• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海藻提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量

于会丽 徐变变 徐国益 邵微 刘慧敏 张子华 乔宪生 司鹏

引用本文:
Citation:

海藻提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量

    作者简介: 于会丽 E-mail:yuhuili@caas.cn;
    通讯作者: 司鹏, E-mail:sipeng@caas.cn
  • 基金项目: 河南省重大公益科技专项(201300110500); “十三五”国家重点研发计划项目(2016YFD0200405,2018YFD0201409);中国农业科学院科技创新工程(CAAS-ASTIP-2021-ZFRI)

Optimum application of seaweed extracts promote the yield, quality and nutrient absorption of peach fruit

    Corresponding author: SI Peng, E-mail:sipeng@caas.cn
  • 摘要:   【目的】  研究海藻提取物复合制剂 (海藻提取物含量60%、海藻酸6.5%、腐植酸5%、pH 6.7、密度为1.15 g/mL) 对桃果实品质和养分吸收的影响,以期筛选其最适海藻提取物复合制剂的施用量,为开发海藻水溶肥提供技术依据。  【方法】  以‘中桃8号’为试验材料进行了两年定位田间试验。从桃萌芽期至成熟期,共进行4次追肥。海藻提取物复合制剂 (简称复合制剂) 施用量处理按照每次追施氮磷钾养分与海藻提取物复合制剂总量 (w/w) 的0% (CK)、5% (T1)、10% (T2)、20% (T3) 和40% (T4) 设置,复合制剂与氮磷钾水溶肥一起施用。于果实成熟期,测定单果重、产量、果实品质、色泽和养分含量。  【结果】  随复合制剂用量的增加,桃产量和品质指标呈先增加后降低的趋势。2019和2020年T2处理桃产量和可溶性固形物含量均为最高,产量较CK分别显著增加31.77%和40.67%,可溶性固形物含量较CK分别显著增加10.67%和7.20%,且T2处理桃产量与其他处理差异显著。T2处理桃果实可滴定酸含量最低,2019和2020年较CK分别降低了11.11%和50.00%。2019年,除T1处理的可溶性糖外,T2~T4处理的果实可溶性糖和糖酸比均低于CK,且T3、T4处理与CK间差异显著;2020年,除T4处理外,T1~T3处理的果实可溶性糖和糖酸比均高于CK,其中T2处理的可溶性糖含量和糖酸比最高,较CK分别显著增加20.55%和166.29%。连续两年施用复合制剂处理的果实钾含量和果皮色泽饱和度均高于CK,其中,2019年T2处理和2020年T3处理的桃果实钾含量最高,较CK分别显著增加16.70%和11.94%。主成分分析综合得分显示,连续两年均以T2处理得分最高。  【结论】  在施用氮磷钾水溶肥基础上配施海藻提取物复合制剂能够提高桃果实产量、改善品质并促进钾养分吸收,以配施相当于氮磷钾水溶肥量10%的复合制剂对产量、品质和钾养分吸收的提升效果最佳。
  • 图 1  2019和2020年不同处理对桃果实产量和单果重

    Figure 1.  Peach yield and single fruit weight under different treatments in 2019 and 2020

    图 2  2019和2020年不同处理对桃果实养分含量的影响

    Figure 2.  Effects of seaweed extracts on the nutrient content of peach in 2019 and 2020

    表 1  不同处理对桃果实品质的影响

    Table 1.  Effects of seaweed extracts on peach fruit quality

    年份
    Year
    处理
    Treatment
    可溶性固形物 (%)
    Soluble solid
    可溶性糖 (%)
    Soluble sugar
    可滴定酸 (%)
    Titratable acid
    糖酸比
    Sugar acid ratio
    2019CK10.12 ± 0.07 b6.46 ± 0.47 a0.45 ± 0.08 b14.62 ± 1.35 a
    T110.22 ± 0.19 b6.87 ± 0.94 a0.54 ± 0.00 a12.81 ± 1.75 ab
    T211.20 ± 0.33 a5.85 ± 0.39 ab0.40 ± 0.00 b14.56 ± 0.98 a
    T310.27 ± 0.15 b4.93 ± 0.34 bc0.40 ± 0.00 b12.25 ± 0.84 b
    T410.05 ± 0.22 b4.63 ± 0.36 c0.41 ± 0.02 b11.17 ± 0.58 b
    2020CK9.03 ± 0.28 b7.64 ± 0.21 b0.68 ± 0.06 a11.39 ± 1.02 c
    T19.43 ± 0.33 ab8.27 ± 0.27 ab0.40 ± 0.11 b21.33 ± 5.35 ab
    T29.68 ± 0.40 a9.21 ± 1.17 a0.34 ± 0.16 b30.33 ± 9.76 a
    T38.88 ± 0.18 b7.79 ± 0.38 b0.64 ± 0.08 a12.26 ± 1.21 bc
    T49.32 ± 0.34 ab7.21 ± 0.70 b0.65 ± 0.08 a11.16 ± 1.32 c
    注(Note):处理 CK、T1、T2、T3、T4 中海藻提取物复合制剂的添加比例依次为 0%、5%、10%、20%、40% (w/w) The adding ratios of seaweed extract in the treatments of CK, T1, T2, T3 and T4 are 0%, 5%, 10%, 20% and 40% of the NPK fertilizer (w/w);同列数据后不同字母表示同一年份处理间差异显著(P < 0.05)Values followed by different small letters in a column indicate significant difference among treatments at 5% level in the same year.
    下载: 导出CSV

    表 2  不同处理对桃果实色泽的影响

    Table 2.  Effects of seaweed extracts on peach fruit color

    年份
    Year
    处理
    Treatment
    亮度
    Brightness (L*)
    色泽饱和度
    Chroma (C)
    色度角
    Hue angle (h°)
    2019CK45.00 ± 1.37 bc32.11 ± 0.59 c34.19 ± 1.89 a
    T147.56 ± 1.68 a47.44 ± 0.43 a24.60 ± 0.37 b
    T243.88 ± 1.19 c33.67 ± 1.32 c32.82 ± 1.67 a
    T348.03 ± 1.54 a35.87 ± 0.83 b34.67 ± 2.08 a
    T446.62 ± 0.19 ab33.39 ± 0.81 c35.11 ± 0.45 a
    2020CK42.47 ± 1.73 a30.22 ± 2.46 b23.30 ± 1.48 a
    T142.99 ± 2.52 a31.41 ± 2.00 b23.66 ± 2.15 a
    T243.95 ± 0.91 a33.58 ± 1.02 ab21.12 ± 2.81 a
    T344.27 ± 5.40 a30.48 ± 2.16 b24.17 ± 0.94 a
    T444.22 ± 3.44 a35.21 ± 0.15 a23.08 ± 2.63 a
    注(Note):处理 CK、T1、T2、T3、T4 中海藻提取物复合制剂的添加比例依次为 0%、5%、10%、20%、40% (w/w) The adding ratios of seaweed extract in the treatments of CK, T1, T2, T3 and T4 are 0%, 5%, 10%, 20% and 40% of the NPK fertilizer (w/w); 同列数据后不同字母表示同一年份处理间差异显著(P < 0.05)Values followed by different small letters in a column indicate significant difference among treatments at 5% level in the same year.
    下载: 导出CSV

