理在生育前期增加铵态氮含量、减少硝态氮含量方面的作用显著 (P < 0.05)。

        图  1  减量尿素配施抑制剂和鸡粪对水稻生育期土壤铵态氮和硝态氮含量的影响

        Figure 1.  Effects of urea reduction combined with inhibitor and chicken manure on ammonium and nitrate nitrogen contents in paddy soil during rice growth

      • 图2可知,施用无机氮肥 (N、NI) 处理对土壤微生物量碳含量无显著影响 (P > 0.05),与N处理相比,NIM处理显著提高了返青期、分蘖期和灌浆期土壤微生物量碳的含量 (P < 0.05),施用鸡粪 (NM、NIM) 显著提高了返青期至灌浆期微生物量氮含量 (P < 0.05),抑制剂配施鸡粪在促进微生物活性,增加生物固持方面发挥重要作用。与单施氮肥处理相比,NI、NIM处理中抑制剂的添加显著增加了返青期微生物量氮 (P < 0.05),NIM显著提高了生育期内微生物量碳、氮含量 (P < 0.05),在返青期、分蘖期、灌浆期和成熟期微生物量碳含量分别比N处理提高了32.61%、29.23%、53.46%和2.85%,微生物量氮含量分别提高了147.98%、22.97%、133.33%和24.63%。

        图  2  减量尿素配施抑制剂和鸡粪对水稻生育期土壤中微生物量碳氮转化的影响

        Figure 2.  Effects of urea reduction combined with inhibitor and chicken manure on the transformation of soil microbial biomass carbon and nitrogen during rice growth

      • 图3可知,减氮配施抑制剂及鸡粪影响了肥料氮在铵态氮及微生物量氮中的转化。水稻返青期NIM处理土壤15NH4+-N含量显著高于NM处理 (P < 0.05);在水稻灌浆期NI处理土壤15N-微生物量氮含量显著高于其他处理 (P < 0.05),表明抑制剂的添加抑制了尿素的水解,增加了肥料来源氮素的供给,为微生物固持肥料氮素提供来源。而鸡粪添加对肥料氮转化的影响要高于抑制剂,且主要体现在分蘖期。与N处理相比,鸡粪添加显著提高了分蘖期肥料来源的15NH4+-N含量及15N-微生物量氮的含量 (P < 0.05)。相比于N处理,分蘖期NM、NIM处理土壤15NH4+-N分别增加了13.60和14.59 mg/kg,分别增加了93.63%和98.99%;15N-微生物量氮分别增加了33.48和22.56 mg/kg,分别增加了70.07%和51.39%。

        图  3  抑制剂及鸡粪添加对水稻生育期尿素氮在铵态氮及微生物量氮中转化的影响

        Figure 3.  Effects of inhibitor and chicken manure addition on the conversion of urea-derived nitrogen in ammonium nitrogen and microbial biomass nitrogen during rice growth

      • 表1可知,在等氮量添加及鸡粪替代20%氮肥条件下,各处理生物量在返青期和分蘖期差异均不显著 (P > 0.05),在灌浆期和成熟期,NM、NI、NIM处理生物量显著高于CK和N处理 (P < 0.05)。在成熟期,相比于N处理,NM、NI和NIM处理生物量分别提高了69.49%、74.75%和83.59%,表明抑制剂和鸡粪添加后显著提高灌浆期水稻生物量,在水稻生殖生长的关键阶段起着重要作用;鸡粪配施氮肥后氮素供应能力较强,利于水稻生长。NIM处理穗数、产量均最高,其次为NM、NI处理,其穗数和产量均显著高于CK和N处理 (P < 0.05)。NIM处理水稻产量是CK的2.64倍,是N处理的2.24倍。与N处理相比,NM、NI和NIM处理产量分别提高了105.99%、89.47%和124.18%,且均达到显著水平。各施氮处理千粒重均显著高于CK处理 (P < 0.05),各施氮处理之间差异不显著 (P > 0.05)。综上所述,鸡粪和抑制剂在氮肥减施及提高水稻生物量和产量方面作用显著。

