• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑水虻虫粪对水稻生长及土壤理化性质的影响

王小波 吴翔 郭雪琦 陈移波 王金龙 徐晓燕

引用本文:
Citation:

黑水虻虫粪对水稻生长及土壤理化性质的影响

    作者简介: 王小波 E-mail:wangxiaobo1111@163.com;
    通讯作者: 徐晓燕, E-mail:xuxy6699@163.com
  • 基金项目: 国家重点研发计划(2018YFD0500205);天津市科技计划项目(18ZXYENC00130)

Effects of black soldier fly frass on rice growth and soil physical and chemical properties

    Corresponding author: XU Xiao-yan, E-mail:xuxy6699@163.com
  • 摘要:   【目的】  黑水虻虫粪为黑水虻幼虫生物转化畜禽粪便所得,其有机质、养分含量高,可作为有机肥施用。研究黑水虻虫粪施用对水稻生长和土壤理化性质的影响,为其安全、合理使用提供科学依据。  【方法】  采用盆栽试验,设置施用盆栽土壤重量的0%、2%、4%、6%和8%虫粪肥5个处理 (依次记为CK、T1、T2、T3、T4),一次施肥后连续两年种植水稻,研究不同施肥处理对水稻株高、叶片酶活性、稻米产量、稻米氮磷钾含量、土壤养分指标、土壤酶活性的影响。  【结果】  施肥后第一年 (2018年),T2处理的水稻株高、产量最高,分别较CK提高了5.8%、43.7%,而T4处理的株高、产量分别较CK降低了8.0%、20.0%。在第二年 (2019年) 水稻株高和产量随着虫粪施用量的增加而提高,施虫粪肥处理提高了11.5%~33.5%的株高和33.9%~195.5%的产量。虫粪肥的施用在两年中都提高了水稻叶片的SOD、POD、CAT活性和稻米中的氮磷钾含量,且随着虫粪用量的增加而提高。虫粪肥的施用使土壤pH两年中分别由6.46、6.51提升到7.13、7.14。有机质含量提高了7.1%~32.5%,EC值提高了13.6%~99.9%,铵态氮含量提高了25.2%~195.4%,有效磷含量提高了45.7%~312.0%,速效钾含量提高了1.7~20.1倍。虫粪肥提高了13.1%~109.5%的脲酶活性,提高了14.5%~45.4%的磷酸酶活性,提高了25.2%~286.5%的蔗糖酶活性。  【结论】  黑水虻虫粪的施用可以提高土壤养分含量和酶活性,适宜的施用量能促进当季和后茬水稻生长,提高水稻产量,因此黑水虻虫粪作为一种新型有机肥料,具有广阔的应用潜力。
  • 图 1  不同用量虫粪肥处理的水稻株高

    Figure 1.  Plant height of rice of the treatments with different amounts of insect frass

    图 2  不同用量虫粪肥处理的稻米产量

    Figure 2.  Rice yield of the treatments with different amounts of insect frass

    图 3  2018和2019年不同用量虫粪肥处理土壤酶活性

    Figure 3.  Soil enzyme activities under the treatments with different amounts of insect frass in 2018 and 2019

    表 1  2018和2019年不同用量虫粪肥处理水稻叶片酶活性 (U/g, FW)

    Table 1.  Enzymes activity in rice leaves under the treatments with different amounts of insect frass in 2018 and 2019

    处理
    Treatment
    SODPODCAT
    201820192018201920182019
    CK273.0 ± 8.7 c247.9 ± 8.3 d237.0 ± 23.2 b251.3 ± 22.5 c200.0 ± 9.2 d178.0 ± 10.4 c
    T1290.6 ± 5.2 c301.1 ± 11.0 c274.7 ± 14.7 ab278.4 ± 16.0 c248.3 ± 17.6 bc202.9 ± 5.4 c
    T2311.6 ± 11.1 b302.2 ± 9.1 c284.2 ± 32.0 a262.1 ± 10.6 c286.7 ± 15.9 a238.8 ± 25.9 b
    T3315.3 ± 4.8 b334.3 ± 3.2 b294.6 ± 14.8 a323.7 ± 9.8 b277.3 ± 18.6 ab330.0 ± 12.5 a
    T4352.8 ± 6.8 a360.0 ± 8.5 a277.0 ± 14.4 a374.5 ± 24.5 a244.3 ± 17.9 c331.3 ± 25.6 a
    注(Note):CK—不施肥 No fertilizer; T1—施用 2% 虫粪肥 Application of 2% insect frass; T2—施用 4% 虫粪肥 Application of 4% insect frass; T3—施用 6% 虫粪肥 Application of 6% insect frass; T4—施用 8% 虫粪肥 Application of 8% insect frass. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments (P < 0.05).
    下载: 导出CSV

    表 2  2018和2019年不同用量虫粪肥处理稻米中氮磷钾含量 (%)

    Table 2.  NPK content in rice under the treatments with different amounts of insect frass in 2018 and 2019

    处理
    Treatment
    NPK
    201820192018201920182019
    CK1.61 ± 0.05 d1.54 ± 0.13 b0.72 ± 0.010 b0.64 ± 0.018 c0.30 ± 0.017 a0.27 ± 0.026 b
    T11.69 ± 0.12 d1.62 ± 0.16 b0.74 ± 0.028 b0.70 ± 0.022 b0.31 ± 0.013 a0.27 ± 0.027 b
    T21.84 ± 0.02 c2.33 ± 0.21 a0.90 ± 0.005 a0.74 ± 0.022 ab0.31 ± 0.009 a0.28 ± 0.006 b
    T31.98 ± 0.02 b2.51 ± 0.13 a0.92 ± 0.034 a0.72 ± 0.030 b0.32 ± 0.017 a0.32 ± 0.021 a
    T42.20 ± 0.07 a2.50 ± 0.19 a0.90 ± 0.008 a0.78 ± 0.022 a0.32 ± 0.017 a0.32 ± 0.006 a
    注(Note):CK—不施肥 No fertilizer; T1—施用 2% 虫粪肥 Application of 2% insect frass; T2—施用 4% 虫粪肥 Application of 4% insect frass; T3—施用 6% 虫粪肥 Application of 6% insect frass; T4—施用 8% 虫粪肥 Application of 8% insect frass. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments (P < 0.05).
    下载: 导出CSV

