• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

寒旱区秸秆覆盖条耕玉米适宜氮肥运筹方式研究

程志鹏 王富贵 王钰剀 王振 梁红伟 王天昊 张悦忠 白岚方 王志刚

引用本文:
Citation:

寒旱区秸秆覆盖条耕玉米适宜氮肥运筹方式研究

    作者简介: 程志鹏 E-mail:wyyczp@163.com;;†共同第一作者 王富贵 E-mail: fgwang2008@163.com;
    通讯作者: 王志刚, E-mail:imauwzg@163.com
  • 基金项目: 国家重点研发计划项目(2022YFD1500902-4);内蒙古自治区重点研发与成果转化项目(2022YFDZ0041)。

Nitrogen fertilizer management for maize production adapted to straw mulching strip tillage in cold and arid regions

    Corresponding author: WANG Zhi-gang, E-mail:imauwzg@163.com
  • 摘要:   【目的】   春旱墒情差,无法按期播种,影响大兴安岭沿麓寒旱区玉米的安全生产。生产上秸秆覆盖免耕直播虽有保墒作用,但存在出苗质量差、追肥困难等问题。为此,我们改进了秸秆覆盖和耕作方式,并研究了控释肥与尿素混合一次性基施的效果,以克服该技术的不足之处。   【方法】   2021—2022年,在大兴安岭沿麓典型寒旱区兴安盟扎赉特旗同步开展耕作方式(试验1)和缓混氮肥施用模式试验(试验2)。试验1:在常规施肥模式下(Sd),设置秸秆覆盖条耕(RST)、常规垄作(CP)、秸秆离田免耕(NT)、秸秆覆盖免耕(RNT) 4个耕作处理。试验2:在秸秆覆盖条耕(RST)方式下,设置常规施肥(Sd)、控释氮肥与普通尿素3∶7 (30%Cr)掺混、控释氮肥与普通尿素5∶5 (50%Cr)掺混3种施肥模式。播前和收获后,取0—20、20—40、40—70、70—100 cm土层土壤样品,测定无机氮含量,用于计算氮素残留量和表观损失。玉米苗期调查出苗率,在吐丝期(R1)、成熟期(R6)取植株样品,测定不同部位生物量和含氮量,收获后调查产量和产量构成因素。   【结果】   RST处理玉米出苗率较NT、CP、RNT处理分别提高1.6%、9.3%和9.1%,群体生物量分别增加2.7%、9.1%和9.1%,产量分别提高4.2%、6.0%和7.2%,氮肥农学效率分别提高29.7%、45.5%和60.0%。秸秆覆盖条耕下,50%Cr处理较30%Cr、Sd处理玉米群体生物量分别提高3.3%和10.6%,花前群体生物量分别提高4.1% 、9.9%,花后群体生物量分别提高2.9%、10.4%,氮素累积分别提高3.6%、14.6%,花前氮素累积分别提高3.8%、12.8%,花后氮素累积分别提高4.3%、21.4%。50%Cr处理玉米产量较30%Cr、Sd处理分别提高3.6%、8.9%,氮肥农学效率分别提高16.3%、49.0%,土壤无机氮残留分别降低2.8%、4.5%,氮素表观损失分别降低8.2%和21.3%,净收益分别提高3.5%和6.9%。   【结论】   秸秆覆盖条耕免耕播种条件下,采用控释氮肥与普通尿素5∶5掺混一次性基施,可显著提高玉米出苗率,保障玉米全生育期氮素有效供应,提高玉米花前、花后群体生物量和氮素的吸收运转率,显著提高玉米产量、氮肥利用效率及经济效益,降低土壤无机氮残留,是寒旱区实现玉米抗旱保苗、氮素高效利用和轻简生产的可行途径。
  • 图 1  不同耕作方式对玉米出苗率的影响

    Figure 1.  Effects of different tillage methods on maize seedling emergence rate

    图 2  不同施肥模式对玉米出苗率的影响

    Figure 2.  Effects of fertilization modes on emergence rate of maize

    图 3  不同耕作及施肥模式下玉米花前、花后及整个生育期干物质累积量

    Figure 3.  Dry matter accumulation at pre- and post-silking and whole growth stage of maize as affectedby tillage and fertilization modes

    图 4  不同耕作及施肥模式下玉米花前、花后及整个生育期氮素累积量

    Figure 4.  Nitrogen accumulation at pre- and post-silking and whole growth period of maize as affected by tillage and fertilization modes

    表 1  耕作方式试验各处理具体实施方法

    Table 1.  The practices in each treatment of different tillage experiment

    处理
    Treatment
    秸秆处理及耕作方式
    Straw treatment and tillage method
    CP 秋季收获后,秸秆全部打包离田,翌年整地起垄镇压后,在垄台上进行播种
    All the straws removed out of fields after harvest in autumn, plough and then make ridges for seeding next spring
    NT 秋季收获后,秸秆全部打包离田,翌年使用免耕播种机直接播种
    All the straws were removed out of fields after harvest in autumn, seeding by no-tillage-drill directly next spring
    RNT 秋季玉米收获时,留茬30 cm,全部秸秆覆盖还田越冬,翌年使用免耕播种机直接播种
    In autumn, 30 cm of maize straws remained at harvest, and the other part of straws were covered on the field, and seeding directly using no-tillage-drill next spring
    RST 秋季玉米收获时,秸秆留茬30 cm,秸秆全部覆盖还田越冬;翌年播种前使用1ST-300型条耕机整地机 (吉林省康达农业机械有限公司) 进行苗带清理,秸秆归行覆盖、苗带深松、碎土镇压,形成25—30 cm宽、耕深25—30 cm的松软苗床,随后使用免耕播种机在苗带施肥、播种
    After harvest in autumn, maize straws, remaining 30 cm high stems, were harvested and covered on the field. Next spring drip-tillage machine was used to clear seeding bends by moving straws away, the seedling belt was deeply loosened and crushed to form a soft seedling bed with a width of 25−30 cm and a depth of 25−30 cm. Then, the no-tillage seeder was used to fertilize and sow in the seedling belt.
    注:所有处理底施N 72 kg/hm2、P2O5 97.5 kg/hm2、K2O 58.5 kg/hm2,拔节期追施尿素N 153 kg/hm2
    Note: N 72 kg/hm2, P2O5 97.5 kg/hm2 and K2O 58.5 kg/hm2 were basal applied, and urea N 153 kg/hm2 was top dressed at jointing stage in all the treatments.
    下载: 导出CSV

    表 2  施肥模式试验各处理具体操作

    Table 2.  Practices in each treatment of fertilization experiment (experiment 2)

    处理 Treatment 肥料掺混比例 Cr: U ratio 施肥模式 Fertilization mode
    0N 不施氮肥 No nitrogen fertilizer
    Sd 基肥+拔节期追肥 Base application and top dressing at jointing period
    30%Cr 3∶7 全部基施 Complete base application
    50%Cr 5∶5 全部基施 Complete base application
    注: Cr—控释尿素,U—普通尿素。耕作方式均为条耕+免耕播种。
    Note: Cr—Controlled-release urea, U—Urea. All the treatments use strip tillage and no-tillage seeding method.
    下载: 导出CSV

    表 3  不同耕作方式对玉米产量及产量构成因素的影响

    Table 3.  Maize yield and yield components under different tillage methods

    年份
    Year
    处理
    Treatment
    穗数 (ears/m2)
    Ear number
    穗粒数
    Kernel number per ear
    千粒重 (g)
    Kernel weight
    籽粒产量 (t/hm2)
    Grain yield
    2021 CP 6.62±0.15 b 591.87±2.55 ab 297.78±2.13 a 11.70±0.17 b
    NT 7.07±0.13 a 578.13±1.32 c 291.74±1.25 a 11.93±0.22 ab
    RNT 6.64±0.06 b 596.40±3.65 a 291.22±1.35 a 11.49±0.19 b
    RST 7.05±0.08 a 586.53±3.12 b 296.38±1.56 a 12.25±0.24 a
    2022 CP 6.25±0.13 c 600.45±4.31 b 279.07±3.17 ab 10.93±0.15 b
    NT 6.63±0.15 b 610.32±5.65 b 275.86±2.56 b 11.10±0.17 b
    RNT 6.38±0.08 c 620.66±3.89 a 284.07±1.89 a 10.89±0.25 b
    RST 6.91±0.11 a 618.73±1.65 a 277.16±3.21 b 11.74±0.21 a
    变异来源 Source of variation
    年份 Year (Y) NS ** ** *
    耕作方式 Tillage method (T) ** * NS **
    年份×耕作方式 Y×T * ** * **
    注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕。同列数据后不同小写字母表示同一年份处理间差异显著 (P<0.05)。*和 **分别表示变量效应达到0.05和0.01显著水平,NS表示效应不显著。
    Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch. Different small letters after data in a column indicate significant difference among treatments in the same year (P<0.05). * and ** indicate the effect of a variable at 0.05 and 0.01 significant level, respectively, NS indicates no significant effect.
    下载: 导出CSV