        表 1  不同施肥方式对水稻农学指标的影响

        Table 1.  Effects of fertilization treatments on agronomic indexes of rice

        处理
        Treatment
        生物量 Biomass (g/plant)穗数
        Panicle No.
        per plant
        产量
        Yield
        (g/plant)
        千粒重
        1000-grain weight
        (g)
        返青期 Returning green分蘖期 Tillering灌浆期 Filling成熟期 Maturing
        CK 0.17 ± 0.08 a2.28 ± 0.07 a18.44 ± 0.43 d30.52 ± 9.46 b4.00 ± 0.00 d10.65 ± 0.23 c15.7 ± 6.4 b
        N 0.18 ± 0.02 a2.77 ± 1.04 a35.10 ± 0.77 c30.65 ± 10.25 b6.33 ± 0.58 c12.53 ± 5.34 c22.6 ± 1.5 a
        NM 0.16 ± 0.04 a2.67 ± 1.28 a51.24 ± 0.73 a51.95 ± 7.20 a8.33 ± 1.53 ab25.81 ± 4.03 a22.7 ± 1.8 a
        NI 0.16 ± 0.04 a3.61 ± 0.62 a44.50 ± 3.74 b53.56 ± 13.95 a8.67 ± 0.58 ab23.74 ± 1.28 ab21.1 ± 3.0 a
        NIM0.18 ± 0.04 a3.60 ± 0.44 a44.13 ± 4.19 b56.27 ± 3.49 a9.33 ± 0.58 a28.09 ± 3.68 a21.1 ± 2.0 a
        注(Note):表中数值为平均值 ± 标准差 Values in the table are mean ± standard deviation (n = 3); CK—不施氮对照 No nitrogen control; N—常量尿素 Applying urea N 318 kg/hm2; NM—80% 常量尿素+20% 鸡粪氮 Applying 80% of urea and replace the left 20% with chicken manure; NI—80% 尿素+抑制剂 Applying 80% of urea and adding nitrogen inhibitor; NIM—80% 常量尿素+抑制剂+20% 鸡粪氮 NM plus nitrogen inhibitor in urea. 同列数据后不同小写字母代表处理间差异显著 (Duncan, P < 0.05) Different lowercase letters in the same column represent significant difference among treatments of the same index (Duncan, P < 0.05).
      • 表2可知,与CK相比,氮肥、抑制剂及鸡粪的添加降低了水稻的氮素籽粒生产效率,却显著提高了肥料氮贡献率及收获指数等。与N处理相比,NM、NI和NIM处理均显著提高了氮素吸收率、氮肥农学效率及氮肥偏生产力等,其中,NM、NI和NIM处理氮素吸收率分别提高了41.96%、48.80%和89.80%,氮肥农学效率分别提高了139.48%、150.92%和234.45%,氮肥偏生产力分别提高了45.88%、49.64%和77.11%。NIM处理具有最高的氮素吸收率、氮肥农学效率和氮肥偏生产力,显著高于其他处理,其氮肥偏生产力高达62.43 g/g,抑制剂及鸡粪在提高氮素利用方面发挥着显著的交互作用 (P < 0.05)。

        表 2  不同施肥方式对水稻氮素利用率的影响

        Table 2.  Effects of different fertilization treatments on N-use efficiencies of rice