    表 3  主成分分析结果

    Table 3.  Results of principal components analysis

    年份
    Year
    主成分
    Principal component
    特征值
    Eigenvalues
    贡献率 (%)
    Contribution rate
    累计贡献率 (%)
    Cumulative contribution rate
    2019F15.27452.73852.738
    F22.52725.27278.011
    F31.72917.29295.302
    2020F14.10341.03241.032
    F22.62526.24767.279
    F32.30223.02490.303
    注(Note):F1, F2 and F3 分别表示第一、二、三主成分 F1, F2 and F3 are the first, second and third principal components.
    下载: 导出CSV

    表 4  不同处理主成分对桃产量、品质、养分吸收以及色泽的综合影响评分

    Table 4.  Comprehensive scores of the principal components in each treatment on yield, quality, nutrient absorption and color of peach

    年份
    Year
    处理
    Treatment
    主成分得分 Principal component score综合得分
    Comprehensive score
    排名
    Rank
    F1F2F3
    2019CK−0.1361.761−1.8280.0602
    T1−2.3081.1591.458−0.7053
    T23.8020.2950.8572.3381
    T3−1.111−1.1540.302−0.8665
    T4−0.248−2.061−0.789−0.8274
    2020CK−2.788−0.797−1.455−1.8695
    T10.7940.522−0.8160.3043
    T22.773−0.670−0.8390.8511
    T3−0.4882.5580.8920.7492
    T4−0.291−1.6122.219−0.0354
    注(Note):处理 CK、T1、T2、T3、T4 中海藻提取物复合制剂的添加比例依次为 0%、5%、10%、20%、40% (w/w) The adding ratios of seaweed extract in the treatments of CK, T1, T2, T3 and T4 are 0%, 5%, 10%, 20% and 40% of the NPK fertilizer (w/w). F1, F2 and F3 分别表示第一、二、三主成分 F1, F2 and F3 are the first, second and third principal components.
    下载: 导出CSV
  • [1] 刘春燕, 周龙, 陈冬立, 陈宇昂. 生物菌肥对桃土壤肥力及地上部的影响[J]. 河南农业大学学报, 2020, 54(4): 597–603. Liu C Y, Zhou L, Chen D L, Chen Y A. Effects of bacterial manure on soil fertility and above-ground parts of Prunus persica (L.)[J]. Journal of Henan Agricultural University, 2020, 54(4): 597–603.
    [2] 宋海岩, 陈栋, 涂美艳, 等. 多年施用袋控缓释肥对桃生长发育及产量品质的影响[J]. 西南农业学报, 2020, 33(1): 104–108. Song H Y, Chen D, Tu M Y, et al. Effects of applying bag-controlled release fertilizer for years on growth, yield and quality of peach[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(1): 104–108.
    [3] 郭超仪. 中国桃主产区施肥现状及氮肥优化研究[D]. 重庆: 西南大学硕士学位论文, 2019.

    Guo C Y. Study on fertilization inputs and nitrogen optimization of peach orchard in typical areas of China[D]. Chongqing: MS Thesis of Southwest University, 2019.
    [4] Valencia R T, AcostaL S, Hernández M F, et al. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit[J]. Agronomy, 2018, 8(11): 264. doi:  10.3390/agronomy8110264
    [5] Abdel-Mawgoud A M R, Tantaway A S, Hafez M M, Habib H A M. Seaweed extract improves growth, yield and quality of different watermelon hybrids[J]. Research Journal of Agriculture and Biological Sciences, 2010, 6(2): 161–168.
    [6] Sivasankari S, Venkatesalu V, Anantharaj M, Chandrasekaran M. Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis[J]. Bioresour Technology, 2006, 97(14): 1745–1751. doi:  10.1016/j.biortech.2005.06.016
    [7] Khan W, Rayirath U P, Subramanian S, et al. Seaweed extracts as biostimulants of plant growth and development[J]. Journal of Plant Growth Regulation, 2009, 28(4): 386–399. doi:  10.1007/s00344-009-9103-x
    [8] Xu C, Leskova D I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress[J]. Scientia Horticulturae, 2015, 183: 39–47. doi:  10.1016/j.scienta.2014.12.004
    [9] El-Miniawy, Ragab M E, Youssef S M, Metwally A A. Influence of foliar spraying of seaweed extract on growth, yield and quality of strawberry plants[J]. Journal of Applied Sciences Research, 2014, 10(2): 88–94.
    [10] Chouliaras V, Tasioula M, Chatzissavvidis C, et al. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki[J]. Journal of the Science of Food and Agriculture, 2009, 89(6): 984–988. doi:  10.1002/jsfa.3543
    [11] 黄继川, 彭智平, 涂玉婷, 等. 施用海藻酸复合肥料的双季稻产量和氮磷肥料效应[J]. 热带作物学报, 2020, 41(5): 859–867. Huang J C, Peng Z P, Tu Y T. et al. Yield, nitrogen and phosphorus nutrient effects of alginate compound fertilizer on double–cropping rice[J]. Chinese Journal of Tropical Crops, 2020, 41(5): 859–867. doi:  10.3969/j.issn.1000-2561.2020.05.003
    [12] 李智卫. 海藻对不同促生菌生长的影响及应用[D]. 山东泰安: 山东农业大学硕士学位论文, 2010. 1797–1802.

