• ISSN 1008-505X
  • CN 11-3996/S
徐晓峰, 刘迪, 付森林, 陈文亮. 小麦玉米轮作体系农田土壤有机氮组分对施氮量的响应[J]. 植物营养与肥料学报, 2023, 29(4): 628-639. DOI: 10.11674/zwyf.2022350
引用本文: 徐晓峰, 刘迪, 付森林, 陈文亮. 小麦玉米轮作体系农田土壤有机氮组分对施氮量的响应[J]. 植物营养与肥料学报, 2023, 29(4): 628-639. DOI: 10.11674/zwyf.2022350
XU Xiao-feng, LIU Di, FU Sen-lin, CHEN Wen-liang. Response of soil organic nitrogen components to nitrogen application rate in a wheat-maize rotation cropland[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 628-639. DOI: 10.11674/zwyf.2022350
Citation: XU Xiao-feng, LIU Di, FU Sen-lin, CHEN Wen-liang. Response of soil organic nitrogen components to nitrogen application rate in a wheat-maize rotation cropland[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 628-639. DOI: 10.11674/zwyf.2022350

小麦玉米轮作体系农田土壤有机氮组分对施氮量的响应

Response of soil organic nitrogen components to nitrogen application rate in a wheat-maize rotation cropland

  • 摘要:
    目的 土壤有机氮组成和有效性影响土壤肥力的高低。研究不同施氮量下土壤有机氮组分含量的变化规律,及其与冬小麦氮素吸收之间的关系,为科学开展氮肥减施提供理论依据。
    方法 冬小麦–夏玉米轮作田间试验在河南温县进行,试验历经3季冬小麦和两季夏玉米。小麦设置5个施氮(N)量处理:300 kg/hm2 (N300)、225 kg/hm2 (N225)、195 kg/hm2 (N195)、165 kg/hm2 (N165)、0 kg/hm2 (N0),从第2季冬小麦开始,调查冬小麦产量和吸氮量,小麦播种前和收获后测定0—20 cm土层土壤全氮、有机氮组分含量。
    结果 实现冬小麦稳产的最低施氮量为165 kg/hm2,满足冬小麦对氮素需求的最低施氮量为195 kg/hm2。酸解氮(TNex)是土壤中主要的有机氮组分,占全氮的59.06%~92.26%。随着试验时间的延长,N165和N195处理降低了TNex在有机氮中的比例,而N0、N225 和N300维持了稳定的TNex比例。在酸解氮中,酸解氨基糖态氮(ASN)、酸解铵态氮(ANN)、酸解氨基酸态氮(AAN)分别占TNex的18.40%~46.62%、8.91%~34.40%、13.43%~28.52%。5季后N0、N165处理土壤酸解态氮的所占比例表现为ANN>AAN>ASN,而N195、N225和N300处理的所占比例表现为ASN>ANN>AAN。冗余分析表明,冬小麦播种前ASN、ANN、AAN和施氮量对土壤有机氮组分含量变化的贡献分别为19.11%、18.19%、9.80%和17.45%,它们共同调节土壤有机氮组分的变化。结构方程分析表明,施氮量影响土壤有机氮间的转化关系及对冬小麦氮素吸收量的贡献。AAN是中、低施氮量条件下影响冬小麦氮素吸收量的关键组分,对冬小麦地上部氮吸收量的贡献为19.11%。ASN是高施氮量条件下影响冬小麦氮素吸收量的关键组分,对冬小麦地上部氮吸收量的贡献为8.65%。
    结论 土壤中有机氮的主要组分是酸解氮,施氮量影响土壤中各有机氮组分的含量及转化。低施氮量导致土壤全氮含量下降,并降低全氮中酸解态氮的比例,高施氮量可维持酸解态氮的稳定。低施氮量提高了酸解铵态氮的比例,降低了氨基糖态氮的比例。在中低施氮量下,酸解氨基酸态氮是土壤供氮的关键组分;在高施氮量下,酸解氨基糖态氮是土壤供氮的关键组分。

     

    Abstract:
    Objectives The composition and availability of soil organic nitrogen (SON) play key roles in soil N retention and supply. Studying the effects of N fertilizer application rate on soil organic N components could provide a reference for rational management of N fertilizer.
    Methods A field experiment was conducted in Wenxian, Henan Province, and lasted for three winter wheat seasons and two summer maize seasons. The N fertilizer application rates on wheat were 300 kg/hm2 (N300), 225 kg/hm2 (N225), 195 kg/hm2 (N195), 165 kg/hm2 (N165), and 0 kg/hm2 (N0). Wheat yield and N uptake were investigated. Before sowing and after wheat harvest, soil samples were collected to determine total N and organic N content.
    Results The minimum N application rate (N165) recorded a stable yield while N195 met the N demand of winter wheat. Acid-soluble nitrogen (TNex) is the main component of SON, accounting for 59.06%−92.26% of total N. TNex was composed of three components, amino sugar nitrogen (ASN), ammonium nitrogen (ANN), and amino acid nitrogen (AAN), which accounted for 18.40%−46.62%, 8.91%−34.40%, and 13.43%−28.52% of TNex, respectively. The reduction of the N application rate led to an increase and decrease in ANN and ASN contents. The results of redundancy analysis indicated the relationship among soil organic N components and ASN before sowing, ANN before sowing, AAN before sowing, and N fertilizer applying rate. Their proportional contribution to the variation in SON was 19.11%, 18.19%, 9.80%, and 17.45%, respectively. The results of the structural equation analysis indicated that the N fertilizer application rate affected the transformation relationship among SON components and their contribution to soil N supply. Under medium and low N application rates, AAN was the key component of soil N supply. The contribution of AAN to the N uptake of winter wheat was 19.11%. ASN was the key component of soil N supply under a high N application rate, and the contribution of ASN to N uptake of winter wheat was 8.65%.
    Conclusions Acid-soluble N is the main organic N component in Wenxian soil. N application rate affects soil organic N component contents and transformation relationship. Low N application rates decrease soil total N, reducing the proportion of acid-soluble nitrogen. High N application rates can maintain the stability of acid-soluble N. Among the acid-soluble N, low N application rates increase the proportion of ANN and decrease the proportion of ASN. Under medium and low N application rates, AAN is the key component of soil N supply. Under high N application rates, ASN is the key component of soil N supply.

     

/

返回文章
返回