• ISSN 1008-505X
  • CN 11-3996/S
吕广德, 亓晓蕾, 张继波, 牟秋焕, 吴科, 钱兆国. 中、高产型小麦干物质和氮素累积转运对水氮的响应[J]. 植物营养与肥料学报, 2021, 27(9): 1534-1547. DOI: 10.11674/zwyf.2021043
引用本文: 吕广德, 亓晓蕾, 张继波, 牟秋焕, 吴科, 钱兆国. 中、高产型小麦干物质和氮素累积转运对水氮的响应[J]. 植物营养与肥料学报, 2021, 27(9): 1534-1547. DOI: 10.11674/zwyf.2021043
LÜ Guang-de, QI Xiao-lei, ZHANG Ji-bo, MU Qiu-huan, WU Ke, QIAN Zhao-guo. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1534-1547. DOI: 10.11674/zwyf.2021043
Citation: LÜ Guang-de, QI Xiao-lei, ZHANG Ji-bo, MU Qiu-huan, WU Ke, QIAN Zhao-guo. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1534-1547. DOI: 10.11674/zwyf.2021043

中、高产型小麦干物质和氮素累积转运对水氮的响应

Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply

  • 摘要:
    目的 研究产量高低差异明显的小麦品种干物质和氮素积累转运对水氮响应的差异,为以产量为目标的小麦优化水氮运筹提供参考。
    方法 于2016—2018年,以中产型品种‘泰科麦33’和高产型品种‘济麦22’为供试材料进行了两因素三水平完全方案田间试验。两因素为灌水量和氮肥用量,3个灌溉水平为300、450和600 m3/hm2,依次表示为W1、W2、W3;3个施氮量为135、180和225 kg/hm2,依次表示为N1、N2、N3。测定小麦关键生育期氮素和干物质积累量,在成熟期调查了产量和产量构成因素。
    结果 两个品种小麦水氮互作效应对穗数、穗粒数、千粒重、籽粒产量和氮肥偏生产力影响显著,中产型品种的产量对水氮的响应顺序表现为W2 > W3 > W1、N2 > N3 > N1;高产型品种的产量对水氮的响应顺序表现为W3 > W2 > W1、N2 > N3 > N1。高产和中产品种产量对氮素的反应一致,高产品种比中产品种对水分的要求更高。品种特性及其水氮互作效应显著影响小麦开花期和成熟期干物质积累量。籽粒产量与花前干物质对籽粒的贡献率呈线性负相关,与开花后干物质对籽粒贡献率呈线性正相关,表明开花后干物质是籽粒干物质的主要来源。品种及其水氮互作效应均显著影响小麦开花期和成熟期氮素的积累量。籽粒产量与花前氮素积累量对籽粒的贡献率呈线性正相关,与开花后氮素积累对籽粒贡献率呈线性负相关,表明花前氮素积累是籽粒氮素的主要来源。在显著相关的性状中,生物量、开花后干物质输入籽粒量、开花后干物质对籽粒的贡献率之间呈显著正相关;花前氮素积累量、总氮素积累量、花前氮素转运量、开花后氮素输入籽粒量、花前氮素积累量对籽粒的贡献率以及氮素收获指数之间显著正相关。
    结论 水、氮及其互作效应显著影响小麦穗数、穗粒数、千粒重、籽粒产量、氮素偏生产力、花前干物质积累量、成熟期干物质积累量、开花后干物质输入籽粒量、花前氮素积累量、成熟期氮素积累量、花前氮素转运量等性状。不适宜的灌水量和氮肥施用量会促进花前干物质向籽粒的过度运转,不利于形成高产。中、高产型小麦籽粒产量对氮素的响应均表现为为N2 > N3 > N1,但对灌溉量的响应不同,中产型品种适宜的灌水量为450 m3/hm2,高产型品种适宜的灌水量以600 m3/hm2较为理想。

     

    Abstract:
    Objectives For a good wheat production with a high yield, water and nitrogen (N) fertilizer are two critical elements. Here, we studied the response of middle and high yield wheat cultivars to water and N supply rates, with yield as the target.
    Methods Field experiments with a randomized complete block design, two factors and three levels were carried out from 2016 to 2018, with Taikemai 33 (middle yield cultivar) and Jimai 22 (high yield cultivar). The three irrigation rates were 300, 450, and 600 m3/hm2, and the three N application rates were 135, 180, and 225 kg/hm2. The dry matter (DM) and N accumulation before and after the flowering stage were analyzed, and the quantity of N accumulated in grain was calculated. The relationship among yield, yield components and the N and DM accumulation were examined.
    Results Water, N application rate and their interaction (P < 0.05) influenced panicle number, grain number per panicle, 1000-grain weight, grain yield, and partial N productivity of the two wheat cultivars. The response of the middle yield wheat to water was W2 > W3 > W1 and N2 > N3 > N1 for N application rate. The response of the high yield wheat cultivar to water was W3 > W2 > W1 and N2 > N3 > N1 for N application rate. Wheat yield was positively correlated with the transfer of post-anthesis DM accumulation in grain but negatively correlated with it before anthesis. Our result indicated that DM accumulation and its transfer to the grain before anthesis was important for yield formation. The wheat yield had a positive linear correlation with the transfer of N accumulated before anthesis and was negatively correlated with that after anthesis. Thus, N accumulation before anthesis was more critical than after anthesis for grain N accumulation. There were positive correlations among pre-anthesis N accumulation, total N accumulation, pre-anthesis N transfer, post-anthesis N transfer, the contribution of pre-anthesis N transfer to grain, and N harvest index (P < 0.05). There was a positive correlation among spike number, grain number per spike, and grain yield (P < 0.05).
    Conclusions The transfer of DM accumulated after anthesis and N accumulated before anthe‘sis has a significant effect on yield formation and N accumulation in grain, respectively. Suitable water and N supply influences the contribution of DM and N transfer before and after anthesis. The high and middle yield wheat cultivars have a similar response to N 180 kg/hm2. However, the high yield cultivar prefers higher irrigation water rate (600 m3/hm2), while the middle yield type prefers lower irrigation water rate (450 m3/hm2).

     

/

返回文章
返回