        处理
        Treatment
        氮素籽粒生产效率
        NGPE
        (g/g)
        氮收获指数
        NHI
        肥料氮贡献率
        FCR
        (%)
        收获指数
        HI
        氮素吸收率
        NUE
        (%)
        氮肥农学效率
        NAE
        (g/g)
        氮肥偏生产力
        NPFP
        (g/g)
        CK 56.28 ± 2.44 a0.56 ± 0.02 a33.27 ± 2.02 b0.33 ± 0.02 b
        N 40.15 ± 7.71 b0.54 ± 0.06 a42.73 ± 5.22 a0.43 ± 0.05 a45.57 ± 5.28 c11.59 ± 5.62 c35.25 ± 5.62 b
        NM 48.54 ±5.46 ab0.59 ± 0.02 a43.18 ± 2.82 a0.43 ± 0.03 a64.69 ± 13.43 b27.76 ± 3.48 b51.42 ± 3.48 a
        NI 48.17 ± 4.76 ab0.59 ±0.05 a41.88 ± 3.13 a0.42 ± 0.03 a67.81 ± 7.81 b29.08 ± 2.84 b52.75 ± 2.84 a
        NIM48.44 ± 1.65 ab0.60 ± 0.03 a44.30 ± 1.26 a0.44 ± 0.01 a86.49 ± 13.21 a38.76 ± 8.19 a62.43 ±8.19 a
        注(Note):CK—不施氮对照 No nitrogen control; N—常量尿素 Applying urea N 318 kg/hm2; NM—80% 常量尿素+20% 鸡粪氮 Applying 80% of urea and replace the left 20% with chicken manure; NI—80% 尿素+抑制剂 Applying 80% of urea and adding nitrogen inhibitor; NIM—80% 常量尿素+抑制剂+20% 鸡粪氮 NM plus nitrogen inhibitor in urea. NGPE—Grain production efficiency of nitrogen; NHI—Nitrogen harvest index; FCR—Fertilizer N contribution rate; HI—Harvest index; NUE—N uptake efficiency; NAE—Agronomic efficiency of N fertilizer; NPFP—Nitrogen partial factor productivity. 表中数值为平均值 ± 标准差 Values in the table are mean ± standard deviation (n = 3). 同列数据后不同小写字母代表处理间差异显著 (Duncan, P < 0.05) Values followed by different lowercase letters in the same column represent significant difference among treatments (Duncan, P < 0.05).
      • 氮肥减量配施抑制剂及鸡粪,虽未显著影响土壤全氮含量,但显著影响了肥料氮在土壤中的残留状况 (表3)。相比于N,NM、NI和NIM处理肥料氮在土壤中的残留量显著提高,分别增加了30.49%、56.94%和56.48%。同时,NI和NM处理均显著提高水稻总吸氮量及水稻利用肥料氮比例 (P < 0.05),但对水稻吸收肥料氮量影响不显著 (P > 0.05)。与N处理相比,NM、NI和NIM处理提高水稻吸氮量约21.81%、25.36%和46.66%,促进水稻吸收肥料氮约4.92%、18.30%和21.61%。综合肥料氮在土壤中保存及水稻吸收利用状况,NI及NIM处理效果较好,不仅促进肥料氮在土壤中的保存,还提高了水稻对肥料氮的吸收利用,将肥料氮的利用率提高到70%及以上,损失降到约10%左右。NM处理效果亦显著高于N处理,故在棕壤水稻土上,氮肥减量20%配施鸡粪,不仅不会减产,还会提高肥料利用率及促进水稻生长。

        表 3  不同施肥方式下肥料及土壤固有氮在水稻–土壤系统中的分配

        Table 3.  Distribution of fertilizer and soil source nitrogen in rice-soil system under different fertilization management