    表 4  不同施肥模式对玉米产量及产量构成因素的影响

    Table 4.  Maize yield and yield components under different fertilization modes

    年份
    Year
    处理
    Treatment
    穗数 (ears/m2)
    Ear number
    穗粒数
    Kernel number per ear
    千粒重 (g)
    Kernel weight
    籽粒产量 (t/hm2)
    Grain yield
    2021 Sd 7.05±0.11 a 586.53±4.32 b 296.38±3.16 c 12.25±0.13 c
    50%Cr 7.05±0.09 a 600.73±3.59 a 312.35±3.01 a 13.23±0.26 a
    30%Cr 6.95±0.05 a 601.27±5.12 a 307.34±1.12 b 12.84±0.11 b
    0N 6.90±0.12 a 565.33±5.56 c 263.01±2.98 d 10.26±0.27 d
    2022 Sd 6.91±0.11 a 618.73±2.32 b 281.69±2.89 a 11.74±0.31 b
    50%Cr 6.96±0.15 a 634.83±3.46 a 284.55±2.36 a 12.89±0.32 a
    30%Cr 6.90±0.13 a 633.56±4.56 a 283.65±2.18 a 12.38±0.27 ab
    0N 6.63±0.14 b 564.53±5.23 c 255.59±3.14 b 9.43±0.24 c
    变异来源 Source of variation
    年份 Year (Y) NS ** * NS
    施肥模式 Fertilization mode (F) NS ** ** **
    年份×施肥模式 Y×F NS ** ** *
    注:Sd为常规尿素基施加追施;50%Cr、30%Cr为控释氮肥与普通尿素5∶5、3∶7掺混一次性基施;0N—不施氮肥对照。同列数据后不同小写字母表示同一年份处理间差异显著 (P<0.05)。*和 **分别表示变量效应达到0.05和0.01显著水平,NS表示效应不显著。
    Note: Sd is conventional urea applied in base and topdressing; 50%Cr and 30%Cr are controlled release fertilizer mixed with common urea in ratio of 5∶5 and 3∶7, and completely applied as base fertilizer; 0N—No nitrogen fertilizer. Different small letters after data in a column indicate significant difference among treatments in the same year (P<0.05). * and ** indicate the effect of a variable at 0.05 and 0.01 significant level, respectively, NS indicates no significant effect.
    下载: 导出CSV

    表 5  不同耕作及施肥模式对玉米氮素转运及花后籽粒氮素积累的影响

    Table 5.  Effects of tillage and fertilization modes on nitrogen translocation and grain nitrogen accumulation of maize at the post-silking stage

    处理
    Treatment
    营养器官氮素
    转运量
    NRFV
    (kg/hm2)
    花后籽粒氮素
    积累量
    GNAPS
    (kg/hm2)
    营养器官氮素
    转运率
    NTRFV
    (%)
    对籽粒氮产量贡献率 (%)
    Contribution to seed N yield
    氮素转运
    Nitrogen transport
    花后籽粒氮素积累
    Grain N accumulation after silking
    耕作方式
    Tillage method
    CP 64.0±2.2 b 60.7±1.2 a 46.5±0.9 b 51.3±0.9 b 48.7±0.9 a
    NT 78.1±2.1 a 50.7±4.1 b 49.8±0.9 a 60.6±2.6 a 39.4±2.6 b
    RNT 58.2±2.7 c 60.7±4.0 a 44.9±1.2 b 49.0±2.78 b 51.0±2.8 a
    RST 78.4±2.8 a 52.9±3.8 b 49.6±1.3 a 59.7±2.6 a 40.3±2.6 b
    施肥模式
    Fertilization
    mode
    Sd 78.4±2.8 b 52.9±3.8 b 49.6±1.3 a 59.7±2.6 b 40.3±2.6 a
    50%Cr 89.8±0.3 a 64.2±0.8 a 50.4±0.4 a 58.2±0.4 b 41.8±0.4 a
    30%Cr 86.0±2.0 a 61.7±2.9 a 50.0±0.6 a 58.2±1.7 b 41.8±1.7 a
    0N 44.4±1.04 c 27.2±0.52 c 42.6±1.88 b 62.5±2.0 a 37.5±2.0 b
    注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规尿素基施加追施;50%Cr、30%Cr—控释氮肥与普通尿素5∶5、3∶7掺混,一次性基施;0N—不施氮肥。同列数字后不同小写字母表示处理间差异显著 (P<0.05)。
    Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Common urea applied as base and topdressing fertilizer; 50%Cr and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5 and 3∶7, and completely applied as base fertilizer; 0N—No nitrogen fertilizer. NRFV—N remobilization from vegetative organs; GNAPS—Grain nitrogen accumulation after silking; NTRFV—Nitrogen transport rate from vegetative organs. Different small letters after data in the same column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV

    表 6  不同耕作及施肥模式对玉米氮肥利用效率的影响

    Table 6.  Effects of tillage and fertilization modes on nitrogen use efficiency of maize

    处理
    Treatment
    氮肥农学效率(kg/kg)
    NAE
    氮肥回收效率 (%)
    NRE
    氮肥生理效率 (kg/kg)
    NIE
    氮肥偏生产力 (kg/kg)
    PFPN
    耕作方式
    Tillage method
    CP 6.6±0.4 bc 31.3±2.1 b 21.0±0.2 b 50.3±0.2 bc
    NT 7.4±0.8 b 35.4±0.7 a 21.2±2.5 b 51.2±0.7 b
    RNT 6.0±0.3 c 27.8±1.8 b 21.7±1.4 b 49.7±0.3 c
    RST 9.6±0.7 a 36.9±1.7 a 26.0±2.4 a 53.3±0.5 a
    施肥模式
    Fertilization mode

    Sd 9.6±0.7 c 36.9±1.7 c 26.0±2.4 a 53.3±0.5 a
    50%Cr 14.3±0.6 a 50.6±1.2 a 28.5±0.8 a 58.1±0.4 a
    30%Cr 12.3±0.3 b 46.8±1.6 b 26.3±0.7 a 56.0±0.1 a
    注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规施肥;50%Cr—控释氮肥与普通尿素5∶5掺混;30%Cr—控释氮肥与普通尿素3∶7掺混。同列数字后不同小写字母表示处理间差异显著 (P<0.05)。
    Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Common urea applied as base and topdressing fertilizers; 50%Cr, and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5, and 3∶7, and completely applied as base fertilizer. NUE—Nitrogen use efficiency; NRE—Nitrogen recovery efficiency; NIE—Nitrogen internal efficiency; PFPN—Partial factor productivity of fertilizer N. Different small letters after data in the same column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV

    表 7  不同耕作及施肥模式两年土壤氮素表观平衡(kg/hm2)

    Table 7.  Soil nitrogen apparent balance in two years’ period of different tillage and fertilization modes

    处理
    Treatment
    氮输入量 N input 氮输出量 N output 氮素表观损失
    Apparent N loss
    施氮量
    N input
    基础无机氮
    Basic Nmin
    总矿化氮量
    Total mineralized N
    作物携出
    Crop uptake
    无机氮残留
    Nmin residue
    耕作方式
    Tillage method
    CP 450 95.0±2.6 a 211.19 396.8±7.8 b 43.9±0.3 a 315.6±2.5 b
    NT 450 92.0+1.5 a 211.19 415.0±5.3 a 41.2±0.9 b 297.0±4.1 c
    RNT 450 91.2±2.3 a 211.19 380.7±6.1 c 44.4±0.5 a 327.3±3.5 a
    RST 450 90.1±2.4 a 211.19 421.7±5.7 a 40.3±0.2 b 289.3±3.7 c
    施肥模式
    Fertilization mode
    Sd 450 90.1±2.4 a 211.19 421.7±5.7 c 40.3±0.2 a 289.3±3.7 a
    30%Cr 450 93.0±1.8 a 211.19 466.6±5.5 b 39.6±0.3 a 248.0±3.4 b
    50%Cr 450 89.6±1.9 a 211.19 484.6±2.5 a 38.5±0.4 b 227.7±2.5 c
    注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规施肥;50%Cr—控释氮肥与普通尿素5∶5掺混;30%Cr—控释氮肥与普通尿素3∶7掺混。数据后不同小写字母表示处理间差异显著 (P<0.05)。
    Note: CP—Conventional tillage and seding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Cmmon urea applied as base aand topdressing fertilizers; 50%Cr, and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5, and 3∶7, and completely applied as base fertilizer. Different small letters after data in the same column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV

    表 8  不同耕作及施肥模式经济效益分析(yuan/hm2)

