• ISSN 1008-505X
  • CN 11-3996/S
胡海玲, 马钰雯, 耿赫阳, 陈晓璇, 石聪聪, 王英男, 王竞红, 蔺吉祥. 丛枝菌根真菌AMF提高植物抗逆性的组学技术研究进展[J]. 植物营养与肥料学报, 2022, 28(10): 1928-1936. DOI: 10.11674/zwyf.2022245
引用本文: 胡海玲, 马钰雯, 耿赫阳, 陈晓璇, 石聪聪, 王英男, 王竞红, 蔺吉祥. 丛枝菌根真菌AMF提高植物抗逆性的组学技术研究进展[J]. 植物营养与肥料学报, 2022, 28(10): 1928-1936. DOI: 10.11674/zwyf.2022245
HU Hai-ling, MA Yu-wen, GENG He-yang, CHEN Xiao-xuan, SHI Cong-cong, WANG Ying-nan, WANG Jing-hong, LIN Ji-xiang. Progress in AMF enhancing plant stress tolerance using omics techniques[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1928-1936. DOI: 10.11674/zwyf.2022245
Citation: HU Hai-ling, MA Yu-wen, GENG He-yang, CHEN Xiao-xuan, SHI Cong-cong, WANG Ying-nan, WANG Jing-hong, LIN Ji-xiang. Progress in AMF enhancing plant stress tolerance using omics techniques[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1928-1936. DOI: 10.11674/zwyf.2022245

丛枝菌根真菌AMF提高植物抗逆性的组学技术研究进展

Progress in AMF enhancing plant stress tolerance using omics techniques

  • 摘要:
    目的 丛枝菌根真菌(AMF)可以显著提高植物对逆境胁迫的抵抗能力,本文综述了国内外针对代表性组学技术(转录组学、蛋白质组学和代谢组学)在AMF提高植物抗逆领域(干旱、温度、盐碱、重金属)的研究进展,分析了在逆境胁迫下,植物–菌根共生体在分子层面上的应答调控机理,为深入理解AMF提高植物耐逆的分子机理提供一定的科学依据。
    主要进展 植物主要通过根系与AMF建立共生关系,进而从土壤中吸收更多的水分和营养物质,提高植物对非生物胁迫的抵抗能力。菌根植物在转录、翻译以及表观遗传层面应答非生物胁迫。AMF在不同程度上上调或下调某些与非生物胁迫相关基因的转录或蛋白的翻译及降解,从而提高植物对非生物胁迫的抵抗能力,维持植物的生长发育,提高其对水分和营养物质的吸收和利用效率。通过转录组学、蛋白质组学和代谢组学分析关键基因、蛋白及代谢物的变化,为深入挖掘AMF提高植物抗逆机理提供理论依据。
    研究展望 揭示丛枝菌根共生体抗逆机理的组学技术研究仍处于起步阶段,单一组学的应用限制了信息表达的完整性和深层次网络调控机理的精确性。随着测序技术和手段在速度、精度等方面的提高以及生物信息学的更新发展,AMF提高植物抗逆性组学的研究将朝着多组学结合的方向发展,使研究者能够从多角度全面探究植物相关研究的分子机理,这有助于更全面地理解植物相关生命活动的分子调控规律。

     

    Abstract:
    Objectives Arbuscular mycorrhizal fungi (AMF) can improve plant resistance to stress. This paper reviewed the documented progress of national and international research on how AMF enhance plant stress tolerance (drought, temperature, salinity, heavy metals) based on omics technologies (transcriptomics, proteomics and metabolomics). The paper also analysed the mechanism regulating plant-mycorrhizal symbionts at the molecular level under stress, which provides a scientific basis for an in-depth understanding of the molecular mechanism of plant stress tolerance.
    Main advances Plants can establish a symbiotic relationship with AMF in the roots to absorb more water and nutrients from the soil, improving their resistance to abiotic stress. Mycorrhizal plants respond to abiotic stresses at the transcriptional, translational, and epigenetic levels. AMF could improve plant resistance to abiotic stress, maintain plant growth and development, and improve water utilization and nutrient absorption efficiency by regulating the transcription of some abiotic stress-related genes or translating and degrading proteins. Analyzing key genes related to proteins and metabolites by transcriptomics, proteomics, and metabolomics could provide a theoretical basis to further explore the mechanism underlying the AMF effect on plant stress resistance.
    Outlook The stress resistance mechanism of arbuscular mycorrhizal symbionts is not fully understood. This is because the single omics method limits the integrity of information expressed and the accuracy of the deep-rooted network regulation mechanism. With improved sequencing technologies in speed, accuracy, and update and development of bioinformatics, researchers should consider using multiple omics methods simultaneously to enhance understanding of the molecular regulation of plant-related life activities.

     

/

返回文章
返回