    表 3  2018和2019年不同用量虫粪处理的土壤理化性质

    Table 3.  soil physical and chemical properties under the treatments with different amounts of insect frass in 2018 and 2019

    处理
    Treatment
    pH有机质 Organic matter (%)EC (μS/cm)
    201820192018201920182019
    CK6.46 ± 0.07 c6.51 ± 0.09 d6.33 ± 0.04 d5.37 ± 0.14 c407.5 ± 0.5 e394.5 ± 0.5 d
    T16.53 ± 0.09 c6.65 ± 0.09 c6.78 ± 0.18 c6.22 ± 0.20 b469.5 ± 7.5 d448.0 ± 13.0 c
    T26.75 ± 0.06 b6.78 ± 0.03 bc7.45 ± 0.15 b6.48 ± 0.12 b562.0 ± 15.0 c518.3 ± 2.5 b
    T36.79 ± 0.05 b6.89 ± 0.05 b7.84 ± 0.11 a7.09 ± 0.32 a652.3 ± 20.3 b552.7 ± 29.6 b
    T47.13 ± 0.04 a7.14 ± 0.08 a7.93 ± 0.10 a7.11 ± 0.37 a814.7 ± 13.8 a623.7 ± 29.9 a
    处理
    Treatment
    铵态氮 NH4+-N (mg/kg)有效磷 Available P (mg/kg)速效钾 Available K (mg/kg)
    201820192018201920182019
    CK60.5 ± 1.4 d50.3 ± 1.4 d10.1 ± 0.3 e7.3 ± 0.3 e75.8 ± 2.9 e51.3 ± 2.9 e
    T176.2 ± 2.5 c69.7 ± 1.6 c16.3 ± 0.5 d10.7 ± 0.2 d358.2 ± 19.0 d139.7 ± 24.9 d
    T275.7 ± 6.0 c70.7 ± 1.2 c23.0 ± 1.1 c16.0 ± 0.7 c712.7 ± 14.0 c433.7 ± 57.4 c
    T3113.3 ± 3.0 b79.7 ± 4.6 b30.6 ± 2.2 b20.7 ± 1.8 b1125.7 ± 76.6 b797.8 ± 26.7 b
    T4178.6 ± 1.9 a95.7 ± 2.0 a39.3 ± 2.5 a30.2 ± 2.9 a1493.3 ± 132.6 a1084.3 ± 49.6 a
    注(Note):CK—不施肥 No fertilizer; T1—施用 2% 虫粪肥 Application of 2% insect frass; T2—施用 4% 虫粪肥 Application of 4% insect frass; T3—施用 6% 虫粪肥 Application of 6% insect frass; T4—施用 8% 虫粪肥 Application of 8% insect frass. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments (P < 0.05).
    下载: 导出CSV

    表 4  各指标间的相关性分析 (r)

    Table 4.  Correlation analysis of each index

    项目
    Item
    有机质
    Organic matter
    NH4+-NAPAKUAPASACASODPODCAT产量
    Yield
    有机质
    Organic matter
    1
    NH4+-N0.77**1
    AP0.88**0.90**1
    AK0.88**0.88**0.98**1
    UA0.59**0.89**0.78**0.80**1
    PA0.46**0.54**0.56**0.64**0.62**1
    SA0.72**0.83**0.90**0.91**0.86**0.65**1
    CA0.51**0.41*0.36*0.270.1−0.280.031
    SOD0.74**0.69**0.81**0.85**0.71**0.69**0.91** −0.021
    POD–0.54**–0.3–0.48**–0.49**–0.140.05–0.32 –0.3–0.291
    CAT0.62**0.270.60**0.65**0.290.45*0.61** −0.070.74**–0.49**1
    产量 Yield0.15–0.140.190.25–0.010.38*0.38* 0.54**0.53**–0.190.79**1
    注(Note):AP—有效磷 Available P; AK—速效钾 Available K; UA—脲酶活性 Urease activity; PA—磷酸酶活性 Phosphatase activity; SA—蔗糖酶活性 Sucrase activity. *—P < 0.05; **—P < 0.01.
    下载: 导出CSV
  • [1] 仇焕广, 井月, 廖绍攀, 蔡亚庆. 我国畜禽污染现状与治理政策的有效性分析[J]. 中国环境科学, 2013, 33(12): 2268–2273. Qiu H G, Jing Y, Liao S P, Cai Y Q. Environmental pollution of livestock and the effectiveness of different management policies in China[J]. China Environmental Science, 2013, 33(12): 2268–2273.
    [2] 中国畜牧兽医年鉴编辑委员会. 中国畜牧兽医年鉴2017[M]. 北京: 中国农业出版社, 2017.

    Editorial Committee of China Animal Husbandry and Veterinary Yearbook. China animal husbandry and veterinary yearbook 2017[M]. Beijing: China Agriculture Press, 2017.
    [3] Diener F, Studt Solano N M, Gutiérrez F R, et al. Biological treatment of municipal organic waste using black soldier fly Larvae[J]. Waste Biomass Valor, 2011, 2: 357–363. doi:  10.1007/s12649-011-9079-1
    [4] Rehman K, Cai M M, Xiao X P, et al. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.)[J]. Journal of Environmental Management, 2017, 196: 458–465.
    [5] 吴震洋, 李丽, 唐红军, 等. 黑水虻对畜禽粪便资源化利用现状分析[J]. 甘肃畜牧兽医, 2019, 49(1): 6–8. Wu Z Y, Li L, Tang H J, et al. Analysis on resource utilization of livestock manure by black soldier fly[J]. Gansu Animal Husbandry and Veterinary, 2019, 49(1): 6–8.
    [6] Newton L, Sheppard D C, Watson D W, et al. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure[M]. Tifton: Countryside & Small Stock Journal, 2005.
    [7] Cai M, Ma S, Hu R, et al. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora[J]. Environmental Microbiology, 2018, 20: 4051–4062. doi:  10.1111/1462-2920.14450
    [8] Kawasaki K, Kawasaki T, Hirayasu H, et al. Evaluation of fertilizer value of residues obtained after processing household organic waste with black soldier fly larvae (Hermetia illucens)[J]. Sustainability, 2020, 12(12): 4920. doi:  10.3390/su12124920
    [9] 吴翔, 胡从勇, 蔡瑞婕, 等. 虫粪有机肥对番茄生长及品质的影响[J]. 北方园艺, 2019, (3): 60–64. Wu X, Hu C Y, Cai R J, et al. Effects of insect manure on the growth and quality of tomato[J]. Northern Horticulture, 2019, (3): 60–64.
    [10] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2013.