    Li Z W. Influence of seaweed on different plant-growth promoting microorganisms and its application[D]. Tai'an, Shandong: MS Thesis of Shandong Agricultural University, 2010.
    [13] 邓秀丽, 蓝亿亿, 赵华峰, 等. 含海藻酸有机水溶肥对3种叶菜的肥效效果评价[J]. 园艺与种苗, 2020, 40(7): 1–3, 13. Deng X L, Lan Y Y, Zhao H F, et al. Fertilizer effect evaluation of organic water-soluble fertilizer with alginic acid on three kinds of leafy vegetables[J]. Horticulture & Seed, 2020, 40(7): 1–3, 13.
    [14] 匡石滋, 邵雪花, 赖多, 等. 叶面喷施海藻磷钾肥对金斗香番石榴产量和品质的影响[J]. 广东农业科学, 2019, 46(10): 42–47. Kuang S Z, Shao X H, Lai D, et al. Effects of foliar spraying with alginate phosphorus fertilizer on the yield and quality of Psidium guajava cv. Jindouxiang[J]. Guangdong Agricultural Sciences, 2019, 46(10): 42–47.
    [15] 张运红, 和爱玲, 姚健, 等. 海藻酸钠寡糖灌根处理对小麦根际土壤特性和养分吸收利用的影响[J]. 江西农业大学学报, 2019, 41(6): 1054–1060. Zhang Y H, He A L, Yao J, et al. Effects of irrigating root with alginate oligosaccharides on rhizosphere soil properties and nutrient absorption and utilization in wheat[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(6): 1054–1060.
    [16] 于会丽, 司鹏, 邵微, 等. 海藻酸水溶肥对梨树生长与果实产量及品质的影响[J]. 果树学报, 2019, 36(5): 603–611. Yu H L, Si P, Shao W, et al. Effect of water soluble alginic acid fertilizer on the growth, yield and quality of pear[J]. Journal of Fruit Science, 2019, 36(5): 603–611.
    [17] 王敏欣, 马跃, 刘杰, 等. 海藻酸对不结球白菜生长及钾素吸收利用的影响[J]. 中国果菜, 2019, 39(10): 53–57. Wang M X, Ma Y, Liu J. et al. Effect of potassium fertilizer on growth and potassium absorption and utilization of non-heading Chinese cabbage[J]. China Fruit & Vegetable, 2019, 39(10): 53–57.
    [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Analytical methods of soil and agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [19] 王学奎, 章文华, 郝再彬, 等. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2006.

    Wang X K, Zhang W H, Hao Z B, et al. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2006.
    [20] 冯顺, 李绍鹏, 罗立娜, 等. 外源L–谷氨酸对荔枝果实生长与着色以及营养品质的调控作用[J]. 西北植物学报, 2015, 35(11): 2266–2272. Feng S, Li S P, Luo L N, et al. Regulating fruit growth, coloration and nutrient quality of litchi chinensis with exogenous L-Glu[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(11): 2266–2272. doi:  10.7606/j.issn.1000-4025.2015.11.2266
    [21] Wei Y Z, Hu F C, Hu G B, et al. The UDP glucose: Flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration[J]. PLoS ONE, 2011, 6: 1–11.
    [22] Alam M Z, Braun G, Norrie J, Hodges D M. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry[J]. Canadian Journal of Plant Science, 2013, 93(1): 23–36. doi:  10.4141/cjps2011-260
    [23] Yao Y Y, Wang X Q, Chen B C, et al. Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.)[J]. ACS Cmega, 2020, 5(8): 4242–4249.
    [24] Taskos D, Stamatiadis S, Yvin J C, Jamois F. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard[J]. Scientia Horticulturae, 2019, 250: 27–32. doi:  10.1016/j.scienta.2019.02.030
    [25] 涂海华, 周坚, 毛宇, 等. 天然海藻肥对‘夏黑’葡萄植株生长及果实品质的影响[J]. 中国土壤与肥料, 2019, (4): 213–217. Tu H H, Zhou J, Mao Y, et al. Effect of natural seaweed fertilizer on plant growth and fruit quality of ‘Summer black’ grape[J]. Soil and Fertilizer Sciences in China, 2019, (4): 213–217. doi:  10.11838/sfsc.1673-6257.18336
    [26] 薛晓敏, 聂佩显, 韩雪平, 等. 生物有机肥对盛果初期红富士树体、叶片、产量及品质的影响[J]. 天津农业科学, 2018, 24(11): 55–57, 69. Xue X M, Nie P X, Han X P, et al. Effects of bio-organic fertilizer on tree, leaf, yield and quality of red Fuji apple in early fruiting stage[J]. Tianjin Agricultural Sciences, 2018, 24(11): 55–57, 69.
    [27] Mohamed A Y, El-Sehrawy O. Effect of seaweed extract on fruiting of hindybisinnara Mango trees[J]. The Journal of American Science, 2013, 9(6): 537–544.
    [28] 郭蓉, 龚一富, 姜洁, 等. 海藻生物肥对火龙果生长、产量和品质的影响[J]. 核农学报, 2018, 32(12): 2455–2461. Guo R, Gong Y F, Jiang J, et al. Effects of new seaweed bio-fertilizer on growth, yield and quality of pitaya[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2455–2461. doi:  10.11869/j.issn.100-8551.2018.12.2455
    [29] 何锐, 谭星, 高美芳, 等. 添加不同浓度海藻肥对水培芥蓝生长及品质的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2051–2059. He R, Tan X, Gao M F, et al. Effects of different concentrations of seaweed extract on growth and quality of Chinese kale in hydroponics[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2051–2059. doi:  10.11674/zwyf.20247
    [30] 姜洁, 龚一富, 郭蓉, 等. 海藻生物肥对草莓产量和品质的影响[J]. 核农学报, 2019, 33(5): 1032–1037. Jiang J, Gong Y F, Guo R, et al. Effect of seaweed fertilizer on yield and quality of strawberry[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 1032–1037. doi:  10.11869/j.issn.100-8551.2019.05.1032
    [31] 崔维香. 海藻提取液对种子萌发、幼苗生长和果实品质的影响[D]. 浙江舟山: 浙江海洋大学硕士学位论文, 2017.

    Cui W X. Effects of seaweed extract on the seed germination, seedling growth and fruit quality[D]. Zhoushan, Zhejiang: MS Thesis of Zhejiang Ocean University, 2017.
    [32] Kumar G, Sahoo D. Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold[J]. Journal of Applied Phycology, 2011, 23(2): 251–255. doi:  10.1007/s10811-011-9660-9
    [33] 刘林, 张江周, 王斌, 等. 香蕉果指喷施叶面肥对其外观品质和产量的影响[J]. 南方农业学报, 2017, 48(12): 2204–2209. Liu L, Zhang J Z, Wang B, et al. Effects of spraying foliar fertilizers on appearance quality and yield of banana fingers[J]. Journal of Southern Agriculture, 2017, 48(12): 2204–2209. doi:  10.3969/j.issn.2095-1191.2017.12.14
    [34] 袁璐. 海藻肥和S–诱抗素对‘红地球’葡萄叶片光合作用和果实着色生理机制的影响[D]. 成都: 四川农业大学硕士学位论文, 2016.