    Table 8.  Economic benefit analysis of different tillage and fertilization modes

    处理
    Treatment
    支出 Cost 产量收益
    Yield income
    净收益
    Net income
    种子
    Seed
    化肥
    Fertilizer
    农药
    Pesticide
    人工费
    Labor
    机械作业
    Mechanical work
    耕作方式
    Tillage method
    CP 1020 1506 450 157.5 930 26035.3 21971.8
    NT 1020 1506 450 135.0 855 26488.0 22522.0
    RNT 1020 1506 450 90.0 765 25736.8 21905.8
    RST 1020 1506 450 108.8 840 28012.3 24087.5
    施肥模式
    Fertilization mode
    Sd 1020 1506 450 108.8 840 28012.3 24087.5
    50%Cr 1020 1950 450 86.3 795 30044.3 25743.0
    30%Cr 1020 1770 450 86.3 795 29002.8 24881.5
    注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规施肥;50%Cr—控释氮肥与普通尿素5∶5掺混;30%Cr—控释氮肥与普通尿素3∶7掺混。玉米价格按2.3元/kg计,常规NPK复合肥、控释氮肥、普通尿素分别按3200、3200和2000元/t计,劳动力价格按22.5元/hm2 (主要农机驾驶及施肥)计,机械作业耗油按7.3元/升计;成本核算不包含土地成本。
    Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Common urea applied as base and topdressing fertilizers; 50%Cr, and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5, and 3∶7, and completely applied as base fertilizer. The price (in RMB) is maize 2.3 yuan/kg, compound fertilizer 3200 yuan/t, controlled-release fertilizer 3200 yuan/t, common urea 2000 yuan/t, respectively, labor 22.5 yuan/hm2 (mainly farm machinery driving and fertilizer application), oil consumption for machinery works 7.3 yuan/L; the costing does not include land costs.
    下载: 导出CSV
  • [1] 朱自玺, 方文松, 赵国强, 等. 麦秸和残茬覆盖对夏玉米农田小气候的影响[J]. 干旱地区农业研究, 2000, 18(2): 19−24. Zhu Z X, Fang W S, Zhao G Q, et al. Effects of straw and residue mulching on microclimate of summer corn field[J]. Agricultural Research in the Arid Areas, 2000, 18(2): 19−24.

    Zhu Z X, Fang W S, Zhao G Q, et al. Effects of straw and residue mulching on microclimate of summer corn field[J]. Agricultural Research in the Arid Areas, 2000, 18( 2): 1924.
    [2] Sharma P, Abrol V, Sharma R K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rained subhumid inceptisols, India[J]. European Journal of Agronomy, 2011, 34(1): 46−51. doi:  10.1016/j.eja.2010.10.003
    [3] 付鑫, 王俊, 刘全全, 李蓉蓉. 不同覆盖材料及旱作方式土壤团聚体和有机碳含量的变化[J]. 植物营养与肥料学报, 2015, 21(6): 1423−1430. Fu X, Wang J, Liu Q Q, Li R R. Soil aggregate and organic carbon contents with different surface mulching under dryland farming system[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1423−1430.

    Fu X, Wang J, Liu Q Q, Li R R. Soil aggregate and organic carbon contents with different surface mulching under dryland farming system[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21( 6): 14231430.
    [4] 邹润厚. 不同秸秆还田方式对土壤水热特征及春玉米温度资源利用的影响[D]. 内蒙古呼和浩特: 内蒙古农业大学硕士学位论文, 2020. Zou R H, Effects of residue returning methods on soil hydro-thermal dynamics and utilization of spring maize[D]. Hohhot, Inner Mongolia: MS Thesis of Inner Mongolia Agricultural University, 2020.

    Zou R H, Effects of residue returning methods on soil hydro-thermal dynamics and utilization of spring maize[D]. Hohhot, Inner Mongolia: MS Thesis of Inner Mongolia Agricultural University, 2020.
    [5] Morrison J E Jr. Strip tillage for "no-till" row crop production[J]. Applied Engineering in Agriculture, 2002, 18(3): 277−284.
    [6] 石东峰, 米国华. 玉米秸秆覆盖条耕技术及其应用[J]. 土壤与作物, 2018, 7(3): 349−355. Shi D F, Mi G H, Straw mulching strip-till technology and its application in corn production[J]. Soils and Crops, 2018, 7(3): 349−355.

    Shi D F, Mi G H, Straw mulching strip-till technology and its application in corn production[J]. Soils and Crops, 2018, 7(3): 349−355.
    [7] 郭萍, 朱从桦, 査丽, 等. 缓释尿素与普通尿素不同配比对玉米氮代谢酶和氮素利用的影响[J]. 中国土壤与肥料, 2016, (6): 99−105. Guo P, Zhu C H, Zha L, et al. Effects of the combined application of slow-release urea and urea on activities of key enzymes related to nitrogen metabolism and nitrogen utilization of maize[J]. Soil and Fertilizer Sciences in China, 2016, (6): 99−105. doi:  10.11838/sfsc.20160616

    Guo P, Zhu C H, Zha L, et al. Effects of the combined application of slow-release urea and urea on activities of key enzymes related to nitrogen metabolism and nitrogen utilization of maize[J]. Soil and Fertilizer Sciences in China, 2016, ( 6): 99105. doi:  10.11838/sfsc.20160616
    [8] 江丽华, 谭德水, 李子双, 等. 黄淮海平原夏玉米一次性施肥肥料产品的筛选与产量效应[J]. 中国农业科学, 2018, 51(20): 3876−3886. Jiang L H, Tan D S, Li Z S, et al. Fertilizer product screening and yield response about one-off fertilization on summer maize in Huang-Huai-Hai Plain[J]. Scientia Agricultura Sinica, 2018, 51(20): 3876−3886. doi:  10.3864/j.issn.0578-1752.2018.20.006

    Jiang L H, Tan D S, Li Z S, et al. Fertilizer product screening and yield response about one-off fertilization on summer maize in Huang-Huai-Hai Plain[J]. Scientia Agricultura Sinica, 2018, 51( 20): 38763886. doi:  10.3864/j.issn.0578-1752.2018.20.006
    [9] 刘兆辉, 吴小宾, 谭德水, 等. 一次性施肥在我国主要粮食作物中的应用与环境效应[J]. 中国农业科学, 2018, 51(20): 3827−3839. Liu Z H, Wu X B, Tan D S, et al. Application and environmental effects of one-off fertilization technique in major cereal crops in China[J]. Scientia Agricultura Sinica, 2018, 51(20): 3827−3839.

    Liu Z H, Wu X B, Tan D S, et al. Application and environmental effects of one-off fertilization technique in major cereal crops in China[J]. Scientia Agricultura Sinica, 2018, 51( 20): 38273839.
    [10] 姬景红, 李玉影, 刘双全, 等. 控释掺混肥对春玉米产量、光合特性及氮肥利用率的影响[J]. 土壤通报, 2015, 46(3): 669−675. Ji J H, Li Y Y, Liu S Q, et al. Effects of different mixing rates of controlled-release urea and common urea on grain yield and nitrogen use efficiency of spring maize[J]. Chinese Journal of Soil Science, 2015, 46(3): 669−675.

    Ji J H, Li Y Y, Liu S Q, et al. Effects of different mixing rates of controlled-release urea and common urea on grain yield and nitrogen use efficiency of spring maize[J]. Chinese Journal of Soil Science, 2015, 46( 3): 669675.
    [11] 李伟, 李絮花, 李海燕, 等. 控释尿素与普通尿素混施对夏玉米产量和氮肥效率的影响[J]. 作物学报, 2012, 38(4): 699−706. Li W, Li X H, Li H Y, et al. Effects of different mixing rates of controlled-release urea and common urea on grain yield and nitrogen use efficiency of summer maize[J]. Acta Agronomica Sinica, 2012, 38(4): 699−706.

    Li W, Li X H, Li H Y, et al. Effects of different mixing rates of controlled-release urea and common urea on grain yield and nitrogen use efficiency of summer maize[J]. Acta Agronomica Sinica, 2012, 38( 4): 699706.
    [12] 金容, 李兰, 郭萍, 等. 控释氮肥比例对土壤氮含量和玉米氮素吸收利用的影响[J]. 水土保持学报, 2018, 32(6): 214−221. Jin R, Li L, Guo P, et al. Effects of the mixed ratios of controlled-release nitrogen fertilizer on soil nitrogen content and its uptake and utilization of maize[J]. Journal of Soil and Water Conservation, 2018, 32(6): 214−221.

    Jin R, Li L, Guo P, et al. Effects of the mixed ratios of controlled-release nitrogen fertilizer on soil nitrogen content and its uptake and utilization of maize[J]. Journal of Soil and Water Conservation, 2018, 32( 6): 214221.
    [13] 王钰剀. 秸秆覆盖少耕缓混施肥对旱作玉米氮效率的影响[D]. 内蒙古呼和浩特: 内蒙古农业大学硕士学位论文, 2022. Wang Y K. Effects of straw mulching less tillage and slow mixed fertilization on nitrogen efficiency of dryland maize[D]. Hohhot, Inner Mongolia: MS Thesis of Inner Mongolia Agricultural University, 2022.