    National Statistics Bureau of the People's Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2013.
    [11] 王延军, 宗良纲, 李锐, 等. 不同肥料对水稻生长和土壤微生物量的影响[J]. 浙江农业学报, 2010, 22(6): 834–838. Wang Y J, Zong L G, Li R, et al. Effects of different fertilizations on yield of rice and biological characters of paddy soil[J]. Acta Agriculturae Zhejiangensis, 2010, 22(6): 834–838. doi:  10.3969/j.issn.1004-1524.2010.06.025
    [12] 周青, 陈风华, 张国良, 等. 有机肥追施对水稻产量形成及氮肥施用效益的影响[J]. 安徽农业大学学报, 2006, 33(2): 252–256. Zhou Q, Chen F H, Zhang G L, et al. Effects of organic fertilizer on rice yield development and nitrogen usage efficiency[J]. Journal of Anhui Agricultural University, 2006, 33(2): 252–256. doi:  10.3969/j.issn.1672-352X.2006.02.026
    [13] 陈帅君, 边嘉宾, 丁得亮, 崔晶. 不同有机肥处理对水稻品质和食味的影响[J]. 中国稻米, 2016, 22(4): 42–45. Chen S J, Bian J B, Ding D L, Cui J. Effects of organic fertilizers on quality and palatability of rice[J]. China Rice, 2016, 22(4): 42–45. doi:  10.3969/j.issn.1006-8082.2016.04.012
    [14] 李先, 刘强, 荣湘民, 等. 有机肥对水稻产量和品质及氮肥利用率的影响[J]. 湖南农业大学学报(自然科学版), 2010, 36(3): 258–262. Li X, Liu Q, Rong X M, et al. Effects of organic fertilizers on yield and quality of rice grains and nitrogen use efficiency[J]. Journal of Hunan Agricultural University (Natural Sciences), 2010, 36(3): 258–262. doi:  10.3724/SP.J.1238.2010.00258
    [15] 李卫娟, 周文君, 杨树义, 等. 黑水虻虫沙对白菜生长性能的影响[J]. 安徽农业科学, 2016, 44(10): 111–112, 115. Li W J, Zhou W J, Yang S Y, et al. Effects of Hermetia illucens sandworm on the growth performance of cabbage[J]. Journal of Anhui Agricultural Sciences, 2016, 44(10): 111–112, 115.
    [16] Menino R, Felizes F, Castelo B M, et al. Agricultural value of black soldier fly larvae frass as organic fertilizer on ryegrass[J]. Heliyon, 2021, 7(1): e05855. doi:  10.1016/j.heliyon.2020.e05855
    [17] Beesigamukama D, Mochoge B, Korir N K, et al. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions[J]. Frontiers in Plant Science, 2020, 11: 1–17. doi:  10.3389/fpls.2020.00001
    [18] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2003.

    Zou Q. Experiment instruction of plant physiology[M]. Beijing: China Agricultural Press, 2003.
    [19] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agricultural Press, 2000.
    [20] 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.