    Yuan L. Effects of seaweed fertilizer and S-ABA in leaf photosynthetic and the coloring physiological mechanism of fruits of ‘Red Globe’[D]. Sichuan: MS Thesis of Sichuan Agricultural University, 2016.
    [35] Bush D S. Calcium regulation in plant cells and its role in signaling [J]. Annual Review of Plant Biology, 2003, 46(1): 95–122.
    [36] Tester M, Blatt M R. Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers[J]. Plant Physiology, 1989, 91(1): 249–252. doi:  10.1104/pp.91.1.249
    [37] 李康宁. 海藻肥和S–诱抗素对‘红地球’葡萄果实着色及相关基因表达的影响[D]. 成都: 四川农业大学硕士学位论文, 2016.

    Li K N. Effects of seaweed fertilizer and S–ABA on coloring physiological and related gene expression of fruits of ‘Red Globe’[D]. Chengdu: MS Thesis of Sichuan Agricultural University, 2016.
    [38] 张绍阳, 杨军, 刘桂华. 钾营养水平对艳光油桃果实品质的影响[J]. 安徽农业大学学报, 2008, 35(2): 289–292. Zhang S Y, Yang J, Liu G H. Effects of K nutrition levels on fruit quality of ‘Yanguang’ nectarine[J]. Journal of Anhui Agricultural University, 2008, 35(2): 289–292.
    [39] 赵鲁. 海藻提取复合物与Mn、Zn配施对生菜营养特性的影响[D]. 北京: 中国农业科学院硕士学位论文, 2008.

    Zhao L. Effects of application of seaweed extract combined with manganese, zinc on nutritive peculiarity of lettuce (Lactuca sativa)[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2008.
    [40] Rathore S S, Chaudhary D R, Boricha G N, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions[J]. South African Journal of Botany, 2009, 75(2): 351–355. doi:  10.1016/j.sajb.2008.10.009
    [41] Mancuso S, Azzarello E, Mugnai S, Briand X. Marine bioactive substances (IPA extract) improve foliar ion uptake and water tolerance in potted Vitis vinifera plants[J]. Advances in Horticultural Science, 2006, 20: 156–161.
    [42] 冯敬涛, 刘照霞, 徐新翔, 等. 海藻提取复合物对干旱胁迫下苹果砧木幼苗抗旱性和养分吸收的影响[J]. 干旱地区农业研究, 2020, 38(5): 79–85. Feng J T, Liu Z X, Xu X X, et al. Effects of seaweed extract on drought resistance and nutrient absorption of apple rootstock seedling under drought stress[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 79–85. doi:  10.7606/j.issn.1000-7601.2020.05.12
    [43] 尹皓婵. 海藻提取物对三种经济作物的生长和抗逆性的影响[D]. 浙江舟山: 浙江海洋大学硕士学位论文, 2019.

    Yin H C. Effects of seaweed extract on the growth and stress resistance of three economic crops[D]. Zhoushan, Zhejiang: MS Thesis of Zhejiang Ocean University, 2019.
  • [1] 沈鑫健邱洁雅朱礼乾张晓勇曹立何义仲彭良志淳长品 . 氯化钾对脐橙园土壤–树体氯积累及叶片营养和果实品质的影响. 植物营养与肥料学报, 2021, 27(5): 858-868. doi: 10.11674/zwyf.20458
    [2] 张艳珍程存刚赵德英周江涛陈艳辉张海棠解斌 . 施氮水平对富士苹果果实钙形态及品质的影响. 植物营养与肥料学报, 2021, 27(1): 87-96. doi: 10.11674/zwyf.20307
    [3] 位高生胡承孝谭启玲朱东煌李潇彬 . 氮磷减量施肥对琯溪蜜柚果实产量和品质的影响. 植物营养与肥料学报, 2018, 24(2): 471-478. doi: 10.11674/zwyf.17331
    [4] 丁宁沙建川丰艳广陈建明张民姜远茂 . 晚秋叶施尿素提高矮化苹果翌春生长及果实品质的效果. 植物营养与肥料学报, 2016, 22(6): 1665-1671. doi: 10.11674/zwyf.15484
    [5] 肖元松彭福田*房龙颜克发张华美齐玉吉李勇 . 根际施肥空间大小对15N吸收利用及桃幼树生长的影响. 植物营养与肥料学报, 2014, 20(4): 957-964. doi: 10.11674/zwyf.2014.0418
    [6] 张秀芝郭江云王永章*刘成连原永兵 . 不同砧木对富士苹果矿质元素含量和品质指标的影响. 植物营养与肥料学报, 2014, 20(2): 414-420. doi: 10.11674/zwyf.2014.0218
    [7] 张淼赵书岗耿丽平霍红刘文菊* . 缺磷对不同作物根系形态及体内养分含量浓度的影响. 植物营养与肥料学报, 2013, 19(3): 577-585. doi: 10.11674/zwyf.2013.0307
    [8] 叶胜兰徐福利王渭玲刘倩雯 . 不同有机肥对黄土丘陵区梨枣生长、光合特性及果实品质的影响. 植物营养与肥料学报, 2013, 19(2): 370-378. doi: 10.11674/zwyf.2013.0213
    [9] 姜涛 . 氮肥运筹对夏玉米产量、品质及植株养分含量的影响. 植物营养与肥料学报, 2013, 19(3): 559-565. doi: 10.11674/zwyf.2013.0305
    [10] 郭磊蔡志翔张斌斌许建兰宋宏峰马瑞娟* . 叶片喷施脱落酸对桃果实着色及相关基因表达的影响. 植物营养与肥料学报, 2013, 19(6): 1464-1470. doi: 10.11674/zwyf.2013.0622
    [11] 于妮娜谭秋平谭钺张海森高东升 . UV-B辐射对设施桃结果枝15N尿素吸收、利用及分配特性的影响. 植物营养与肥料学报, 2012, 18(2): 491-498. doi: 10.11674/zwyf.2012.11187
    [12] 凌丽俐彭良志淳长品江才伦曹立 . 赣南脐橙叶片营养状况对果实品质的影响. 植物营养与肥料学报, 2012, 18(4): 947-954. doi: 10.11674/zwyf.2012.11402
    [13] 何忠俊梁社往曾波管开云熊俊芬 . 钼对滇重楼生长、养分和总皂甙含量的影响. 植物营养与肥料学报, 2011, 17(6): 1481-1486. doi: 10.11674/zwyf.2011.0499
    [14] 朱艳丽梁银丽郝旺林罗安荣林兴军白彩虹 . 番茄果实品质和叶片保护酶对水肥水平的响应. 植物营养与肥料学报, 2011, 17(1): 137-146. doi: 10.11674/zwyf.2011.0119
    [15] 潘海发徐义流张怡张金云高正辉伊兴凯 . 硼对砀山酥梨营养生长和果实品质的影响. 植物营养与肥料学报, 2011, 17(4): 1024-1029. doi: 10.11674/zwyf.2011.0220
    [16] 吴小宾彭福田崔秀敏徐艳如孙媛媛张晓丹郭立富 . 施肥枪施肥对桃氮素吸收分配及产量品质的影响. 植物营养与肥料学报, 2011, 17(3): 680-687. doi: 10.11674/zwyf.2011.0361
    [17] 杨阳钟晓敏闫志刚翟衡 . 氮素形态对巨峰葡萄果实品质的影响. 植物营养与肥料学报, 2010, 16(4): 1037-1040. doi: 10.11674/zwyf.2010.0439
    [18] 何忠俊马青曾波陈璐 . 镁对滇重楼生长、养分吸收和总皂甙含量的影响. 植物营养与肥料学报, 2009, 15(4): 960-964. doi: 10.11674/zwyf.2009.0434
    [19] 周茂娟梁银丽贺丽娜高静韦泽秀黄茂林吴燕 . 地表覆盖方式对辣椒水分利用效率、果实品质及氮素分布的影响 . 植物营养与肥料学报, 2009, 15(1): 158-163. doi: 10.11674/zwyf.2009.0123
    [20] 张守仕彭福田姜远茂李丁丁主春福彭静 . 肥料袋控缓释对桃氮素利用率及生长和结果的影响 . 植物营养与肥料学报, 2008, 14(2): 379-386. doi: 10.11674/zwyf.2008.0228
  • 加载中
图(2)表(4)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  252
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 网络出版日期:  2021-10-09
  • 刊出日期:  2021-09-25

