• ISSN 1008-505X
  • CN 11-3996/S
黄丽雅, 李方剑, 张亚楠, 麦翠珊, 王金祥. 植物响应低硫胁迫的分子生物学机制研究进展[J]. 植物营养与肥料学报, 2022, 28(4): 732-742. DOI: 10.11674/zwyf.2021417
引用本文: 黄丽雅, 李方剑, 张亚楠, 麦翠珊, 王金祥. 植物响应低硫胁迫的分子生物学机制研究进展[J]. 植物营养与肥料学报, 2022, 28(4): 732-742. DOI: 10.11674/zwyf.2021417
HUANG Li-ya, LI Fang-jian, ZHANG Ya-nan, MAI Cui-shan, WANG Jin-xiang. Advances on molecular mechanisms of plants in response to low sulfur stress[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 732-742. DOI: 10.11674/zwyf.2021417
Citation: HUANG Li-ya, LI Fang-jian, ZHANG Ya-nan, MAI Cui-shan, WANG Jin-xiang. Advances on molecular mechanisms of plants in response to low sulfur stress[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 732-742. DOI: 10.11674/zwyf.2021417

植物响应低硫胁迫的分子生物学机制研究进展

Advances on molecular mechanisms of plants in response to low sulfur stress

  • 摘要:
    目的 硫是植物生长发育所必需的营养元素之一。硫不仅参与半胱氨酸和蛋白质等初生代谢产物的合成,还参与硫代葡萄糖苷、植保素、植物螯合肽、维生素、辅酶A等次生代谢物质的合成。因此,适量的硫供给可促进植物生长发育,提高作物的产量和品质,增强植物耐受生物和非生物胁迫的能力。
    主要进展 植物主要通过根系从土壤吸收硫酸盐,硫酸盐在植物体内通过ATP硫酸化酶、腺苷5′-磷硫酸还原酶、亚硫酸还原酶等催化转化为硫离子,再与乙酰丝氨酸反应在乙酰基丝氨酸硫醇裂解酶催化下形成半胱氨酸。越来越多研究揭示,植物对硫的吸收、同化、转运和再分配在分子层面受到精密调控;相应地,植物在转录、转录后、翻译、翻译后以及表观遗传层面应答低硫胁迫。硫胁迫在不同程度上上调或下调某些与硫吸收、转运、同化相关基因的转录或蛋白的翻译及降解,从而改变植物对硫的吸收利用,维持植物的生长发育,提高硫的吸收和利用效率。
    研究展望 在转录水平是否还有其他转录因子调控植物低硫胁迫响应还有待挖掘;在转录后水平,是否存在新的miRNA可以调控硫响应基因的转录本丰度;在翻译后水平,转运子是如何被定位、修饰和降解;在表观遗传层面,DNA甲基化、组蛋白修饰以及RNA修饰如何调节硫的吸收和同化相关基因和蛋白的活动;以及硫与其他养分互作的分子机制等很多细节还不清楚,亟需进一步研究。

     

    Abstract:
    Objectives Sulfur (S) is an essential elemental nutrient for plant growth and development. It is involved in the production of primary (e.g., cysteine and protein) and secondary metabolites (e.g., glucosinolate, plant defensins, phytochelatins, vitamins, and coenzyme A).
    Main advances  Plants take up sulfate from soils via roots and convert it into sulfide in plant cells through adenosine triphosphate sulfurylase, adenosine 5′-phosphosulfate reductase, and sulfite reductase. Sulfide reacts with O-acetylserine to form cysteine, catalyzed by OAS (thiol)-lyase. Studies have shown that plants’ uptake, transport, assimilation, and redistribution of sulfate is modified. Accordingly, plants cope with S starvation at the transcription, post-transcription, translation, post-translation, and epigenetic levels. Sulphur stress up-regulates or down-regulates transcription of some genes, or protein translation and degradation, which are involved in S uptake, transport, and assimilation. This alters S uptake and utilization in plants, maintains plant growth and development, and increases S uptake and use efficiency.
    Outlook  At the transcription level, there is a need to study other transcription factors regulating plants’ responses to low S. Further, the post-transcription level research needed to include studying how novel miRNAs regulate the transcript level of S-responsive genes. More research is needed to understand how transporters are localized, modified, and degraded at the translation and epigenetic levels. How do DNA methylation, histone and RNA modification modulate the activities of S uptake- and assimilation-related genes and proteins? The molecular mechanisms underlying interactions between S and other nutrients are unclear, suggesting the need to study the aforementioned research questions.

     

/

返回文章
返回