    Wang Y K. Effects of straw mulching less tillage and slow mixed fertilization on nitrogen efficiency of dryland maize[D]. Hohhot, Inner Mongolia: MS Thesis of Inner Mongolia Agricultural University, 2022.
    [14] 鲍士旦. 土壤农化分析: 第三版[M]. 北京: 中国农业出版社, 2007. Bao S D. Soil and agricultural chemistry analysis (3rd edition )[M]. Beijing: China Agriculture Press, 2007.

    Bao S D. Soil and agricultural chemistry analysis (3rd edition )[M]. Beijing: China Agriculture Press, 2007.
    [15] 崔红. 不同栽培模式春玉米干物质生产与养分吸收利用特性研究[D]. 吉林长春: 吉林农业大学硕士学位论文, 2019. Cui H. Study of dry matter production and nutrient absorption and utilization characteristics on spring maize at different cultivating modes[D]. Changchun, Jilin: MS Thesis of Jilin Agricultural University, 2019.

    Cui H. Study of dry matter production and nutrient absorption and utilization characteristics on spring maize at different cultivating modes[D]. Changchun, Jilin: MS Thesis of Jilin Agricultural University, 2019.
    [16] 赵营, 郭鑫年, 冀宏杰, 等. 施肥对水旱轮作作物产量、土壤无机氮残留及氮素平衡的影响[J]. 土壤通报, 2015, 46(4): 940−947. Zhao Y, Guo X N, Ji H J, et al. Effect of fertilization on crops yield, soil mineral residual N, and apparent N balance in a paddy-upland rotation system[J]. Chinese Journal of Soil Science, 2015, 46(4): 940−947.

    Zhao Y, Guo X N, Ji H J, et al. Effect of fertilization on crops yield, soil mineral residual N, and apparent N balance in a paddy-upland rotation system[J]. Chinese Journal of Soil Science, 2015, 46( 4): 940947.
    [17] Meng Q F, Chen X P, Zhang F S, et al. In-season root-zone nitrogen management strategies for improving nitrogen use efficiency in high-yielding maize production in China[J]. Pedosphere, 2012, 22(3): 294−303. doi:  10.1016/S1002-0160(12)60016-2
    [18] 邵宇辉, 董思奇, 李晓宇, 等. 增效液体氮肥在苏打盐碱土中的应用效果研究[J]. 玉米科学, 2022, 30(2): 145−153. Shao Y H, Dong S Q, Li X Y, et al. Study on the application effect of liquid nitrogen fertilizer for soda saline-alkali soil at seedling stage[J]. Journal of Maize Sciences, 2022, 30(2): 145−153.

    Shao Y H, Dong S Q, Li X Y, et al. Study on the application effect of liquid nitrogen fertilizer for soda saline-alkali soil at seedling stage[J]. Journal of Maize Sciences, 2022, 30( 2): 145153.
    [19] 张哲元, 张玉龙, 黄毅, 等. 覆膜及深松配合措施对玉米生长发育及产量的影响[J]. 土壤通报, 2009, 40(5): 1156−1159. Zhang Z Y, Zhang Y L, Huang Y, et al. Effects of plastic-film mulching and sub-soiling measures on growth and yield of maize[J]. Chinese Journal of Soil Science, 2009, 40(5): 1156−1159.

    Zhang Z Y, Zhang Y L, Huang Y, et al. Effects of plastic-film mulching and sub-soiling measures on growth and yield of maize[J]. Chinese Journal of Soil Science, 2009, 40( 5): 11561159.
    [20] Belh R A, Witte I, Billen N, et al. Feasibility of strip-tillage for field grown vegetables[J]. Journal fur Kulturpflanzen, 2014, 66(11): 365−377.
    [21] Jat M L, Gathala M K, Saharawat Y S, et al. Double no-till and permanent raised beds in maize-wheat rotation of north-western Indo-Gangetic plains of India: Effects on crop yields, water productivity, profitability and soil physical properties[J]. Field Crops Research, 2013, 149: 291−299. doi:  10.1016/j.fcr.2013.04.024
    [22] Pittelkow C M, Liang X, Lingquist B A, et al. Productivity limits and potentials of the principles of conservation agriculture[J]. Nature, 2014, 517: 365−368.
    [23] Kov Cs P, Vyn T J. Full-season retrospectives on causes of plant to plant variability in maize grain yield response to nitrogen and tillage[J]. Agronomy Journal, 2014, 106(5): 1746−1757. doi:  10.2134/agronj14.0173
    [24] National Corn Growers Association. Contestants for 2017 corn yield contest[EB/OL]. http://www. ncga.com/for-farmers/national-corn-yield-contest, 2017−12−28/2023−02−15.
    [25] 张敏. 微喷灌水肥一体化对玉米产量和水氮利用效率的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2022. Zhang M. Effects of water and fertilizer integration on maize yield and water-nitrogen use efficiency under micro-sprinkler irrigation[D]. Tai’an, Shandong: MS Thesis of Shandong Agricultural University, 2022.

    Zhang M. Effects of water and fertilizer integration on maize yield and water-nitrogen use efficiency under micro-sprinkler irrigation[D]. Tai’an, Shandong: MS Thesis of Shandong Agricultural University, 2022.
    [26] 王新兵, 侯海鹏, 周宝元, 等. 条带深松对不同密度玉米群体根系空间分布的调节效应[J]. 作物学报, 2014, 40(12): 2136−2148. Wang X B, Hou H P, Zhou B Y, et al. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities[J]. Acta Agronomica Sinica, 2014, 40(12): 2136−2148. doi:  10.3724/SP.J.1006.2014.02136

    Wang X B, Hou H P, Zhou B Y, et al. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities[J]. Acta Agronomica Sinica, 2014, 40( 12): 21362148. doi:  10.3724/SP.J.1006.2014.02136
    [27] 潘雅文, 樊军, 郝明德, 陈旭. 黄土塬区长期不同耕作、覆盖措施对表层土壤理化性状和玉米产量的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1558−1567. Pan Y W, Fan J, Hao M D, Chen X. Effects of long-term tillage and mulching methods on properties of surface soil and maize yield in tableland region of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1558−1567

    Pan Y W, Fan J, Hao M D, Chen X. Effects of long-term tillage and mulching methods on properties of surface soil and maize yield in tableland region of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1558−1567
    [28] 郭金金, 张富仓, 王海东, 等. 不同施氮量下缓释氮肥与尿素掺混对玉米生长与氮素吸收利用的影响[J]. 中国农业科学, 2017, 50(20): 3930−3943. Guo J J, Zhang F C, Wang H D, et al. Effects of slow-release nitrogen fertilizer and urea blending on maize growth and nitrogen uptake under different nitrogen application rates[J]. Scientia Agricultura Sinica, 2017, 50(20): 3930−3943. doi:  10.3864/j.issn.0578-1752.2017.20.009

    Guo J J, Zhang F C, Wang H D, et al. Effects of slow-release nitrogen fertilizer and urea blending on maize growth and nitrogen uptake under different nitrogen application rates[J]. Scientia Agricultura Sinica, 2017, 50( 20): 39303943. doi:  10.3864/j.issn.0578-1752.2017.20.009
    [29] 张务帅, 陈宝成, 李成亮, 等. 控释氮肥控释钾肥不同配比对小麦生长及土壤肥力的影响[J]. 水土保持学报, 2015, 29(3): 178−183. Zhang W S, Chen B C, Li C L, et al. Effects of different proportion of controlled release nitrogen and potassium fertilizers on wheat growth and soil fertility[J]. Journal of Soil and Water Conservation, 2015, 29(3): 178−183.

    Zhang W S, Chen B C, Li C L, et al. Effects of different proportion of controlled release nitrogen and potassium fertilizers on wheat growth and soil fertility[J]. Journal of Soil and Water Conservation, 2015, 29( 3): 178183.
    [30] 卢艳丽, 白由路, 王磊, 等. 华北小麦–玉米轮作区缓控释肥应用效果分析[J]. 植物营养与肥料学报, 2011, 17(1): 209−215. Lu Y L, Bai Y L, Wang L, et al. Efficiency analysis of slow/controlled release fertilizer on wheat-maize in North China[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 209−215.

    Lu Y L, Bai Y L, Wang L, et al. Efficiency analysis of slow/controlled release fertilizer on wheat-maize in North China[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17( 1): 209215.
    [31] 郭世乾, 崔增团, 刘妤, 等. 玉米全膜双垄集雨沟播秸秆还田肥料试验研究[J]. 农业科技与信息, 2013, (14): 42, 44. Guo S Q, Cui Z T, Liu Y, et al. Experimental study on corn whole film double ridge rainwater harvesting furrow sowing straw returning fertilizer[J]. Agricultural Science-Technology and Information, 2013, (14): 42, 44.

