• ISSN 1008-505X
  • CN 11-3996/S
高剑飞, 韩飞, 张家铱, 夏蕾, 吉卉, 李洪波, 刘碧桃. 根性状的共变性和可塑性驱动不同水稻基因型对氮环境的适应性[J]. 植物营养与肥料学报, 2022, 28(4): 611-621. DOI: 10.11674/zwyf.2021469
引用本文: 高剑飞, 韩飞, 张家铱, 夏蕾, 吉卉, 李洪波, 刘碧桃. 根性状的共变性和可塑性驱动不同水稻基因型对氮环境的适应性[J]. 植物营养与肥料学报, 2022, 28(4): 611-621. DOI: 10.11674/zwyf.2021469
GAO Jian-fei, HAN Fei, ZHANG Jia-yi, XIA Lei, JI Hui, LI Hong-bo, LIU Bi-tao. The covariation and plasticity of root traits drive different rice genotypes to adapt to the nitrogen environment[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 611-621. DOI: 10.11674/zwyf.2021469
Citation: GAO Jian-fei, HAN Fei, ZHANG Jia-yi, XIA Lei, JI Hui, LI Hong-bo, LIU Bi-tao. The covariation and plasticity of root traits drive different rice genotypes to adapt to the nitrogen environment[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 611-621. DOI: 10.11674/zwyf.2021469

根性状的共变性和可塑性驱动不同水稻基因型对氮环境的适应性

The covariation and plasticity of root traits drive different rice genotypes to adapt to the nitrogen environment

  • 摘要:
    目的 研究不同氮敏感基因型的植物生长与根性状之间的关系及其对氮环境变化的响应,能够从根性状变化的角度来揭示植物对环境变化的适应性,从而有助于水稻育苗基因型的选育。
    方法 在宁夏引黄灌区,采用双因素(水稻基因型×氮水平)随机区组设计田间试验,选取12个水稻基因型(高氮敏感基因型和低氮敏感基因型各6个)作为供试材料,设置了施氮 0、180 kg/hm2 2个施用水平(以N0、N180表示)。在开花期,测定了水稻地上部生长(地上部氮累积量、地上部生物量)、根系生长性状(根生物量、根冠比、根长和根体积)及根形态性状(根直径、比根长和根组织密度)。
    结果 高氮敏感基因型水稻地上部氮累积量、地上部生物量、根生物量、根长及根体积在N180处理下显著高于N0处理,分别增加了3.8、2.5、2.4、2.4、2.5倍,但是低氮敏感基因型除地上部氮累积量N180比N0显著高1.6倍外,其余4种性状在两个氮水平间无显著差异。在N0处理下,低氮敏感基因型的根生物量、根长、根体积和地上部生物量高于高氮敏感基因型,而在N180处理下,低氮敏感基因型地上部氮累积量和地上部生物量低于高氮敏感基因型,根生长性状无显著差异。高氮敏感基因型的地上部生长和根生长性状对氮的可塑性响应程度均大于低氮敏感基因型,但是两个氮敏感基因型的根形态性状对氮的可塑性响应程度均较小,而且N0和N180下的根形态性状在两个氮敏感基因型间均无显著差异。主成分分析结果表明,在N180处理下,根生长性状更加聚集,且独立于根形态性状(根直径和比根长),而在N0处理下根性状更加分散。相关性分析结果则表明,高氮敏感基因型的根性状在N180处理下相关性程度高于N0处理,而低氮敏感基因型在N0和N180处理下始终维持较高的根性状相关性。
    结论 水稻主要是通过调节根系生长性状,而不是根形态性状来应对氮环境的变化。低氮敏感基因型水稻在低氮和正常氮环境下均表现出较强的根性状共变性,而高氮敏感基因型仅在正常氮环境下表现出较高的性状关联,且根生长性状的可塑性显著高于低氮敏感基因型。由此可知,低氮敏感基因型主要通过整合根性状的共变来适应环境,而高氮敏感基因型则通过提高根性状的可塑性来适应环境。

     

    Abstract:
    Objectives Plants usually adjust root traits as an adaptation to nitrogen-deficient environments. The study explored changes in the root traits of different rice genotypes under varying soil N environments, which will help the breeding of rice cultivars.
    Methods Six high N-sensitive genotypes (high-NS) and six low N-sensitive genotypes (low-NS) were planted under N 0 and 180 kg/hm2 (N0, N180) in a field experiment conducted in the Yellow River Irrigation Area of Ningxia. The responses of the plant genotypes (high-NS and low-NS) to N0 and N180 were observed by measuring the above-ground traits (aboveground biomass and aboveground N accumulation), root growth traits (root biomass, root-shoot ratio, root length, and root volume) and root morphological traits (root diameter, specific root length, and root tissue density).
    Results The aboveground N accumulation, aboveground biomass, root biomass, root length, and root volume of the high-NS under N180 were 3.8, 2.5, 2.4, 2.4, and 2.5 times of those under N0, respectively. The traits of low-NS showed no significant difference (P>0.05) between N180 and N0, except the aboveground N accumulation under N180, which was 1.6 times of that in N0. The low-NS had higher root growth traits (root biomass, root length, and root volume) and aboveground N accumulation and biomass than high-NS under N0. Aboveground N accumulation and biomass were lower in low-NS than high-NS under N180. The plasticity of the aboveground and root growth traits of high-NS to N supply was higher than low-NS. However, both genotypes’ root morphological traits were low, and there was no significant difference (P>0.05) under N0 and N180 conditions. The results of the principal component analysis showed that the root growth traits were more aggregative and independent of root morphological traits (root diameter and specific root length) under N180. In contrast, the root traits were more dispersed under N0. The correlation among the root traits of high-NS under N180 was higher than N0. For low-NS, high correlations were recorded among the root traits under N0 and N180 treatments.
    Conclusions Rice adaptation to the nitrogen environment is primarily driven by root growth traits regulation and less by morphological traits. The low nitrogen-sensitive genotypes show strong trait covariation, regardless of the nitrogen supply. The high nitrogen-sensitive genotypes show strong trait covariation only under normal N supply (N180) and had higher plasticity in plant growth traits than the low nitrogen-sensitive genotype. Therefore, the low nitrogen-sensitive genotype mainly integrates the covariation of plant traits as an adaptation strategy to the environment. On the other hand, the high nitrogen-sensitive genotype mainly improves the root’s plasticity to adapt to the environment.

     

/

返回文章
返回