    Guan S Y. Soil enzymes and the research methods[M]. Beijing: China Agriculture Press, 1986.
    [21] 李燕青, 赵秉强, 李壮. 有机无机结合施肥制度研究进展[J]. 农学学报, 2017, 7(7): 22–30. Li Y Q, Zhao B Q, Li Z. Research progress of organic-inorganic fertilizer combined application system[J]. Journal of Agriculture, 2017, 7(7): 22–30. doi:  10.11923/j.issn.2095-4050.cjas17020011
    [22] 李其胜, 赵贺, 汪志鹏, 等. 有机肥替代部分化肥对稻麦轮作土壤养分利用和酶活性的影响[J]. 土壤通报, 2020, 51(4): 912–919. Li Q S, Zhao H, Wang Z P, et al. Effects of organic fertilizer replacing partial chemical fertilizer on nutrient utilization and soil enzyme activity in a rice-wheat cropping system[J]. Chinese Journal of Soil Science, 2020, 51(4): 912–919.
    [23] 曹云, 黄红英, 吴华山, 等. 超高温堆肥提高土壤养分有效性和水稻产量的机理[J]. 植物营养与肥料学报, 2020, 26(3): 481–491. Cao Y, Huang H Y, Wu H S, et al. Mechanisms of hyperthermophilic compost in improving soil nutrient availability and rice yield[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 481–491.
    [24] 曲成闯, 陈效民, 张志龙, 等. 施用生物有机肥对黄瓜连作土壤有机碳库和酶活性的持续影响[J]. 应用生态学报, 2019, 30(9): 3147–3154. Qu C C, Chen X M, Zhang Z L, et al. Long-term effects of bio-organic fertilizer application on soil organic carbon pool and enzyme activity of cucumber continuous cropping[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3147–3154.
    [25] 李猛, 张恩平, 张淑红, 等. 长期不同施肥设施菜地土壤酶活性与微生物碳源利用特征比较[J]. 植物营养与肥料学报, 2017, 23(1): 44–53. Li M, Zhang E P, Zhang S H, et al. Comparison of soil enzyme activities and microbial C metabolism in installed vegetable fields under long-term different fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 44–53. doi:  10.11674/zwyf.16044
    [26] 胡可, 李华兴, 卢维盛, 等. 生物有机肥对土壤微生物活性的影响[J]. 中国生态农业学报, 2010, 18(2): 303–306. Hu K, Li H X, Lu W S, et al. Effect of microbial organic fertilizer application on soil microbial activity[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2): 303–306. doi:  10.3724/SP.J.1011.2010.00303
    [27] 郭鹏飞, 葛新伟, 王锐, 孙权. 有机肥对酿酒葡萄土壤微生物、酶活性及产量的影响[J]. 干旱地区农业研究, 2020, 38(3): 145–154. Guo P F, Ge X W, Wang R, Sun Q. Effects of organic manure on soil microbial community enzyme activity and yield of wine grape[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 145–154. doi:  10.7606/j.issn81000-7601.2020.03.19
    [28] 田小明, 李俊华, 王成, 等. 连续3年施用生物有机肥对土壤养分、微生物生物量及酶活性的影响[J]. 土壤, 2014, 46(3): 481–488. Tian X M, Li J H, Wang C, et al. Effects of continuous application of bio-organic fertilizer for three years on soil nutrients, microbial biomass and enzyme activity[J]. Soils, 2014, 46(3): 481–488.
    [29] 陈琨, 曾祥忠, 喻华, 等. 有机肥施用量对冬水稻田水稻生长和土壤有机质的影响[J]. 亚热带农业研究, 2019, 15(4): 223–228. Chen K, Zeng X Z, Yu H, et al. Effects of different rates of organic fertilizer application on rice growth and soil organic matter in winter paddy fields[J]. Subtropical Agriculture Research, 2019, 15(4): 223–228.
    [30] Deng M H, Shi X J, Tian Y H, et al. Optimizing nitrogen fertilizer application for rice production in the Taihu Lake region, China[J]. Pedosphere, 2012, 22(1): 48–57. doi:  10.1016/S1002-0160(11)60190-2
  • [1] 鲁伟丹李俊华罗彤陈丽丽张磊刘硕康 . 连续三年不同有机肥替代率对小麦产量及土壤养分的影响. 植物营养与肥料学报, 2021, 27(8): 1330-1338. doi: 10.11674/zwyf.2021073
    [2] 侯建勋张水梅袁静超程松刘剑钊刘松涛梁尧任军蔡红光 . 玉米秸秆源有机物料对黑土养分有效性与酶活性的提升效应. 植物营养与肥料学报, 2021, 27(4): 610-618. doi: 10.11674/zwyf.20273
    [3] 侯均昊张晨晖许轲李国辉袁嘉琦刘艳阳郭保卫颜伟伟陈鹤鸣霍中洋戴其根张洪程 . 优化控释尿素施用方式提高沙质低肥力土壤水稻产量和品质. 植物营养与肥料学报, 2021, 27(4): 630-642. doi: 10.11674/zwyf.20512
    [4] 陈露王秀斌朱瑞利毛琳琳孙静文 . 长江中下游小麦产量、土壤酶活性及微生物群落结构对磷肥减施的响应. 植物营养与肥料学报, 2021, 27(3): 392-402. doi: 10.11674/zwyf.20506
    [5] 郝胜磊蔡廷瑶冯小杰油伦成杨雪黄成东陈永亮崔振岭 . 新型肥料对全球三大粮食作物产量和土壤生物学活性影响的Meta分析. 植物营养与肥料学报, 2021, 27(9): 1496-1505. doi: 10.11674/zwyf.2021062
    [6] 李泽丽刘之广张民陈琪邹朋杨茂峰 . 控释尿素配施黄腐酸对小麦产量及土壤养分供应的影响. 植物营养与肥料学报, 2018, 24(4): 959-968. doi: 10.11674/zwyf.17426
    [7] 王乐张淑香马常宝李春花 . 潮土区29年来土壤肥力和作物产量演变特征. 植物营养与肥料学报, 2018, 24(6): 1435-1444. doi: 10.11674/zwyf.18187
    [8] 王鹏祝丽香陈香香冯惠孙文帅秦宁 . 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响. 植物营养与肥料学报, 2018, 24(3): 668-675. doi: 10.11674/zwyf.17325
    [9] 魏猛张爱君诸葛玉平李洪民唐忠厚陈晓光 . 长期不同施肥对黄潮土区冬小麦产量及土壤养分的影响. 植物营养与肥料学报, 2017, 23(2): 304-312. doi: 10.11674/zwyf.16275
    [10] 郭腾飞梁国庆周卫刘东海王秀斌孙静文李双来胡诚 . 施肥对稻田温室气体排放及土壤养分的影响. 植物营养与肥料学报, 2016, 22(2): 337-345. doi: 10.11674/zwyf.14557
    [11] 黄继川徐培智彭智平于俊红涂玉婷杨林香吴雪娜林志军 . 基于稻田土壤肥力及生物学活性的沼液适宜用量研究. 植物营养与肥料学报, 2016, 22(2): 362-371. doi: 10.11674/zwyf.14503
    [12] 崔雯雯宋全昊高小丽贾志宽 . 糜子不同种植方式对土壤酶活性及养分的影响. 植物营养与肥料学报, 2015, 21(1): 234-240. doi: 10.11674/zwyf.2015.0126
    [13] 杜加银茹美倪吾钟* . 减氮控磷稳钾施肥对水稻产量及养分积累的影响. 植物营养与肥料学报, 2013, 19(3): 523-533. doi: 10.11674/zwyf.2013.0301
    [14] 王飞林诚李清华何春梅李昱邱珊莲林新坚* . 长期不同施肥对南方黄泥田水稻子粒与土壤锌、 硼、 铜、 铁、 锰含量的影响. 植物营养与肥料学报, 2012, 18(5): 1056-1064. doi: 10.11674/zwyf.2012.12027
    [15] 卫婷韩丽娜韩清芳贾志宽张睿聂俊峰杨宝平 . 有机培肥对旱地土壤养分有效性和酶活性的影响. 植物营养与肥料学报, 2012, 18(3): 611-620. doi: 10.11674/zwyf.2012.11339
    [16] 郑宪清李双喜袁大伟何七勇吕卫光张娟琴 . 生物耕作对蔬菜田土壤养分及酶活性的影响. 植物营养与肥料学报, 2012, 18(5): 1184-1191. doi: 10.11674/zwyf.2012.12087
    [17] 沈浦李冬初徐明岗牛德奎高菊生候晓娟 . 长期施用含硫化肥对稻田土壤养分含量及剖面分布的影响*. 植物营养与肥料学报, 2011, 17(1): 95-102. doi: 10.11674/zwyf.2011.0113
    [18] 邓阳春黄建国 . 长期连作对烤烟产量和土壤养分的影响. 植物营养与肥料学报, 2010, 16(4): 840-845. doi: 10.11674/zwyf.2010.0409
    [19] 薛高峰宋阿琳孙万春李兆君范分良梁永超 . 硅对水稻叶片抗氧化酶活性的影响及其与白叶枯病抗性的关系. 植物营养与肥料学报, 2010, 16(3): 591-597. doi: 10.11674/zwyf.2010.0311
    [20] 孙万春薛高峰张杰宋阿琳葛高飞李兆君梁永超* . 硅对水稻防御性关键酶活性的影响及其与抗稻瘟病的关系 . 植物营养与肥料学报, 2009, 15(5): 1023-1028. doi: 10.11674/zwyf.2009.0506
  • 加载中
图(3)表(4)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  374
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 网络出版日期:  2021-11-25
  • 刊出日期:  2021-10-25