    Guo S Q, Cui Z T, Liu Y, et al. Experimental study on corn whole film double ridge rainwater harvesting furrow sowing straw returning fertilizer[J]. Agricultural Science-Technology and Information, 2013, (14): 42, 44.
    [32] 王晓琪, 朱家辉, 陈宝成, 等. 控释尿素不同比例配施对水稻生长及土壤养分的影响[J]. 水土保持学报, 2016, 30(4): 178−182. Wang X Q, Zhu J H, Chen B C, et al. Effects of different proportion of controlled-release urea on rice growth and soil nutrient[J]. Journal of Soil and Water Conservation, 2016, 30(4): 178−182.

    Wang X Q, Zhu J H, Chen B C, et al. Effects of different proportion of controlled-release urea on rice growth and soil nutrient[J]. Journal of Soil and Water Conservation, 2016, 30( 4): 178182.
    [33] Dhital S, Raun W R. Variability in optimum nitrogen rates for maize[J]. Agronomy Journal, 2016, 108: 2165−2173. doi:  10.2134/agronj2016.03.0139
    [34] 张杰, 徐芳蕾, 薄其飞, 等. 常规尿素掺混控释尿素一次施用对旱作春玉米产量及氮素利用的影响[J]. 植物营养与肥料学报, 2021, 27(6): 969−979. Zhang J, Xu F L, Bo Q F, et al. Effects of one-time application of controlled-release urea combined with solid granular urea on grain yield and nitrogen utilization of spring maize in dryland[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 969−979.

    Zhang J, Xu F L, Bo Q F, et al. Effects of one-time application of controlled-release urea combined with solid granular urea on grain yield and nitrogen utilization of spring maize in dryland[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27( 6): 969979.
  • [1] 沙野赵思雨郭雯清刘正郝展宏柯丽华黄一文冯国忠米国华 . 秸秆覆盖条耕模式下不同玉米品种的产量差异及其生长适应特征分析. 植物营养与肥料学报, 2023, 29(11): 1-14. doi: 10.11674/zwyf.2023144
    [2] 鲁悦鲍雪莲霍海南杨雅丽赵月解宏图梁超何红波 . 免耕条件下不同量秸秆覆盖还田提高东北黑土区玉米光合性能和产量的效应. 植物营养与肥料学报, 2023, 29(5): 840-847. doi: 10.11674/zwyf.2022507
    [3] 翟勇全魏雪付江鹏马琨贾彪 . 全生物降解膜覆盖对玉米生长、产量及氮素利用的影响. 植物营养与肥料学报, 2022, 28(11): 2041-2051. doi: 10.11674/zwyf.2022129
    [4] 翟明振胡恒宇宁堂原张海依徐琳尹晓燕 . 盐碱地玉米产量及土壤硝态氮对深松耕作和秸秆还田的响应. 植物营养与肥料学报, 2020, 26(1): 64-73. doi: 10.11674/zwyf.19026
    [5] 魏淑丽王志刚于晓芳孙继颖贾琦屈佳伟苏布达高聚林张永清 . 施氮量和密度互作对玉米产量和氮肥利用效率的影响. 植物营养与肥料学报, 2019, 25(3): 382-391. doi: 10.11674/zwyf.18084
    [6] 安志超黄玉芳汪洋赵亚南岳松华师海斌叶优良 . 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019, 25(1): 123-133. doi: 10.11674/zwyf.18020
    [7] 屈佳伟高聚林王志刚于晓芳胡树平孙继颖 . 不同氮效率玉米根系时空分布与氮素吸收对氮肥的响应. 植物营养与肥料学报, 2016, 22(5): 1212-1221. doi: 10.11674/zwyf.15460
    [8] 马存金刘鹏赵秉强张善平冯海娟赵杰杨今胜董树亭张吉旺赵斌 . 施氮量对不同氮效率玉米品种根系时空分布及氮素吸收的调控. 植物营养与肥料学报, 2014, 20(4): 845-859. doi: 10.11674/zwyf.2014.0406
    [9] 崔超高聚林*于晓芳王志刚孙继颖胡树平苏治军谢岷 . 不同氮效率基因型高产春玉米花粒期干物质与氮素运移特性的研究. 植物营养与肥料学报, 2013, 19(6): 1337-1345. doi: 10.11674/zwyf.2013.0607
    [10] 李文娟何萍高强金继运侯云鹏尹彩霞张国辉 . 不同氮效率玉米干物质形成及氮素营养特性差异研究. 植物营养与肥料学报, 2010, 16(1): 51-57. doi: 10.11674/zwyf.2010.0108
  • 加载中
图(4)表(8)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  190
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-10-25

寒旱区秸秆覆盖条耕玉米适宜氮肥运筹方式研究

    作者简介:程志鹏 E-mail:wyyczp@163.com
    作者简介:;†共同第一作者 王富贵 E-mail: fgwang2008@163.com
    通讯作者: 王志刚, imauwzg@163.com
  • 1. 内蒙古农业大学农学院,内蒙古呼和浩特010010
  • 2. 兴安盟扎赉特旗农牧和科技局,内蒙古兴安盟137400
  • 基金项目: 国家重点研发计划项目(2022YFD1500902-4);内蒙古自治区重点研发与成果转化项目(2022YFDZ0041)。
  • 摘要:    【目的】   春旱墒情差,无法按期播种,影响大兴安岭沿麓寒旱区玉米的安全生产。生产上秸秆覆盖免耕直播虽有保墒作用,但存在出苗质量差、追肥困难等问题。为此,我们改进了秸秆覆盖和耕作方式,并研究了控释肥与尿素混合一次性基施的效果,以克服该技术的不足之处。   【方法】   2021—2022年,在大兴安岭沿麓典型寒旱区兴安盟扎赉特旗同步开展耕作方式(试验1)和缓混氮肥施用模式试验(试验2)。试验1:在常规施肥模式下(Sd),设置秸秆覆盖条耕(RST)、常规垄作(CP)、秸秆离田免耕(NT)、秸秆覆盖免耕(RNT) 4个耕作处理。试验2:在秸秆覆盖条耕(RST)方式下,设置常规施肥(Sd)、控释氮肥与普通尿素3∶7 (30%Cr)掺混、控释氮肥与普通尿素5∶5 (50%Cr)掺混3种施肥模式。播前和收获后,取0—20、20—40、40—70、70—100 cm土层土壤样品,测定无机氮含量,用于计算氮素残留量和表观损失。玉米苗期调查出苗率,在吐丝期(R1)、成熟期(R6)取植株样品,测定不同部位生物量和含氮量,收获后调查产量和产量构成因素。   【结果】   RST处理玉米出苗率较NT、CP、RNT处理分别提高1.6%、9.3%和9.1%,群体生物量分别增加2.7%、9.1%和9.1%,产量分别提高4.2%、6.0%和7.2%,氮肥农学效率分别提高29.7%、45.5%和60.0%。秸秆覆盖条耕下,50%Cr处理较30%Cr、Sd处理玉米群体生物量分别提高3.3%和10.6%,花前群体生物量分别提高4.1% 、9.9%,花后群体生物量分别提高2.9%、10.4%,氮素累积分别提高3.6%、14.6%,花前氮素累积分别提高3.8%、12.8%,花后氮素累积分别提高4.3%、21.4%。50%Cr处理玉米产量较30%Cr、Sd处理分别提高3.6%、8.9%,氮肥农学效率分别提高16.3%、49.0%,土壤无机氮残留分别降低2.8%、4.5%,氮素表观损失分别降低8.2%和21.3%,净收益分别提高3.5%和6.9%。   【结论】   秸秆覆盖条耕免耕播种条件下,采用控释氮肥与普通尿素5∶5掺混一次性基施,可显著提高玉米出苗率,保障玉米全生育期氮素有效供应,提高玉米花前、花后群体生物量和氮素的吸收运转率,显著提高玉米产量、氮肥利用效率及经济效益,降低土壤无机氮残留,是寒旱区实现玉米抗旱保苗、氮素高效利用和轻简生产的可行途径。

    English Abstract

    • 大兴安岭沿麓丘陵旱作区是我国主要的旱作玉米产区之一,土壤肥沃,雨热同季。但该区域春旱等阶段性干旱频发,常导致玉米因旱而难以按期播种、保苗和安全稳产。研究表明,秸秆覆盖还田可以减少土壤水分蒸发、改善农田土壤环境,具有培肥保墒效果[13]。但秸秆覆盖免耕直播常影响播种质量,同时会降低土壤温度,导致玉米出苗不齐、幼苗长势弱等问题[4]。为了解决这一问题,本研究采用北美的“秸秆覆盖条耕技术(Strip till)”,该技术的主要特点是在秸秆全覆盖的基础上,利用条带耕作机在播种前整理出无秸秆苗带用于播种[5],而秸秆覆盖在行间,能够提高玉米播种质量和出苗率,从而实现增产[6]。从现有报道来看,该技术多在湿润、半湿润、降雨充足条件下应用,其在半干旱地区水分不足条件下效果如何尚鲜有报道。