海藻提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量

    作者简介:于会丽 E-mail:yuhuili@caas.cn
    通讯作者: 司鹏, sipeng@caas.cn
  • 1. 中国农业科学院郑州果树研究所,河南郑州450009
  • 2. 商丘市农林科学院,河南商丘 476000
  • 基金项目: 河南省重大公益科技专项(201300110500); “十三五”国家重点研发计划项目(2016YFD0200405,2018YFD0201409);中国农业科学院科技创新工程(CAAS-ASTIP-2021-ZFRI)
  • 摘要:   【目的】  研究海藻提取物复合制剂 (海藻提取物含量60%、海藻酸6.5%、腐植酸5%、pH 6.7、密度为1.15 g/mL) 对桃果实品质和养分吸收的影响,以期筛选其最适海藻提取物复合制剂的施用量,为开发海藻水溶肥提供技术依据。  【方法】  以‘中桃8号’为试验材料进行了两年定位田间试验。从桃萌芽期至成熟期,共进行4次追肥。海藻提取物复合制剂 (简称复合制剂) 施用量处理按照每次追施氮磷钾养分与海藻提取物复合制剂总量 (w/w) 的0% (CK)、5% (T1)、10% (T2)、20% (T3) 和40% (T4) 设置,复合制剂与氮磷钾水溶肥一起施用。于果实成熟期,测定单果重、产量、果实品质、色泽和养分含量。  【结果】  随复合制剂用量的增加,桃产量和品质指标呈先增加后降低的趋势。2019和2020年T2处理桃产量和可溶性固形物含量均为最高,产量较CK分别显著增加31.77%和40.67%,可溶性固形物含量较CK分别显著增加10.67%和7.20%,且T2处理桃产量与其他处理差异显著。T2处理桃果实可滴定酸含量最低,2019和2020年较CK分别降低了11.11%和50.00%。2019年,除T1处理的可溶性糖外,T2~T4处理的果实可溶性糖和糖酸比均低于CK,且T3、T4处理与CK间差异显著;2020年,除T4处理外,T1~T3处理的果实可溶性糖和糖酸比均高于CK,其中T2处理的可溶性糖含量和糖酸比最高,较CK分别显著增加20.55%和166.29%。连续两年施用复合制剂处理的果实钾含量和果皮色泽饱和度均高于CK,其中,2019年T2处理和2020年T3处理的桃果实钾含量最高,较CK分别显著增加16.70%和11.94%。主成分分析综合得分显示,连续两年均以T2处理得分最高。  【结论】  在施用氮磷钾水溶肥基础上配施海藻提取物复合制剂能够提高桃果实产量、改善品质并促进钾养分吸收,以配施相当于氮磷钾水溶肥量10%的复合制剂对产量、品质和钾养分吸收的提升效果最佳。

    English Abstract

    • 桃是我国主要落叶果树之一,栽培面积超过93万hm2,在脱贫攻坚和乡村振兴中具有重要作用。近年来,果园氮磷钾化肥超量施用、施肥技术不合理等现象普遍,造成肥料浪费、利用率降低、土壤板结、养分失调等问题,直接导致果实品质下降[1-3],严重影响桃园经济和环境效益。因此,选用一种环保增效物质,研发应用专用增值肥料,提高肥料利用率是目前提升果实品质的重要途径。

      海藻提取复合物是一种新型肥料增效物质,富含海藻多糖、海藻酸、糖醇、氨基酸、高度不饱和脂肪酸、矿物质、植物激素等多种植物生理活性物质[4-7],具有用量少、绿色环保等特点[8]。海藻提取复合物不仅能够促进作物生长、提高作物产量、改善品质[9-10],还能够改善土壤质量、提高养分利用效率[11-12]。喷施海藻肥能够促进蕹菜、苦麦菜和苋菜生长,提高其产量[13],并能提高石榴单果重和产量,增加果实可溶性固形物、维生素C和总糖含量[14]。同时,根施海藻酸类肥料改善根际土壤质量,提高养分利用效率。张运红等[15]在小麦上研究发现,根施海藻酸钠寡糖不仅能够促进小麦对养分的吸收利用,还能改善小麦根系微环境;在梨上研究也表明,海藻酸水溶肥能够提高梨叶片和果实养分含量,提高肥料利用效率[16]。此外,王敏欣等[17]研究发现,0.8%~1.2%海藻酸与氯化钾配施时可显著促进不结球白菜生长和提高钾肥利用率。然而,海藻提取复合物与氮磷钾养分配施是否能够促进桃增产提质、提高肥料利用率,以及两者最佳配比的研究报道较少。