        处理
        Treatment
        土壤全氮
        Soil total N
        (g/kg)
        水稻吸收氮
        N uptake by rice
        (g/pot)
        土壤中肥料氮
        Fertilizer N in soil
        (mg/kg)
        水稻吸收肥料氮
        Urea N uptake by rice
        (mg/pot)
        土壤中肥料氮比例
        Urea N ratio in soil
        (%)
        水稻利用肥料氮比例
        Urea N uptake ratio by rice
        (%)
        肥料损失率
        Urea N loss ratio
        (%)
        CK 1.26 ± 0.07 a189.61 ± 11.73 d
        N 1.30 ± 0.02 a394.66 ± 23.78 c30.63 ± 1.14 c182.22 ± 14.97 b6.81 ± 0.25 c40.49 ± 3.33 c50.51 ± 4.06 a
        NM 1.27 ± 0.03 a480.72 ± 60.42 b39.97 ± 4.64 b191.20 ± 15.56 b8.88 ± 1.03 b63.73 ± 5.19 b22.10 ± 6.34 b
        NI 1.28 ± 0.05 a494.75 ± 35.15 b48.07 ± 5.50 a215.57 ± 4.84 ab10.68 ± 1.22 ab71.86 ± 1.61 ab12.17 ± 1.97 c
        NIM1.32 ± 0.04 a578.82 ± 59.43 a47.93 ± 3.62 a221.67 ± 17.61 a10.65 ± 0.80 a77.76 ± 8.65 a10.76 ± 5.75 c
        注(Note):表中数值为平均值 ± 标准差 Values in the table are mean ± standard deviation (n = 3); CK—不施氮对照 No nitrogen control; N—常量尿素 Applying urea N 318 kg/hm2; NM—80% 常量尿素+20% 鸡粪氮 Applying 80% of urea and replace the left 20% with chicken manure; NI—80% 尿素+抑制剂 Applying 80% of urea and adding nitrogen inhibitor; NIM—80% 常量尿素+抑制剂+20% 鸡粪氮 NM plus nitrogen inhibitor in urea. 同列数值后不同小写字母表示处理间差异显著 (Duncan, P < 0.05) Values followed by different lowercase letters in the same column represent significant difference among treatments (Duncan, P < 0.05).
      • 图4相关分析表明,肥料氮的残留量 (FN) 与取样时间、氮总吸收量、水稻生物量之间呈极显著正相关关系,肥料氮添加对水稻生长及氮素吸收的促进效果显著。肥料氮残留量与铵态氮含量呈极显著负相关关系,而铵态氮含量又与土壤微生物量氮含量和土壤全氮呈显著正相关关系,表明抑制剂及鸡粪添加促进了微生物同化铵态氮,增加了肥料氮的微生物固持,对土壤培肥有良好的效果。土壤全碳与全氮之间具有极显著的正相关关系,表明本试验中的处理在一定程度上具有良好的碳氮耦合关系。

        图  4  各指标之间的相关分析 (Pearson, n = 60)

        Figure 4.  Correlation analysis among various indexes

      • 80%尿素+抑制剂与常规氮肥相比,提高了土壤中及肥料来源的铵态氮含量 (图1图3P > 0.05),聂彦霞等[27]和唐贤等[28]研究表明,NBPT、DMPP组合抑制尿素水解更为有效,并使得大量氮以NH4+-N的形式存在,确保氮素供应,故抑制剂添加后对抑制尿素水解及硝化作用显著,对氮素的补偿作用较好。而80%尿素+鸡粪或80%尿素+抑制剂+鸡粪效果则相反,其显著提高了土壤及分蘖期肥料来源的铵态氮及微生物量碳氮含量 (P < 0.05),鸡粪添加对土壤有机无机态氮的供应能力的提升作用显著 (图1图2图3),这可能与鸡粪中碳氮比有关 (C/N = 10.63)。研究表明,鸡粪的碳氮矿化累积量及矿化速率较大,矿化过程短[29],故鸡粪的矿化和释放为微生物的固持及粘土矿物的固定提供氮素来源,微生物量氮库和固定态铵库发挥氮临时贮存库的作用,待后期氮素供应不足及水稻养分需求量较大时矿化释放,土壤的碳氮供给与水稻的需肥特点得到有效地调节,充分发挥了有机氮替代部分无机氮的氮素供应时间差,这与Liu等[30]的结果相一致。Pan等[31]研究亦表明,在稻田土壤中,有机无机肥配施会通过增加土壤有机碳的积累,增加氮的有效性,也有可能是提高土壤物理、化学、生物化学保护态有机氮的含量,从而提高土壤肥力[32]