      在大兴安岭沿麓地区,农户常规施肥模式以普通尿素等速效氮肥播种时“一炮轰”施肥或拔节期一次追肥为主,常因夏季集中降雨导致氮素以无机氮淋溶形式大量损失,造成玉米前期养分冗余、后期脱肥早衰而减产[7]。同时,秸秆覆盖条件下生育期间氮素追施困难,迫切需要探索简化施肥和氮素长效供应技术途径。控释氮肥具有肥效持久稳定、一次性基施不用追肥、养分利用率高等优点,是提高肥料利用率及增加玉米产量的有效途径之一[89]。但控释氮肥的肥效易受外界环境因素影响,当玉米生育前期低温或干旱时会减慢养分释放速率,导致玉米生育前期氮素供应不足,后期贪青晚熟,增加土壤无机氮残留造成减产[10]。控释氮肥与普通尿素配施是减少人工及机械作业成本、提高玉米氮肥利用效率、增加收益的有效途径。李伟等[11]研究表明,在夏玉米产区,控释氮肥与普通尿素配施,可提高玉米氮素吸收能力,维持良好的光合性能,增加玉米产量。金容等[12]发现,施氮量相同时,控释氮肥与尿素掺混能够增加玉米中后期氮素累积量,提高氮肥利用效率,产量较单施普通尿素提高8.3%~21.6%。本研究在不同秸秆覆盖还田耕作方式及不同控释氮肥比例下,对玉米物质生产、氮素吸收利用、土壤氮素表观平衡及经济效益进行比较,旨在探究适合大兴安岭沿麓丘陵寒旱区玉米抗旱、高效生产新模式,为该地区的玉米绿色安全生产提供科学依据。

      • 试验于2021—2022年在内蒙古自治区大兴安岭沿麓典型区兴安盟扎赉特旗农牧和科技局试验基地(46°45′N,122°47′E)进行,该地区年平均气温3.24℃,年平均降雨量400 mm,无霜期120~140天。试验地土壤为草甸土,0—20 cm耕层土壤有机质含量17.5 g/kg,全氮含量1.2 g/kg,碱解氮含量101 mg/kg,速效磷含量32.5 mg/kg,速效钾含量115.9 mg/kg,pH 7.9。2021—2022年玉米生育期内日照时数分别为1138.2和1352.3 h,总降雨量分别为650.5和390.1 mm。

      • 本研究设常规施肥下不同耕作方式和秸秆覆盖条耕下不同施肥模式两个试验:

        耕作方式试验:设置常规垄作(CP)、秸秆离田免耕(NT)、秸秆覆盖免耕(RNT)、秸秆覆盖条耕(RST) 4种耕作方式,具体操作见表1

        表 1  耕作方式试验各处理具体实施方法

        Table 1.  The practices in each treatment of different tillage experiment

        处理
        Treatment
        秸秆处理及耕作方式
        Straw treatment and tillage method
        CP 秋季收获后,秸秆全部打包离田,翌年整地起垄镇压后,在垄台上进行播种
        All the straws removed out of fields after harvest in autumn, plough and then make ridges for seeding next spring
        NT 秋季收获后,秸秆全部打包离田,翌年使用免耕播种机直接播种
        All the straws were removed out of fields after harvest in autumn, seeding by no-tillage-drill directly next spring
        RNT 秋季玉米收获时,留茬30 cm,全部秸秆覆盖还田越冬,翌年使用免耕播种机直接播种
        In autumn, 30 cm of maize straws remained at harvest, and the other part of straws were covered on the field, and seeding directly using no-tillage-drill next spring
        RST 秋季玉米收获时,秸秆留茬30 cm,秸秆全部覆盖还田越冬;翌年播种前使用1ST-300型条耕机整地机 (吉林省康达农业机械有限公司) 进行苗带清理,秸秆归行覆盖、苗带深松、碎土镇压,形成25—30 cm宽、耕深25—30 cm的松软苗床,随后使用免耕播种机在苗带施肥、播种
        After harvest in autumn, maize straws, remaining 30 cm high stems, were harvested and covered on the field. Next spring drip-tillage machine was used to clear seeding bends by moving straws away, the seedling belt was deeply loosened and crushed to form a soft seedling bed with a width of 25−30 cm and a depth of 25−30 cm. Then, the no-tillage seeder was used to fertilize and sow in the seedling belt.
        注:所有处理底施N 72 kg/hm2、P2O5 97.5 kg/hm2、K2O 58.5 kg/hm2,拔节期追施尿素N 153 kg/hm2
        Note: N 72 kg/hm2, P2O5 97.5 kg/hm2 and K2O 58.5 kg/hm2 were basal applied, and urea N 153 kg/hm2 was top dressed at jointing stage in all the treatments.

        4个处理均采用当地常规施肥方式,底施纯N 72 kg/hm2、P2O5 97.5 kg/hm2、K2O 58.5 kg/hm2,折合掺混肥料450 kg/hm2,该肥料由兴安盟绰尔河种业有限责任公司生产,N–P2O5–K2O =16–22–13,拔节期追施尿素333 kg/hm2,折合纯N 153 kg/hm2

        施肥模式试验:在秸秆覆盖条耕(RST)下,设置常规施肥(Sd)、聚氨酯控释尿素与常规尿素3∶7掺混(30%Cr)、聚氨酯控释尿素与常规尿素5∶5掺混(50%Cr) 3种施肥模式,并设置不施氮区(0N)用以计算氮肥利用效率。

        供试肥料包括复合肥料(N–P2O5–K2O=16–22–13)、普通尿素(含N46%)、聚氨酯包膜控释尿素(含N 45%,释放周期90天),磷肥为过磷酸钙(含P2O5 12%)、钾肥为氯化钾(含K2O 52%)。Sd、30%Cr、50%Cr处理肥料投入总量均为纯N 225 kg/hm2、P2O5 97.5 kg/hm2、K2O 58.5 kg/hm2。Sd处理基施450 kg/hm2复合肥,拔节期追施普通尿素333 kg/hm2,30%Cr处理聚氨酯包膜控释尿素与普通尿素按3∶7比例掺混与磷钾肥播种时一次性基施,50%Cr处理聚氨酯包膜控释尿素与普通尿素按5∶5比例掺混与磷钾肥播种时一次性基施。0N处理不施氮肥,基施与其他处理等量的磷钾肥。各处理具体操作见表2

        表 2  施肥模式试验各处理具体操作

        Table 2.  Practices in each treatment of fertilization experiment (experiment 2)

        处理 Treatment 肥料掺混比例 Cr: U ratio 施肥模式 Fertilization mode
        0N 不施氮肥 No nitrogen fertilizer
        Sd 基肥+拔节期追肥 Base application and top dressing at jointing period
        30%Cr 3∶7 全部基施 Complete base application
        50%Cr 5∶5 全部基施 Complete base application
        注: Cr—控释尿素,U—普通尿素。耕作方式均为条耕+免耕播种。
        Note: Cr—Controlled-release urea, U—Urea. All the treatments use strip tillage and no-tillage seeding method.

        试验采用随机区组设计,3次重复,供试玉米品种为‘大昌国玉918’,种植密度为75000株/hm2。采用等行距种植,行距65 cm,8行区,行长30 m,小区面积156 m2。2021年5月4日播种,9月28日收获;2022年5月9日播种,9月30日收获。

      • 在播前和收获后采集土壤样品,每小区采用五点取样法采集0—20、20—40、40—70、70—100 cm土层土壤样品,采用全自动化学分析仪(Smartchem140)测定土壤无机氮含量, 用于计算土壤氮素残留量及氮素表观损失量[13]。参照鲍士旦的土壤农化分析方法[14],测定0—20 cm土层土壤养分含量,其中土壤有机质采用FeSO4滴定法测定,全氮采用半微量凯氏定氮法测定,速效磷采用碳酸氢钠浸提—钼锑抗比色法测定,速效钾采用醋酸铵浸提—火焰光度法测定,碱解氮采用碱解扩散吸收法测定,pH采用电位法测定。

        于玉米吐丝期(R1)、成熟期(R6)取样,每小区选取长势一致的连续3株,将植株切成样段装袋后,分为叶片、茎秆(含茎、叶鞘、雄穗)、雌穗(含穗柄、苞叶、果穗)和籽粒4部分,置于烘箱中105℃杀青30 min,于80℃烘干至恒重,称取干重并计算生物量。将烘干称量后样品粉碎并过1 mm 筛, 采用凯氏定氮法测定各器官总氮含量。于生理成熟期选取无缺苗断垄且长势整齐的10 m双行,调查实际密度后实收,晾晒后进行考种,逐穗测定穗粒数后全部脱粒,测定千粒重后测定籽粒含水量,并计算籽粒产量(籽粒含水量14%)。