黑水虻虫粪对水稻生长及土壤理化性质的影响

    作者简介:王小波 E-mail:wangxiaobo1111@163.com
    通讯作者: 徐晓燕, xuxy6699@163.com
  • 1. 天津农学院农学与资源环境学院,天津 300384
  • 2. 天津农垦渤海农业集团有限公司,天津 301823
  • 基金项目: 国家重点研发计划(2018YFD0500205);天津市科技计划项目(18ZXYENC00130)
  • 摘要:   【目的】  黑水虻虫粪为黑水虻幼虫生物转化畜禽粪便所得,其有机质、养分含量高,可作为有机肥施用。研究黑水虻虫粪施用对水稻生长和土壤理化性质的影响,为其安全、合理使用提供科学依据。  【方法】  采用盆栽试验,设置施用盆栽土壤重量的0%、2%、4%、6%和8%虫粪肥5个处理 (依次记为CK、T1、T2、T3、T4),一次施肥后连续两年种植水稻,研究不同施肥处理对水稻株高、叶片酶活性、稻米产量、稻米氮磷钾含量、土壤养分指标、土壤酶活性的影响。  【结果】  施肥后第一年 (2018年),T2处理的水稻株高、产量最高,分别较CK提高了5.8%、43.7%,而T4处理的株高、产量分别较CK降低了8.0%、20.0%。在第二年 (2019年) 水稻株高和产量随着虫粪施用量的增加而提高,施虫粪肥处理提高了11.5%~33.5%的株高和33.9%~195.5%的产量。虫粪肥的施用在两年中都提高了水稻叶片的SOD、POD、CAT活性和稻米中的氮磷钾含量,且随着虫粪用量的增加而提高。虫粪肥的施用使土壤pH两年中分别由6.46、6.51提升到7.13、7.14。有机质含量提高了7.1%~32.5%,EC值提高了13.6%~99.9%,铵态氮含量提高了25.2%~195.4%,有效磷含量提高了45.7%~312.0%,速效钾含量提高了1.7~20.1倍。虫粪肥提高了13.1%~109.5%的脲酶活性,提高了14.5%~45.4%的磷酸酶活性,提高了25.2%~286.5%的蔗糖酶活性。  【结论】  黑水虻虫粪的施用可以提高土壤养分含量和酶活性,适宜的施用量能促进当季和后茬水稻生长,提高水稻产量,因此黑水虻虫粪作为一种新型有机肥料,具有广阔的应用潜力。

    English Abstract

    • 随着我国社会经济发展和农业产业结构调整,规模化养殖业快速发展,畜禽粪便年产生量大量增加[1],据统计,2016年中国畜禽粪污年产量约38亿t[2]。利用黑水虻幼虫转化处理畜禽粪便为畜禽粪便的处理提供了一种经济、可行的途径,受到了国内外的广泛关注[3-5],转化后产出的虫粪为灰褐色、粒状、无臭味的有机肥,含丰富的有机质及有益微生物种群[6-7],具有较好的肥效。如Kawasaki等[8]研究表明,黑水虻虫粪肥能够提高小松菜的鲜重,且效果好于家禽粪便、牛粪。吴翔等[9]研究发现施用黑水虻虫粪提高了番茄28.5%的产量和19.4%的VC含量,效果好于鸡粪。

      水稻是我国种植的主要粮食作物之一,水稻总产量达到我国粮食总产量的1/3以上[10]。在水稻种植过程中,有机肥施用可以促进水稻根系生长,提高水稻对养分的吸收,提高水稻灌浆能力,促使籽粒饱满,从而提高产量[11-12]。陈帅君等[13]、李先等[14]研究表明有机肥的施用,不仅可以提高水稻产量,而且还能改善稻米的外观及口感品质。目前国内外对黑水虻虫粪有机肥应用的研究较少,且主要应用于番茄、白菜、玉米、黑麦草[15-17],在水稻种植中的应用还少有报道。采用盆栽试验研究了黑水虻虫粪肥对水稻生长及土壤理化性质的影响,旨在为黑水虻虫粪的进一步开发利用提供理论依据。

      • 供试土壤为黄棕壤,取自湖北省某水稻田,其基础理化性质为:pH 6.24、EC值415 μS/cm、铵态氮70.12 mg/kg、有效磷12.2 mg/kg、速效钾158 mg/kg、有机质65.2 g/kg。将取回来的土壤风干、磨碎、过1 cm筛,混匀备用。

        黑水虻虫粪 (黑水虻转化鸡粪所得),其组分含量:pH 8.3、有机质含量64.0%、全氮2.66%、全磷 (P2O5) 5.03%、全钾 (K2O) 3.80%。虫粪风干后备用。

        种植作物水稻,品种‘津原E28’。

      • 试验采用盆栽水稻的方法进行,设置不同的虫粪肥施用量,分别为:不施虫粪 (CK)、施用2%虫粪肥 (T1)、4%虫粪肥 (T2)、6%虫粪肥 (T3)、8%虫粪肥 (T4) 5个处理,每个处理3次重复。取干净塑料桶 (直径35 cm、高27 cm) 装入10 kg风干土,按照不同处理的重量百分比添加虫粪搅拌均匀。2018年5月16日选取生长一致的水稻苗移入塑料桶中,每桶7棵苗。将塑料桶随机排列置于遮阴网室内,整个种植期间,土面保持3~5 cm的水层,进行常规管理,2018年10月26日收获。2019年相同的时间在原处理的土壤上进行水稻连作试验,整个水稻种植期间不施用任何肥料,其他同2018年。