      • 本研究结果显示,80%尿素与抑制剂及鸡粪配施后,水稻产量增加最多,约是CK的2.64倍和N的2.24倍 (表1),将氮肥速效性与有机肥持久性的特点进行了融合。减氮配施抑制剂与常规施氮肥相比,虽然铵态氮及微生物量氮含量差异不显著,但会促进水稻增产,可能原因是抑制剂添加后会促进稻田土壤中黏土矿物对NH4+的固定,增加固定态铵库的库容,在水稻生长过程中缓慢持续释放,发挥“中转库”的作用,供水稻吸收利用[33]。有研究表明,与单施化肥相比,有机肥料氮替代无机肥料氮的最适替代率为10%~25%,能协调土壤肥料的供应与作物需氮的同步性,在水稻全生育期内实现养分的持续稳定供给,水稻产量、氮肥利用率和经济效益都达到最佳水平,这是提高氮肥利用率的关键[34-36]。本研究20%的有机肥替代氮肥,使得氮素吸收率高达64%(表2)。这可能是因为采用15N标记的尿素,能准确地定量肥料氮的含量和去向,较常规计算更为精准。另有研究表明,鸡粪配施氮肥的增产机理,可能是因为有机无机肥配施增加了土壤中的盐基离子,提高土壤的阳离子交换量,另一方面,土壤有机质和鸡粪携带的其他营养元素的补充,正好与氮肥形成缓急相济的养分供应[37]

      • 肥料利用率、肥料农学利用率和肥料偏生产力常被用来表征农田中肥料的利用效率。相比于N处理,配施抑制剂处理 (NI、NIM),具有最高的氮肥利用率,占施入肥料的70%以上,肥料氮的损失率显著减少,仅为10%左右 (表3),氮肥偏生产力亦显著提高,达到61.62 kg/kg,而东北稻区近30年土壤的偏生产力为54 kg/kg[38],与此相比约高出14.11%(表2)。孙祥鑫等[5]研究表明,脲酶和硝化抑制剂配合尿素是减少水田氮素损失和气体排放的首选肥料。氮肥减量配施抑制剂或鸡粪,有很好的铵态氮供应能力及较低的硝态氮含量,增加铵态氮向微生物量氮库中的转化,增加肥料氮的生物固持。同时,图4的相关分析也验证了施肥处理土壤铵态氮、微生物量氮及肥料氮的含量呈显著的相关关系。有研究表明,抑制剂添加后,抑制了尿素水解和硝化作用,尿素氮的吸收利用与硝化作用呈负相关关系[39],这与本研究结果相一致 (图4),抑制剂组合增加了水稻吸收利用的尿素氮的含量,引起氮肥利用及收获指数提高。且水稻籽粒中的养分,除来自根系直接吸收,主要来自营养器官的养分转移。本研究中在水稻分蘖期,肥料来源的NH4+-N及微生物量氮含量的增加促进了水稻分蘖,从而增加了水稻穗数及生物量,为养分的转移奠定了良好的基础。

      • 氮肥减量配施抑制剂及鸡粪替代20%尿素氮均能促进水稻生长和改善土壤氮素供应。80%尿素配施抑制剂未对土壤铵态氮、硝态氮、微生物量氮的供给产生显著影响,抑制剂组合 (NBPT+PPD+DMPP) 在稻田土壤氮素补偿方面效果显著,约节肥20%。施用鸡粪显著提高了土壤微生物量碳氮含量,增加微生物活性。氮肥减量配施抑制剂及鸡粪在提高土壤铵态氮、土壤微生物量氮、氮素吸收利用率、氮肥农学效率和氮肥偏生产力方面作用显著,且能增加肥料氮的微生物固持,减少肥料氮素损失,抑制剂和鸡粪对氮肥增效具有协同作用。

    参考文献 (39)

    目录

      /

      返回文章
      返回