      • 植株氮素积累量(kg/hm2)=植株氮含量×干物质积累量

        花后氮素积累量(kg/hm2)=成熟期氮素积累量−吐丝期(花前)氮素积累量

        氮肥农学效率(kg/kg)=(施氮区籽粒产量−不施氮区籽粒产量)/施氮量

        氮肥回收效率(%)=(施氮区植株氮素积累量−不施氮区植株氮素积累量)/施氮量×100

        氮肥生理效率(kg/kg)=(施氮区籽粒产量−不施氮区籽粒产量)/(施氮区氮积累量−不施氮区氮积累量)

        氮肥偏生产力(kg/kg)=施氮区产量/施氮量

        营养器官氮素转运量(kg/hm2)=吐丝期营养器官氮素累积量−成熟期营养器官氮素累积量[15]

        花后籽粒氮素积累量(kg/hm2)=成熟期籽粒氮素积累量−营养器官氮素转运量[15]

        Nmin累积量(kg/hm2)= 土层深度×土壤容重×NO3-N (NH4+-N)浓度/10[16]

        氮素表观损失(kg/hm2)=施氮量+播前无机氮+矿化氮−作物氮素积累−收获后残留Nmin[17]

        氮素净矿化量(kg/hm2)=不施氮区植株氮素积累量+不施氮肥区土壤残留无机氮(Nmin)−不施氮肥区土壤起始无机氮(Nmin)[18]

        净收益(元/hm2)=产量×单价−成本(化肥、种子、农药、人工、机械)

      • 采用SPSS 22.0中最小显著差异法(LSD 0.05)进行差异显著性检验;采用Sigma Plot 12.5软件绘图。

      • 图1可知,2021年RST、NT处理玉米出苗率显著高于CP和RNT处理,2022年RST处理玉米出苗率均显著于高于其他处理,较NT、CP、RNT处理平均分别提高1.6%、9.3%和9.1%。可见秸秆覆盖条耕显著提高了玉米出苗率。秸秆覆盖条耕下,不同施肥模式间玉米出苗率无显著差异,各施肥模式玉米出苗率在93%~96% (图2)。

        图  1  不同耕作方式对玉米出苗率的影响

        Figure 1.  Effects of different tillage methods on maize seedling emergence rate

        图  2  不同施肥模式对玉米出苗率的影响

        Figure 2.  Effects of fertilization modes on emergence rate of maize

      • 表3可知,不同耕作方式间两年籽粒产量均表现为RST>NT>CP>RNT。RST处理玉米籽粒产量较NT、CP、RNT处理分别提高了4.2%、6.0%和7.2%。从产量构成因素来看,不同耕作方式间,穗数和穗粒数差异显著,RST处理产量增加主要是因为显著提高了有效穗数,较NT、CP、RNT处理有效穗数分别提高了1.9%、8.0%和6.8%。

        表 3  不同耕作方式对玉米产量及产量构成因素的影响

        Table 3.  Maize yield and yield components under different tillage methods

        年份
        Year
        处理
        Treatment
        穗数 (ears/m2)
        Ear number
        穗粒数
        Kernel number per ear
        千粒重 (g)
        Kernel weight
        籽粒产量 (t/hm2)
        Grain yield
        2021 CP 6.62±0.15 b 591.87±2.55 ab 297.78±2.13 a 11.70±0.17 b
        NT 7.07±0.13 a 578.13±1.32 c 291.74±1.25 a 11.93±0.22 ab
        RNT 6.64±0.06 b 596.40±3.65 a 291.22±1.35 a 11.49±0.19 b
        RST 7.05±0.08 a 586.53±3.12 b 296.38±1.56 a 12.25±0.24 a
        2022 CP 6.25±0.13 c 600.45±4.31 b 279.07±3.17 ab 10.93±0.15 b
        NT 6.63±0.15 b 610.32±5.65 b 275.86±2.56 b 11.10±0.17 b
        RNT 6.38±0.08 c 620.66±3.89 a 284.07±1.89 a 10.89±0.25 b
        RST 6.91±0.11 a 618.73±1.65 a 277.16±3.21 b 11.74±0.21 a
        变异来源 Source of variation
        年份 Year (Y) NS ** ** *
        耕作方式 Tillage method (T) ** * NS **
        年份×耕作方式 Y×T * ** * **
        注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕。同列数据后不同小写字母表示同一年份处理间差异显著 (P<0.05)。*和 **分别表示变量效应达到0.05和0.01显著水平,NS表示效应不显著。
        Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch. Different small letters after data in a column indicate significant difference among treatments in the same year (P<0.05). * and ** indicate the effect of a variable at 0.05 and 0.01 significant level, respectively, NS indicates no significant effect.

        表4可知,在秸秆覆盖条耕下(RST),不同施肥模式间两年籽粒产量均表现为50%Cr和 30%Cr处理大于Sd和0N处理。其中,50%Cr处理产量最高,两年平均为13.1 t/hm2,较30%Cr、Sd、0N处理分别提高了3.6%、8.9%和32.7%。从产量构成因素来看,施肥模式主要影响玉米穗粒数和千粒重,50%Cr和 30%Cr处理穗粒数和千粒重均大于Sd处理。

        表 4  不同施肥模式对玉米产量及产量构成因素的影响

        Table 4.  Maize yield and yield components under different fertilization modes

        年份
        Year
        处理
        Treatment
        穗数 (ears/m2)
        Ear number
        穗粒数
        Kernel number per ear
        千粒重 (g)
        Kernel weight
        籽粒产量 (t/hm2)
        Grain yield
        2021 Sd 7.05±0.11 a 586.53±4.32 b 296.38±3.16 c 12.25±0.13 c
        50%Cr 7.05±0.09 a 600.73±3.59 a 312.35±3.01 a 13.23±0.26 a
        30%Cr 6.95±0.05 a 601.27±5.12 a 307.34±1.12 b 12.84±0.11 b
        0N 6.90±0.12 a 565.33±5.56 c 263.01±2.98 d 10.26±0.27 d
        2022 Sd 6.91±0.11 a 618.73±2.32 b 281.69±2.89 a 11.74±0.31 b
        50%Cr 6.96±0.15 a 634.83±3.46 a 284.55±2.36 a 12.89±0.32 a
        30%Cr 6.90±0.13 a 633.56±4.56 a 283.65±2.18 a 12.38±0.27 ab
        0N 6.63±0.14 b 564.53±5.23 c 255.59±3.14 b 9.43±0.24 c
        变异来源 Source of variation
        年份 Year (Y) NS ** * NS
        施肥模式 Fertilization mode (F) NS ** ** **
        年份×施肥模式 Y×F NS ** ** *
        注:Sd为常规尿素基施加追施;50%Cr、30%Cr为控释氮肥与普通尿素5∶5、3∶7掺混一次性基施;0N—不施氮肥对照。同列数据后不同小写字母表示同一年份处理间差异显著 (P<0.05)。*和 **分别表示变量效应达到0.05和0.01显著水平,NS表示效应不显著。
        Note: Sd is conventional urea applied in base and topdressing; 50%Cr and 30%Cr are controlled release fertilizer mixed with common urea in ratio of 5∶5 and 3∶7, and completely applied as base fertilizer; 0N—No nitrogen fertilizer. Different small letters after data in a column indicate significant difference among treatments in the same year (P<0.05). * and ** indicate the effect of a variable at 0.05 and 0.01 significant level, respectively, NS indicates no significant effect.
      • 图3 (耕作模式试验)可见,耕作方式对玉米花前群体生物量影响显著,RST处理较NT、CP、RNT处理分别提高2.7%、13.6%和14.3% (P<0.05),花后群体生物量各耕作方式间无显著差异;整个生育期玉米群体生物量表现为RST处理最高,两年平均为22.7 t/hm2,较NT、CP、RNT处理分别增加了2.7%、9.1%和9.1%。

        图  3  不同耕作及施肥模式下玉米花前、花后及整个生育期干物质累积量

        Figure 3.  Dry matter accumulation at pre- and post-silking and whole growth stage of maize as affectedby tillage and fertilization modes

        图3 (施肥模式试验)可知,50%Cr处理的玉米群体生物量最高,两年平均为25.0 t/hm2,较30%Cr、Sd分别提高了3.3%和10.6%;50%Cr与30%Cr处理花前、花后群体生物量无显著差异,但均显著高于Sd处理, 50%Cr处理较30%Cr、Sd处理花前群体生物量分别提高了4.1% 、9.9%,花后群体生物量分别提高了2.9%、10.4%。说明50%Cr处理改善了玉米生育期内养分供应,进而促进了花前、花后物质积累。

      • 图4 (耕作模式试验)可知,RST处理全生育期氮素积累量与NT无显著差异,但较CP和RNT处理分别提高了6.3%和10.8% (P<0.05)。RST和NT花前氮素积累量显著高于CP 和RNT处理,而花后却相反。