      以‘中桃8号’为试验材料,研究海藻提取物复合制剂与氮磷钾配施对桃产量、果实品质及养分吸收的影响,筛选海藻提取物在桃生产中与养分配施的最佳浓度,为开发桃专用海藻增值水溶肥提供理论依据。

      • 试验于2019—2020年在河南省新乡市原阳县桥北乡盐店庄村 (34°59′33′′N,113°36′48′′E) 进行。试验园区属暖温带大陆性季风气候,冬冷夏热,海拔100 m,年平均气温14.4℃,年无霜期226天,全年日照1938 h,年降水量556 mm。

      • 供试土壤为砂壤土,主要理化性质:pH 6.85、有机质10.10 g/kg、硝态氮7.33 mg/kg、铵态氮10.82 mg/kg、有效磷41.80 mg/kg、速效钾212.82 mg/kg。

        供试作物品种为‘中桃8号’,2019年树龄为4年,株行距为2 m × 4 m。

        供试肥料为海藻提取物复合制剂 (海藻提取物含量60%、海藻酸6.5%、腐植酸5%、pH 6.7、密度为1.15 g/mL,由华南农业大学提供,以下简称复合制剂) 和氮磷钾水溶肥,氮磷钾水溶肥所用氮肥采用尿素 (N含量46.0%,山东泉胜化工科技有限公司) 和硝酸钾 (N含量13.5%、K2O含量46%,天津市风船化学试剂有限公司),磷肥采用磷酸二氢钾 (P2O5含量52%、K2O含量34%,四川省什邡市华蓉化工有限公司),钾肥采用磷酸二氢钾 (P2O5含量52%、K2O含量34%,四川省什邡市华蓉化工有限公司) 和硝酸钾 (N含量13.5%、K2O含量46%,天津市风船化学试剂有限公司)。

      • 按照每次氮磷钾养分与海藻提取物复合制剂总量 (w/w) 的0% (CK)、5% (T1)、10% (T2)、20% (T3) 和40% (T4) 的比例,设定复合制剂的施用量处理。每处理4棵树,各处理完全随机排列。分别于萌芽期、幼果期、膨大期和采前20天4个时期追施氮磷钾肥,每个时期NPK总追施量依次为324、348、358、258 kg/hm2,与复合制剂一起采用简易施肥枪施入土壤,其他田间管理措施与当地传统管理保持一致。定点田间试验连续进行2年。

      • 2019年7月8日和2020年7月6日果实成熟时,按处理从每棵树体的东、西、南、北4个方向随机选取20个果实,组成混合样带回实验室,测定相关生理指标。

      • 样品经H2SO4–H2O2消煮后[18],用全自动间断化学分析仪 (Clever Chem 380,德国) 测定果实氮含量;用钼锑抗比色法测定果实磷含量;用原子吸收分光光度法测定果实钾含量[18]

      • 蒽酮比色法测定果实可溶性糖含量[19],氢氧化钠滴定法测定果实可滴定酸含量[18],手持数字折射仪 (PR-101,Atago,日本) 测定可溶性固形物含量,CR-400便携式色差仪测定果皮亮度值 (L*)、红色饱和度 (a*) 及黄色饱和度 (b*)。用测得的a*值、b*值计算C值 (色泽饱和度) 和h°值 (色度角),C = [(a*)2 + (b*)2]1/2;h° = arctan (b*/a*)/6.2823 × 360°(a*≥0且b*≥0);h° = arctan (b*/a*)/6.2823 × 360° + 180°(a* < 0且b* > 0)[20-21]

      • 采用Excel 2010进行数据处理与绘图,SPSS 17.0软件进行方差分析和主成分分析。

      • 随着海藻提取物复合制剂浓度的增加,桃单果重 (2020年除外) 和产量呈先增加后降低趋势 (图1)。2019年T2 (10%) 处理桃单果重显著高于其他处理,2020年海藻提取物复合制剂与NPK配施处理桃单果重均显著高于单施NPK养分 (CK),4个海藻提取物复合制剂与NPK配施处理间差异不显著。2019和2020年的桃产量均以T2处理最高,较CK分别显著增加31.77%和40.67%,且与其他处理差异显著。可见,T2处理增加桃单果重和产量效果优于其他处理。

        图  1  2019和2020年不同处理对桃果实产量和单果重

        Figure 1.  Peach yield and single fruit weight under different treatments in 2019 and 2020

      • 随着海藻提取物复合制剂浓度的增加,桃果实品质指标呈先增加后降低趋势 (表1)。连续两年T2处理果实可溶性固形物含量均最高,其中,2019年T2处理果实可溶性固形物含量较CK、T1、T3和T4处理显著提高10.67%、9.59%、9.06%和11.44%,其他处理间无显著差异;2020年T2处理果实可溶性固形物含量较CK和T3处理分别显著提高7.20%和9.01%,与T1和T4处理差异不显著。两年T2处理的果实可滴定酸含量均为最低,较CK分别降低11.11%和50.00%,且2020年T2处理与CK、T3和T4处理差异达显著水平,但这3个处理间差异不显著。2020年T2处理的可溶性糖含量和糖酸比最高,较CK、T1、T3和T4处理分别增加20.55%、11.37%、18.23%、27.74%和166.29%、42.19%、147.39%、171.77%,与CK、T3和T4差异显著,与T1处理差异不显著;2019和2020年连续两年T4处理的果实可溶性糖含量和糖酸比均低于其他处理,且较T2处理分别显著降低20.85%、21.72%和23.28%、63.20%。可见,适量海藻提取物复合制剂 (T2) 与NPK养分配施可提高果实品质,而高量海藻提取物复合制剂 (T4) 与NPK养分配施降低了果实品质。

