• ISSN 1008-505X
  • CN 11-3996/S
单会茹, 张璐, 高强, 段英华, 徐明岗. 红壤有机碳组分中微生物群落构成及均匀度决定其矿化特征[J]. 植物营养与肥料学报, 2023, 29(1): 109-119. DOI: 10.11674/zwyf.2022224
引用本文: 单会茹, 张璐, 高强, 段英华, 徐明岗. 红壤有机碳组分中微生物群落构成及均匀度决定其矿化特征[J]. 植物营养与肥料学报, 2023, 29(1): 109-119. DOI: 10.11674/zwyf.2022224
SHAN Hui-ru, ZHANG Lu, GAO Qiang, DUAN Ying-hua, XU Ming-gang. Microbial community composition and species uniformity regulate the mineralization characteristics of organic carbon fractions in red soil[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 109-119. DOI: 10.11674/zwyf.2022224
Citation: SHAN Hui-ru, ZHANG Lu, GAO Qiang, DUAN Ying-hua, XU Ming-gang. Microbial community composition and species uniformity regulate the mineralization characteristics of organic carbon fractions in red soil[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 109-119. DOI: 10.11674/zwyf.2022224

红壤有机碳组分中微生物群落构成及均匀度决定其矿化特征

Microbial community composition and species uniformity regulate the mineralization characteristics of organic carbon fractions in red soil

  • 摘要:
    目的 有机碳矿化是陆地碳循环的关键环节,探究长期不同施肥下有机碳组分的矿化特征及其微生物学响应,以明确有机碳在土壤中的固存过程和损失机制。
    方法 选取中国农业科学院祁阳红壤肥力长期试验的撂荒(CK0)、不施肥对照(CK)、氮磷钾化肥配施(NPK)和化肥配施有机肥(NPKM) 4个处理,通过物理分组方法获得粗颗粒有机碳(cPOC)、细颗粒有机碳(fPOC)、团聚体内颗粒有机碳(iPOC)和矿物结合态有机碳(MOC)。以该4个处理的有机碳组分进行室内培养试验,研究有机质的矿化动态。采用磷脂脂肪酸(PLFA)方法测定各组分中的微生物量及组成,再利用冗余分析明确微生物群落特征对有机碳矿化的贡献。
    结果 长期施肥显著提升了红壤总有机碳水平,显著提高了活性有机碳组分(cPOC、fPOC、iPOC)的占比。有机碳组分的矿化速率表现出明显的阶段性特征:前期(矿化1~35天)矿化迅速,后期逐渐变缓并趋于平稳。各组分平均最大矿化速率和累积矿化量均表现为fPOC>cPOC>iPOC>MOC,表明fPOC组分的活性最高,可矿化性最强。与CK相比,CK0处理的cPOC、fPOC、iPOC和MOC组分最大矿化速率分别提高了158.0%、36.4%、67.3%和146.0%;NPK处理的4个组分有机碳的矿化速率与CK无显著差异;NPKM处理分别提高了246.0%、62.9%、21.4%和183.0%。土壤有机碳组分快速矿化阶段(矿化15天)的总PLFA生物量表现为fPOC最高,平均为94.5 nmol/g,约为其他组分(平均26.1~35.0 nmol/g)的3倍。各组分中革兰氏阳性菌/革兰氏阴性菌(G+/G)比例表现为MOC (6.06)>cPOC (5.18)>fPOC (1.26)>iPOC (1.03),平均真菌/细菌(F/B)为iPOC (0.11)>fPOC (0.10)>MOC (0.06)>cPOC (0.03),fPOC和iPOC组分F/B值较高而G+/G值较低,且二者的微生物群落多样性指数都高于其他组分,表明二者群落结构更稳定,所受养分胁迫较少,群落多样性高。冗余分析表明,微生物群落特征对组分矿化的总解释率达96.4%,其中总PLFA含量、真菌、革兰氏阴性菌是对有机碳组分矿化影响最大的3个因素。
    结论 土壤有机碳的可矿化程度与微生物群落结构及群落的物种均匀度密切相关。长期施肥尤其是有机无机肥配施,提高了活性组分中的微生物量,因此提高了土壤中可矿化碳的比例,加之有机肥直接为土壤养分循环提供了额外的能量来源,促进了有机碳的矿化,这可能是施用有机肥提高土壤肥力的原因之一。

     

    Abstract:
    Objective Terrestrial carbon cycle is dependent on the mineralization of organic carbon in soil. We explored the mineralization characteristics of organic carbon components and their microbiological responses to clarify the turnover process of soil organic carbon.
    Methods The research was a long-term experiment conducted on the red soil of Qiyang Experimental Station of Chinese Academy of Agricultural Sciences. The tested soil samples were collected from four treatments - fallow (CK0), no fertilization control (CK), NPK chemical fertilizers (NPK), and NPK with organic fertilizers (NPKM). Firstly, a physical grouping method was used to divide the total organic carbon (OC) into four fractions, as coarse-particle organic carbon (cPOC), fine-particle organic carbon (fPOC), intra-microaggregate-particle organic carbon (iPOC), and mineral-associated organic carbon (MOC). Then, chamber culture method was used to determine the mineralization dynamics of the four fractions, and phospholipid fatty acid (PLFA) method was used to determine the microbial biomass and composition. Finally, redundancy analysis was employed for the contribution of microbial community characteristics to the organic carbon mineralization.
    Results Long-term fertilization significantly increased the proportion of active organic carbon fractions (cPOC, fPOC, iPOC). The mineralization rate of all the four fractions was high in the early 1–35 days, and gradually slowed down until stabilized. The maximum mineralization rate and cumulative mineralization amount of each fraction were in order fPOC>cPOC>iPOC>MOC, indicating that the fPOC had the highest activity. Compared with CK, CK0 increased the maximum mineralization rates of cPOC, fPOC, iPOC, and MOC by 158.0%, 36.4%, 67.3% and 146.0%, respectively; NPK treatment did not affect these indices significantly; while NPKM treatment increased them by 246.0%, 62.9%, 21.4%, and 183.0%, respectively. fPOC exhibited the highest total PLFA biomass at the rapid mineralization stage (94.5 nmol/g), which was about 3 times of other fractions (26.1–35.0 nmol/g). The ratio of Gram-positive bacteria to Gram-negative bacteria (G+/G) in each fraction was MOC (6.06)>cPOC (5.18)>fPOC (1.26)>iPOC (1.03), and the average ratio of fungi to bacteria (F/B) was iPOC (0.11)>fPOC (0.10)>MOC (0.06)>cPOC (0.03), the fPOC and iPOC had higher F/B ratio and lower G+/G ratio, and higher diversity index than the other two fractions, indicating a more stable community structure, less nutrient stress and high community diversity. Redundancy analysis showed that microbial factors, total PLFA, fungal, and Gram-negative, accounted for 96.4% of the fractional mineralization differences.
    Conclusions The mineralization degree of soil organic carbon is closely related to the microbial community structure and species uniformity of the community. Long-term fertilization, especially with NPKM treatment increased the microbial biomass of active organic carbon fractions, and the extra energy source input (compared to NPK) exaggerated the mineralization of organic carbon. This may be one of the reasons for the complementary application of organic fertilizers to improve soil fertility.

     

/

返回文章
返回