      • 两年中分别在水稻插秧后的60、90、120天测定株高,在水稻插秧后的分蘖期~拔节期 (45天),取出3株水稻,采用氮蓝四唑光化还原法测定叶片的超氧化物歧化酶 (SOD) 活性,愈创木酚法测定过氧化物酶 (POD) 活性,紫外吸收法测定过氧化氢酶 (CAT) 活性[18]。收获水稻后晒干,人工脱粒,测定稻米产量以及氮、磷、钾含量[19]

        水稻收获后,倒出土壤混匀后,采用四分法取约500 g土壤样品,风干后过1和0.25 mm筛,备用。土壤pH采用水土比2.5∶1提取,pH计测定;电导率采用5∶1水土比提取,电导法测定;有机质采用重铬酸钾容量法测定;铵态氮采用靛酚蓝比色法测定;有效磷采用碳酸氢钠提取钼蓝比色法测定;速效钾采用乙酸铵提取火焰光度计法测定[19]。脲酶活性采用苯酚钠比色法测定;磷酸酶活性采用磷酸苯二钠比色法测定;蔗糖酶活性采用3,5-二硝基水杨酸比色法测定;过氧化氢酶活性采用高锰酸钾滴定法测定[20]

      • 试验数据计算、作图采用Excel 2016软件完成,显著性差异分析采用SPSS 17. 0 (P < 0. 05) 完成。

      • 图1可以看出,在2018年插秧后60天时,TI和T2处理的水稻株高与CK相比较无显著差异,T3和T4处理的水稻株高较CK降低10.8%和24.2%。插秧后90天时,T1处理的株高较CK提高了5.2%,T3和T4处理的株高与CK相比较,分别降低了5.2%和17.4%。插秧后120天时,T1和T3处理的水稻株高与CK之间无显著差异,T2处理最高,较CK提高了5.8%,T4处理水稻株高最低,比CK降低了8.0%。说明适量的施肥可促进水稻的生长,而过量施肥会抑制水稻的生长。

        图  1  不同用量虫粪肥处理的水稻株高

        Figure 1.  Plant height of rice of the treatments with different amounts of insect frass

        2019年时,施用虫粪肥各处理显著提高了水稻的株高。插秧后60天时,T1、T2、T3和T4处理均提高了水稻株高,其中T3处理的株高最高,比CK提高了31.9%。插秧后90天时,与CK相比较,T1、T2、T3和T4处理水稻株高分别提高了11.0%、20.0%、27.9%和31.8%。插秧后120天时,施虫粪处理水稻株高提高了11.5%~33.5%,各虫粪处理间,T3和T4株高显著高于T2,T2显著高于T1。说明虫粪有机肥的后续肥效较大。

      • 图2可知,在2018年时,除T4外,施虫粪肥处理提高了水稻产量19.9%~43.7%,其中T2处理的稻米产量最高,T1、T3次之,而T4处理降低了稻米产量20.0%。2019年,各处理稻米产量随着虫粪肥施用量增加而提高,较CK增产了33.9%~195.5%。两年中,2019年T3和T4处理的稻米产量较2018年分别提高了85.3%和214.7%。说明合理的施用虫粪有机肥可以提高当季和后茬水稻的产量,但过量施用会降低当季水稻的产量。

        图  2  不同用量虫粪肥处理的稻米产量

        Figure 2.  Rice yield of the treatments with different amounts of insect frass

      • 表1可见,虫粪肥的施用提高了水稻叶片酶的活性。随着虫粪施用量的增加水稻叶片的SOD活性提高,在2018、2019年中都是T4处理的SOD活性最高,较CK分别提高了29.2%和45.2%,同时也显著高于其它虫粪肥处理。POD活性,在2018年各虫粪肥处理间没有显著差异,2019年T4处理显著高于其它处理。CAT活性,在2018年T2处理最高,且显著高于T1、T4处理,2019年T3、T4处理显著高于其它处理。

        表 1  2018和2019年不同用量虫粪肥处理水稻叶片酶活性 (U/g, FW)

        Table 1.  Enzymes activity in rice leaves under the treatments with different amounts of insect frass in 2018 and 2019

        处理
        Treatment
        SODPODCAT
        201820192018201920182019
        CK273.0 ± 8.7 c247.9 ± 8.3 d237.0 ± 23.2 b251.3 ± 22.5 c200.0 ± 9.2 d178.0 ± 10.4 c
        T1290.6 ± 5.2 c301.1 ± 11.0 c274.7 ± 14.7 ab278.4 ± 16.0 c248.3 ± 17.6 bc202.9 ± 5.4 c
        T2311.6 ± 11.1 b302.2 ± 9.1 c284.2 ± 32.0 a262.1 ± 10.6 c286.7 ± 15.9 a238.8 ± 25.9 b
        T3315.3 ± 4.8 b334.3 ± 3.2 b294.6 ± 14.8 a323.7 ± 9.8 b277.3 ± 18.6 ab330.0 ± 12.5 a
        T4352.8 ± 6.8 a360.0 ± 8.5 a277.0 ± 14.4 a374.5 ± 24.5 a244.3 ± 17.9 c331.3 ± 25.6 a
        注(Note):CK—不施肥 No fertilizer; T1—施用 2% 虫粪肥 Application of 2% insect frass; T2—施用 4% 虫粪肥 Application of 4% insect frass; T3—施用 6% 虫粪肥 Application of 6% insect frass; T4—施用 8% 虫粪肥 Application of 8% insect frass. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments (P < 0.05).
      • 表2可见,稻米中氮磷钾含量随着虫粪肥施用量的增加而提高。T2、T3、T4处理稻米的氮含量两年都显著高于T1、CK处理,T1和CK处理间没有显著差异。T2、T3、T4处理稻米的磷含量在2018年显著高于T1、CK处理,在2019年T4处理稻米的磷含量显著高于T1、T3,T1、T3显著高于CK。2018年各处理稻米钾含量没有显著差异,2019年T3、T4处理稻米钾含量显著高于CK、T1、T2处理。