        表 1  不同处理对桃果实品质的影响

        Table 1.  Effects of seaweed extracts on peach fruit quality

        年份
        Year
        处理
        Treatment
        可溶性固形物 (%)
        Soluble solid
        可溶性糖 (%)
        Soluble sugar
        可滴定酸 (%)
        Titratable acid
        糖酸比
        Sugar acid ratio
        2019CK10.12 ± 0.07 b6.46 ± 0.47 a0.45 ± 0.08 b14.62 ± 1.35 a
        T110.22 ± 0.19 b6.87 ± 0.94 a0.54 ± 0.00 a12.81 ± 1.75 ab
        T211.20 ± 0.33 a5.85 ± 0.39 ab0.40 ± 0.00 b14.56 ± 0.98 a
        T310.27 ± 0.15 b4.93 ± 0.34 bc0.40 ± 0.00 b12.25 ± 0.84 b
        T410.05 ± 0.22 b4.63 ± 0.36 c0.41 ± 0.02 b11.17 ± 0.58 b
        2020CK9.03 ± 0.28 b7.64 ± 0.21 b0.68 ± 0.06 a11.39 ± 1.02 c
        T19.43 ± 0.33 ab8.27 ± 0.27 ab0.40 ± 0.11 b21.33 ± 5.35 ab
        T29.68 ± 0.40 a9.21 ± 1.17 a0.34 ± 0.16 b30.33 ± 9.76 a
        T38.88 ± 0.18 b7.79 ± 0.38 b0.64 ± 0.08 a12.26 ± 1.21 bc
        T49.32 ± 0.34 ab7.21 ± 0.70 b0.65 ± 0.08 a11.16 ± 1.32 c
        注(Note):处理 CK、T1、T2、T3、T4 中海藻提取物复合制剂的添加比例依次为 0%、5%、10%、20%、40% (w/w) The adding ratios of seaweed extract in the treatments of CK, T1, T2, T3 and T4 are 0%, 5%, 10%, 20% and 40% of the NPK fertilizer (w/w);同列数据后不同字母表示同一年份处理间差异显著(P < 0.05)Values followed by different small letters in a column indicate significant difference among treatments at 5% level in the same year.
      • 表2可知,在2019年除T2处理外,其他处理果实亮度均高于CK。2019年试验表明,海藻提取物复合制剂与NPK养分配施处理均可提高果实色泽饱和度,其中,T1和T3处理较CK处理分别显著提高47.74%和11.71%。不同处理色度角存在差异,h°值大小依次为T4 > T3 > CK > T2 > T1,其中,T1处理的果实色度角较CK处理降低28.05%,差异达显著水平。可见,T1处理着色性优于其他处理。

        表 2  不同处理对桃果实色泽的影响

        Table 2.  Effects of seaweed extracts on peach fruit color

        年份
        Year
        处理
        Treatment
        亮度
        Brightness (L*)
        色泽饱和度
        Chroma (C)
        色度角
        Hue angle (h°)
        2019CK45.00 ± 1.37 bc32.11 ± 0.59 c34.19 ± 1.89 a
        T147.56 ± 1.68 a47.44 ± 0.43 a24.60 ± 0.37 b
        T243.88 ± 1.19 c33.67 ± 1.32 c32.82 ± 1.67 a
        T348.03 ± 1.54 a35.87 ± 0.83 b34.67 ± 2.08 a
        T446.62 ± 0.19 ab33.39 ± 0.81 c35.11 ± 0.45 a
        2020CK42.47 ± 1.73 a30.22 ± 2.46 b23.30 ± 1.48 a
        T142.99 ± 2.52 a31.41 ± 2.00 b23.66 ± 2.15 a
        T243.95 ± 0.91 a33.58 ± 1.02 ab21.12 ± 2.81 a
        T344.27 ± 5.40 a30.48 ± 2.16 b24.17 ± 0.94 a
        T444.22 ± 3.44 a35.21 ± 0.15 a23.08 ± 2.63 a
        注(Note):处理 CK、T1、T2、T3、T4 中海藻提取物复合制剂的添加比例依次为 0%、5%、10%、20%、40% (w/w) The adding ratios of seaweed extract in the treatments of CK, T1, T2, T3 and T4 are 0%, 5%, 10%, 20% and 40% of the NPK fertilizer (w/w); 同列数据后不同字母表示同一年份处理间差异显著(P < 0.05)Values followed by different small letters in a column indicate significant difference among treatments at 5% level in the same year.

        2020年,海藻提取物复合制剂与NPK养分配施处理均可提高果实果面亮度和色泽饱和度,其中T4处理的果实色泽饱和度较CK显著提高16.51%,与T1和T3处理差异显著,与T2处理差异不显著。T2处理的果实色度角最低,说明T2处理着色性优于其他处理。由此可见,低添加量海藻提取物复合制剂 (T1、T2) 与NPK养分配施连续两年均可降低果皮色度角,改善桃果实色泽。

      • 2019年,海藻提取物复合制剂与NPK配施处理较CK处理均降低了桃果实的氮养分含量,提高了磷和钾养分含量(图2)。其中,T1处理果实磷含量最高,较CK显著提高13.33%,与T3处理差异不显著。各处理桃果实的钾含量高低顺序依次为T2 > T3 > T4 > T1 > CK,其中T2、T3和T4处理的桃果实钾含量较CK和T1处理分别显著增加16.70%、11.81%、10.53%和14.46%、9.67%、8.41%,T2、T3和T4处理间无显著性差异。

        图  2  2019和2020年不同处理对桃果实养分含量的影响

        Figure 2.  Effects of seaweed extracts on the nutrient content of peach in 2019 and 2020

        2020年,除T4处理外,T1、T2和T3处理较CK处理均增加了果实氮含量,分别增加10.34%、2.73%和5.46%,T1和T3处理与CK差异显著,T2和T4处理与CK差异不显著。海藻提取物复合制剂与NPK配施处理的桃果实磷含量高低顺序依次为T4 > T1 > CK > T2 > T3,其中T4处理的果实磷含量较T3处理显著提高18.18%,与CK、T1和T2处理间差异不显著。T3处理的果实钾含量显著高于其他处理,分别比CK、T1、T2和T4处理提高11.94%、4.64%、9.95%和7.99%,T2、T4处理和CK处理间差异不显著。两年试验表明,海藻提取物复合制剂与NPK配施处理均能提高桃果实钾养分含量。

      • 根据主成分分析的结果 (表3),2019和2020年第1主成分其特征值的变量解释度分别为52.74%和41.03%,是最主要的解释变量,前两个成分的特征值分别为78.01%和67.28%,表明这两个成分是主要分析部分。各处理在3个成分中进行综合评价 (表4),连续2年T2处理得分最高,分别为2.338和0.851。因此,两年试验结果说明,10%海藻提取物 (T2) 对提高桃产量、养分吸收、改善品质以及着色的综合效果最好。

        表 3  主成分分析结果

        Table 3.  Results of principal components analysis

        年份
        Year
        主成分
        Principal component
        特征值
        Eigenvalues
        贡献率 (%)
        Contribution rate
        累计贡献率 (%)
        Cumulative contribution rate
        2019F15.27452.73852.738
        F22.52725.27278.011
        F31.72917.29295.302
        2020F14.10341.03241.032
        F22.62526.24767.279
        F32.30223.02490.303
        注(Note):F1, F2 and F3 分别表示第一、二、三主成分 F1, F2 and F3 are the first, second and third principal components.