        表 2  2018和2019年不同用量虫粪肥处理稻米中氮磷钾含量 (%)

        Table 2.  NPK content in rice under the treatments with different amounts of insect frass in 2018 and 2019

        处理
        Treatment
        NPK
        201820192018201920182019
        CK1.61 ± 0.05 d1.54 ± 0.13 b0.72 ± 0.010 b0.64 ± 0.018 c0.30 ± 0.017 a0.27 ± 0.026 b
        T11.69 ± 0.12 d1.62 ± 0.16 b0.74 ± 0.028 b0.70 ± 0.022 b0.31 ± 0.013 a0.27 ± 0.027 b
        T21.84 ± 0.02 c2.33 ± 0.21 a0.90 ± 0.005 a0.74 ± 0.022 ab0.31 ± 0.009 a0.28 ± 0.006 b
        T31.98 ± 0.02 b2.51 ± 0.13 a0.92 ± 0.034 a0.72 ± 0.030 b0.32 ± 0.017 a0.32 ± 0.021 a
        T42.20 ± 0.07 a2.50 ± 0.19 a0.90 ± 0.008 a0.78 ± 0.022 a0.32 ± 0.017 a0.32 ± 0.006 a
        注(Note):CK—不施肥 No fertilizer; T1—施用 2% 虫粪肥 Application of 2% insect frass; T2—施用 4% 虫粪肥 Application of 4% insect frass; T3—施用 6% 虫粪肥 Application of 6% insect frass; T4—施用 8% 虫粪肥 Application of 8% insect frass. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments (P < 0.05).
      • 表3表明,随着虫粪施用量的增加,显著提高了土壤pH、有机质含量、EC值、铵态氮、有效磷、速效钾含量。土壤pH两年中分别由6.46、6.51提升到7.13、7.14。有机质含量提高了7.1%~32.5%,EC值提高了13.6%~99.9%,铵态氮含量提高了25.2%~195.4%,有效磷含量提高了45.7%~312.0%,速效钾含量提高了1.7~20.1倍。说明虫粪肥的施用可以显著提高土壤肥力。

        表 3  2018和2019年不同用量虫粪处理的土壤理化性质

        Table 3.  soil physical and chemical properties under the treatments with different amounts of insect frass in 2018 and 2019

        处理
        Treatment
        pH有机质 Organic matter (%)EC (μS/cm)
        201820192018201920182019
        CK6.46 ± 0.07 c6.51 ± 0.09 d6.33 ± 0.04 d5.37 ± 0.14 c407.5 ± 0.5 e394.5 ± 0.5 d
        T16.53 ± 0.09 c6.65 ± 0.09 c6.78 ± 0.18 c6.22 ± 0.20 b469.5 ± 7.5 d448.0 ± 13.0 c
        T26.75 ± 0.06 b6.78 ± 0.03 bc7.45 ± 0.15 b6.48 ± 0.12 b562.0 ± 15.0 c518.3 ± 2.5 b
        T36.79 ± 0.05 b6.89 ± 0.05 b7.84 ± 0.11 a7.09 ± 0.32 a652.3 ± 20.3 b552.7 ± 29.6 b
        T47.13 ± 0.04 a7.14 ± 0.08 a7.93 ± 0.10 a7.11 ± 0.37 a814.7 ± 13.8 a623.7 ± 29.9 a
        处理
        Treatment
        铵态氮 NH4+-N (mg/kg)有效磷 Available P (mg/kg)速效钾 Available K (mg/kg)
        201820192018201920182019
        CK60.5 ± 1.4 d50.3 ± 1.4 d10.1 ± 0.3 e7.3 ± 0.3 e75.8 ± 2.9 e51.3 ± 2.9 e
        T176.2 ± 2.5 c69.7 ± 1.6 c16.3 ± 0.5 d10.7 ± 0.2 d358.2 ± 19.0 d139.7 ± 24.9 d
        T275.7 ± 6.0 c70.7 ± 1.2 c23.0 ± 1.1 c16.0 ± 0.7 c712.7 ± 14.0 c433.7 ± 57.4 c
        T3113.3 ± 3.0 b79.7 ± 4.6 b30.6 ± 2.2 b20.7 ± 1.8 b1125.7 ± 76.6 b797.8 ± 26.7 b
        T4178.6 ± 1.9 a95.7 ± 2.0 a39.3 ± 2.5 a30.2 ± 2.9 a1493.3 ± 132.6 a1084.3 ± 49.6 a
        注(Note):CK—不施肥 No fertilizer; T1—施用 2% 虫粪肥 Application of 2% insect frass; T2—施用 4% 虫粪肥 Application of 4% insect frass; T3—施用 6% 虫粪肥 Application of 6% insect frass; T4—施用 8% 虫粪肥 Application of 8% insect frass. 同列数据后不同小写字母表示处理间差异显著 (P < 0.05) Values followed by different small letters in a column mean significant difference among treatments (P < 0.05).
      • 图3结果显示,虫粪肥提高了13.1%~109.5%的脲酶活性,提高了14.5%~45.4%的磷酸酶活性,提高了25.2%~286.5%的蔗糖酶活性,对土壤过氧化氢酶活性没有显著影响。不同用量虫粪肥处理,T4处理的脲酶、蔗糖酶活性都显著高于其它处理,T1、T2、T3处理的脲酶活性两年中都没有显著差异,而T1、T2、T3处理的蔗糖酶活性随虫粪肥施用量增加而显著提高。T3、T4的磷酸酶活性显著高于T1处理,而T3、T4间没有显著差异。

        图  3  2018和2019年不同用量虫粪肥处理土壤酶活性

        Figure 3.  Soil enzyme activities under the treatments with different amounts of insect frass in 2018 and 2019

      • 表4可知,除产量和叶片POD活性外各指标与有机质含量都呈极显著的正相关,说明虫粪肥施用在提高土壤有机质含量的同时也提高了土壤养分、土壤、植物的酶活性。而产量与土壤磷酸酶、蔗糖酶、过氧化氢酶活性,叶片SOD、CAT酶活性呈显著正相关。土壤酶活性和植物叶片的酶 (除POD) 活性与土壤有机质、土壤速效养分含量呈显著正相关。

        表 4  各指标间的相关性分析 (r)