        表 4  不同处理主成分对桃产量、品质、养分吸收以及色泽的综合影响评分

        Table 4.  Comprehensive scores of the principal components in each treatment on yield, quality, nutrient absorption and color of peach

        年份
        Year
        处理
        Treatment
        主成分得分 Principal component score综合得分
        Comprehensive score
        排名
        Rank
        F1F2F3
        2019CK−0.1361.761−1.8280.0602
        T1−2.3081.1591.458−0.7053
        T23.8020.2950.8572.3381
        T3−1.111−1.1540.302−0.8665
        T4−0.248−2.061−0.789−0.8274
        2020CK−2.788−0.797−1.455−1.8695
        T10.7940.522−0.8160.3043
        T22.773−0.670−0.8390.8511
        T3−0.4882.5580.8920.7492
        T4−0.291−1.6122.219−0.0354
        注(Note):处理 CK、T1、T2、T3、T4 中海藻提取物复合制剂的添加比例依次为 0%、5%、10%、20%、40% (w/w) The adding ratios of seaweed extract in the treatments of CK, T1, T2, T3 and T4 are 0%, 5%, 10%, 20% and 40% of the NPK fertilizer (w/w). F1, F2 and F3 分别表示第一、二、三主成分 F1, F2 and F3 are the first, second and third principal components.
      • 海藻提取复合物不仅含海藻酸、海藻多糖等营养物质,而且含有多种植物刺激素,因此其能够增加根系吸收表面积,进而提高根系对水分和养分的吸收利用能力[22-23]。如图1所示,海藻提取物复合制剂配施氮磷钾肥增加了桃单果重与产量。这与Taskos等[24]、涂海华等[25]及薛晓敏等[26]、Mohamed等[27]分别在葡萄、苹果及芒果上的研究结果一致。本研究发现,高浓度海藻提取物复合制剂与氮磷钾配施 (T3和T4) 桃单果重和产量增幅并非最大,而10%海藻提取物复合制剂与氮磷钾配施条件下 (T2) 在2019年桃单果重和连续2年桃产量均为最高,且显著高于其他处理 (图1)。郭蓉等[28]在研究不同浓度海藻酸肥料在火龙果上的应用时发现,随着海藻酸浓度升高,单果重与产量呈现先增后降低趋势。诸多研究表明,海藻酸提取物施用浓度对于蔬菜产量同样影响显著,何锐等[29]提出随着海藻酸浓度的上升,芥蓝产量也呈先上升后下降趋势。另外,本研究发现果实品质指标也呈现上述现象,即随着海藻提取物复合制剂配施量的增加,果实品质呈先升高后降低的趋势,且连续两年以10%海藻提取物复合制剂与氮磷钾配施下果实可溶性固形物含量最高 (表1)。这与匡石滋等[14]和姜洁等[30]在番石榴与草莓上的研究结果相似,金斗香番石榴的果实可溶性固形物、可溶性糖和草莓可溶性固形物含量和糖酸比均随着海藻生物肥浓度的增加呈先上升后下降趋势。综上可知,适量海藻提取物复合制剂与NPK养分配施可促进植物生长,海藻提取物复合制剂用量过高时,其所含的营养物质及其他生物活性成分对植物的生长起到抑制作用[31-32],从而不利于果实品质的提升。

        果品色泽是果实外观品质的重要指标,也是果实商品价值的重要体现。如表2所示,施用适量海藻提取物复合制剂能够提高桃果实的果皮亮度和色泽饱和度,降低色度角,促进果实着色,进而改善果实外观品质。刘林等[33]研究发现,香蕉上喷施海藻酸类叶面肥能够显著提高香蕉果皮亮度。袁璐[34]研究表明喷施适量浓度的海藻肥能够有效提高葡萄果皮的色泽饱和度,进而改善果实外观品质。研究发现,果皮着色与K+有关,K+能够催化果实中PAL等花色苷相关各种酶,参与tRNA于核糖体结合的过程及相关蛋白的合成,进而提高果实花色苷的含量[35-36]。本研究图2所示,适量海藻提取物复合制剂处理下,桃果实中钾含量显著高于对照,因此我们推测海藻酸复合物促进果皮着色可能与果实钾含量的提高有关。而果实钾含量的提高也利于糖类物质的运输,进而提高桃果实的可溶性糖含量 (表1)[37-38]

        海藻提取复合物作为新型肥料增效剂,具有用量少增效明显的作用,可活化土壤养分,进而提高植物对养分的吸收利用能力[12]。赵鲁[39]在生菜上研究表明,海藻提取物能够显著提高生菜氮、磷和钾含量,并促进其由根部向地上部运移。Rathore等[40]在大豆上的研究表明,海藻提取物均可促进大豆籽粒对氮、磷和钾的吸收。本研究表明,海藻提取物复合制剂与氮磷钾配施连续2年均能提高桃果实钾养分含量,而高用量海藻提取物复合制剂与氮磷钾配施降低了果实氮养分含量。这与我们在葡萄和梨树苗上研究结果一致,即适量比例的海藻提取物复合制剂与氮磷钾养分配施能够提高葡萄果实与梨叶片的钾含量,降低叶片氮含量,这可能是由于海藻提取物中的生物活性物质提高了植物的气孔吸收速率,从而增强植株对养分的吸收能力[41-42],促进根系对钾离子的吸收,同时抑制根系对铵态氮的吸收,降低氮养分利用能力[43]。虽然目前对海藻酸的研究较多,同时在多种作物上已经得到了初步的使用效果验证,但海藻提取物应用效果的差异还可能与其提取工艺、土壤基本性质等相关,具体机理还有待进一步研究。

      • 适量海藻提取物复合制剂与氮磷钾养分配施有利于桃产量与品质的提升,其中连续两年均以10%海藻提取物复合制剂与氮磷钾配施效果最佳,而高浓度海藻酸提取复合物制剂 (40%) 与氮磷钾配施则会降低果实品质。

        低浓度海藻提取物复合制剂 (5%与10%) 与氮磷钾配施降低了桃果皮色度角,改善了桃果实色泽。另外,20%海藻提取物复合制剂与氮磷钾配施能够显著提高果实中钾含量。

    参考文献 (43)

    目录

      /

      返回文章
      返回