        Table 4.  Correlation analysis of each index

        项目
        Item
        有机质
        Organic matter
        NH4+-NAPAKUAPASACASODPODCAT产量
        Yield
        有机质
        Organic matter
        1
        NH4+-N0.77**1
        AP0.88**0.90**1
        AK0.88**0.88**0.98**1
        UA0.59**0.89**0.78**0.80**1
        PA0.46**0.54**0.56**0.64**0.62**1
        SA0.72**0.83**0.90**0.91**0.86**0.65**1
        CA0.51**0.41*0.36*0.270.1−0.280.031
        SOD0.74**0.69**0.81**0.85**0.71**0.69**0.91** −0.021
        POD–0.54**–0.3–0.48**–0.49**–0.140.05–0.32 –0.3–0.291
        CAT0.62**0.270.60**0.65**0.290.45*0.61** −0.070.74**–0.49**1
        产量 Yield0.15–0.140.190.25–0.010.38*0.38* 0.54**0.53**–0.190.79**1
        注(Note):AP—有效磷 Available P; AK—速效钾 Available K; UA—脲酶活性 Urease activity; PA—磷酸酶活性 Phosphatase activity; SA—蔗糖酶活性 Sucrase activity. *—P < 0.05; **—P < 0.01.
      • 黑水虻虫粪有机肥为一种新型的有机肥,不仅含有多种营养物质,还含有多种微生物、酶和活性物质[6-7]。本研究采用的虫粪肥为黑水虻转化鸡粪所得,其有机质含量高达64.0%,养分 (N+P2O5+K2O) 含量达11.5%,有机质和养分含量都远高于我国商品有机肥标准 (有机质 ≥ 45%,N+P2O5+K2O ≥ 5%)。黑水虻虫粪肥中的养分含量高,而且大多是以有机结合态存在,随矿化过程而释放,提高土壤速效养分缓冲容量,减少损失,所以对土壤肥力影响时间更长[21],更有利于作物对养分的充分利用。本试验中施用虫粪肥种植两季水稻,水稻产量增加19.9%~195.5%,土壤有机质含量提高7.1%~32.5%,铵态氮含量提高了25.2%~195.4%,有效磷含量提高了45.7%~312.0%,速效钾含量提高了1.7~20.1倍。其他学者对有机肥的研究也有相似的结果,如李其胜等[22]研究表明有机肥施用后连续两年的种植中,有机肥处理提高了10.06%~19.39%作物的产量,提高了4.17%~25.73%土壤有机质、全氮、全磷和速效磷含量。曹云等[23]研究也表明,堆肥施用后两年内都提高了土壤的有机碳和矿质养分含量,但增加的幅度都小于该虫粪有机肥。黑水虻虫粪磷 (5.03%)、钾 (3.08%) 含量远高于传统粪肥,对土壤速效磷、有效钾的提升效果非常显著。可能因土壤对进入的PO43−的吸附固定,使土壤速效钾的增加效果好于磷。所以黑水虻虫粪的施用可为喜钾作物提供更丰富的钾素供应,并提高作物的品质。黑水虻虫粪中高的有机碳和矿质养分含量可为土壤中的微生物提供更多营养物质,促进其生长繁殖,从而改善土壤的生物环境。同时畜禽粪便在经过黑水虻过腹转化的过程中,受虫体肠道微生物影响,虫粪中有益微生物种群更丰富[7],更有利于加强酶促反应进行,从而提高土壤酶活性[24-26]。本研究中,施用虫粪有机肥后,土壤中除过氧化氢酶活性在两年内无显著变化外,脲酶、磷酸酶、蔗糖酶活性均有不同程度的提高,并且随着虫粪肥施用量的增加而升高。前人对于不同有机肥的研究也有相似的结论,如郭鹏飞等[27]通过田间小区试验表明,施用牛粪、猪粪、沼渣有机肥能提高土壤中的脲酶、碱性磷酸酶、蔗糖酶和过氧化氢酶活性;田小明等[28]研究表明,连续施用生物有机肥3年后,显著提高了土壤中脲酶、蛋白酶、过氧化氢酶活性,但是对土壤中多酚氧化酶、蔗糖酶的活性影响不大。施用有机肥对土壤酶活性有促进作用,但不同酶活性变化趋势却不一定相同,这可能是受到肥料类型、土壤类型以及环境条件等综合因素的影响。

        虫粪肥的施用提高了土壤酶活性和土壤养分含量,促进水稻器官的后期发育,提高水稻干物质的积累和结实率,尤其是可以提高抽穗期后的光合作用,提高水稻灌浆能力,促使籽粒饱满,从而提高产量[12]。本试验在第二年的水稻种植中,随着虫粪使用量的增加产量增加,8%虫粪处理的水稻产量最高,而在第一年的种植中施用4%虫粪的水稻产量最高,6%、8%虫粪施用量处理产量反而降低,尤其8%处理产量显著低于对照不施肥处理。可能在第一年施用时,8%虫粪的施用量过大,虫粪在土壤中厌氧发酵产生了甲烷、氨气等有害气体,同时消耗土壤中的氧气,抑制了作物的生长发育,造成作物产量的降低。也可能由于有机肥施用过量造成土壤养分过量,产量反而下降。如陈琨等[29]的研究发现,有机肥施用量超过4500 kg/hm2时,水稻产量随有机肥施用量的增加而降低。Deng等[30]的研究表明,在氮肥施用量超过N 250 kg/hm2时,水稻产量随氮肥施用量增加而降低。到第二年随着虫粪的充分腐熟和养分含量的降低,6%、8%虫粪施用量处理水稻的产量显著高于其他处理,同时也高于第一年的产量。第二年虫粪肥处理产量都高于不施肥处理,说明虫粪肥具有显著的后续肥效,在第二年中还能够为水稻生长提供足够的养分。

      • 黑水虻虫粪肥的施用提高了土壤有机质、速效氮、速效磷、速效钾养分含量和土壤酶活性,合理的施用量能促进当季和后茬水稻生长,提高水稻产量和稻米养分含量。黑水虻虫粪作为一种新型有机肥料,具有广阔的应用潜力。

    参考文献 (30)

    目录

      /

      返回文章
      返回