        图  4  不同耕作及施肥模式下玉米花前、花后及整个生育期氮素累积量

        Figure 4.  Nitrogen accumulation at pre- and post-silking and whole growth period of maize as affected by tillage and fertilization modes

        图4 (施肥模式试验)可见,施肥模式50%Cr处理的玉米花前、花后、整个生育期的氮素积累量均最高,花前较30%Cr、Sd处理分别提高了3.8%和12.8%,花后分别提高了4.3%和21.4%,整个生育期分别提高了3.6%、14.6%。

      • 表5可知,RST处理营养器官氮素转运量、花后籽粒氮素积累量及氮素转运率与NT处理均无显著差异,氮素转运量较CP和RNT处理分别提高了22.5%、34.7% (P<0.05),氮素转运率分别提高了6.7%、10.5% (P<0.05),而花后籽粒氮素积累量较CP和RNT处理均降低了12.9% (P<0.05)。RST和NT处理氮素转运对籽粒氮产量的贡献率显著高于花后籽粒氮素积累。

        表 5  不同耕作及施肥模式对玉米氮素转运及花后籽粒氮素积累的影响

        Table 5.  Effects of tillage and fertilization modes on nitrogen translocation and grain nitrogen accumulation of maize at the post-silking stage

        处理
        Treatment
        营养器官氮素
        转运量
        NRFV
        (kg/hm2)
        花后籽粒氮素
        积累量
        GNAPS
        (kg/hm2)
        营养器官氮素
        转运率
        NTRFV
        (%)
        对籽粒氮产量贡献率 (%)
        Contribution to seed N yield
        氮素转运
        Nitrogen transport
        花后籽粒氮素积累
        Grain N accumulation after silking
        耕作方式
        Tillage method
        CP 64.0±2.2 b 60.7±1.2 a 46.5±0.9 b 51.3±0.9 b 48.7±0.9 a
        NT 78.1±2.1 a 50.7±4.1 b 49.8±0.9 a 60.6±2.6 a 39.4±2.6 b
        RNT 58.2±2.7 c 60.7±4.0 a 44.9±1.2 b 49.0±2.78 b 51.0±2.8 a
        RST 78.4±2.8 a 52.9±3.8 b 49.6±1.3 a 59.7±2.6 a 40.3±2.6 b
        施肥模式
        Fertilization
        mode
        Sd 78.4±2.8 b 52.9±3.8 b 49.6±1.3 a 59.7±2.6 b 40.3±2.6 a
        50%Cr 89.8±0.3 a 64.2±0.8 a 50.4±0.4 a 58.2±0.4 b 41.8±0.4 a
        30%Cr 86.0±2.0 a 61.7±2.9 a 50.0±0.6 a 58.2±1.7 b 41.8±1.7 a
        0N 44.4±1.04 c 27.2±0.52 c 42.6±1.88 b 62.5±2.0 a 37.5±2.0 b
        注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规尿素基施加追施;50%Cr、30%Cr—控释氮肥与普通尿素5∶5、3∶7掺混,一次性基施;0N—不施氮肥。同列数字后不同小写字母表示处理间差异显著 (P<0.05)。
        Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Common urea applied as base and topdressing fertilizer; 50%Cr and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5 and 3∶7, and completely applied as base fertilizer; 0N—No nitrogen fertilizer. NRFV—N remobilization from vegetative organs; GNAPS—Grain nitrogen accumulation after silking; NTRFV—Nitrogen transport rate from vegetative organs. Different small letters after data in the same column indicate significant difference among treatments (P<0.05).

        在秸秆覆盖条耕下,50%Cr处理氮素转运量、花后籽粒氮素积累量及氮素转运率均大于其他处理,其中氮素转运量、花后籽粒氮素积累量与30%Cr处理差异不显著,但显著高于Sd处理。50%Cr较Sd氮素转运量、花后籽粒氮素积累量分别提高14.5%、21.4%

      • 表6可知,RST与NT、CP和RNT处理相比,氮肥偏生产力分别提高了4.1%、6.0%和7.2%,氮肥农学效率分别提高了29.7%、45.5%和60.0%,氮肥生理效率分别提高了22.6%、23.8%和19.8%,RST处理氮肥回收效率与NT无显著差异,但较CP和RNT处理分别提高了17.9%和32.7%。

        表 6  不同耕作及施肥模式对玉米氮肥利用效率的影响

        Table 6.  Effects of tillage and fertilization modes on nitrogen use efficiency of maize

        处理
        Treatment
        氮肥农学效率(kg/kg)
        NAE
        氮肥回收效率 (%)
        NRE
        氮肥生理效率 (kg/kg)
        NIE
        氮肥偏生产力 (kg/kg)
        PFPN
        耕作方式
        Tillage method
        CP 6.6±0.4 bc 31.3±2.1 b 21.0±0.2 b 50.3±0.2 bc
        NT 7.4±0.8 b 35.4±0.7 a 21.2±2.5 b 51.2±0.7 b
        RNT 6.0±0.3 c 27.8±1.8 b 21.7±1.4 b 49.7±0.3 c
        RST 9.6±0.7 a 36.9±1.7 a 26.0±2.4 a 53.3±0.5 a
        施肥模式
        Fertilization mode

        Sd 9.6±0.7 c 36.9±1.7 c 26.0±2.4 a 53.3±0.5 a
        50%Cr 14.3±0.6 a 50.6±1.2 a 28.5±0.8 a 58.1±0.4 a
        30%Cr 12.3±0.3 b 46.8±1.6 b 26.3±0.7 a 56.0±0.1 a
        注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规施肥;50%Cr—控释氮肥与普通尿素5∶5掺混;30%Cr—控释氮肥与普通尿素3∶7掺混。同列数字后不同小写字母表示处理间差异显著 (P<0.05)。
        Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Common urea applied as base and topdressing fertilizers; 50%Cr, and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5, and 3∶7, and completely applied as base fertilizer. NUE—Nitrogen use efficiency; NRE—Nitrogen recovery efficiency; NIE—Nitrogen internal efficiency; PFPN—Partial factor productivity of fertilizer N. Different small letters after data in the same column indicate significant difference among treatments (P<0.05).

        秸秆覆盖条耕下,施肥模式50%Cr较30%Cr、Sd处理氮肥偏生产力分别提高了3.8%和9.0%,氮肥农学效率分别提高了16.3%、49.0%,氮肥回收效率分别提高了8.1%、37.1%,氮肥生理效率无显著差异。由此看出,在秸秆覆盖条耕下,50%Cr处理氮肥农学效率提高主要原因是提高了植株对氮素的回收效率。

      • 表7可知,不同耕作及施肥方式显著影响土壤无机氮残留和氮素表观损失。不同耕作方式间,RST处理无机氮残留显著低于其他处理,较NT、CP和RNT处理分别降低了2.2%、8.2%和9.2%,氮素表观损失RST与NT处理差异不显著,较CP和RNT处理分别降低了8.3%和11.6%。由此可见,秸秆覆盖条耕促进了植株对氮素的吸收,降低了土壤中氮素残留和氮素损失。在秸秆覆盖条耕下,控释氮肥掺混尿素处理显著降低了土壤无机氮残留和氮素表观损失,50%Cr处理效果更为明显,与30%Cr和Sd处理相比,土壤无机氮残留分别降低2.8%、4.5%,氮素表观损失分别降低了8.2%和21.3%。

        表 7  不同耕作及施肥模式两年土壤氮素表观平衡(kg/hm2)

        Table 7.  Soil nitrogen apparent balance in two years’ period of different tillage and fertilization modes

        处理
        Treatment
        氮输入量 N input 氮输出量 N output 氮素表观损失
        Apparent N loss
        施氮量
        N input
        基础无机氮
        Basic Nmin
        总矿化氮量
        Total mineralized N
        作物携出
        Crop uptake
        无机氮残留
        Nmin residue
        耕作方式
        Tillage method
        CP 450 95.0±2.6 a 211.19 396.8±7.8 b 43.9±0.3 a 315.6±2.5 b
        NT 450 92.0+1.5 a 211.19 415.0±5.3 a 41.2±0.9 b 297.0±4.1 c
        RNT 450 91.2±2.3 a 211.19 380.7±6.1 c 44.4±0.5 a 327.3±3.5 a
        RST 450 90.1±2.4 a 211.19 421.7±5.7 a 40.3±0.2 b 289.3±3.7 c
        施肥模式
        Fertilization mode
        Sd 450 90.1±2.4 a 211.19 421.7±5.7 c 40.3±0.2 a 289.3±3.7 a
        30%Cr 450 93.0±1.8 a 211.19 466.6±5.5 b 39.6±0.3 a 248.0±3.4 b
        50%Cr 450 89.6±1.9 a 211.19 484.6±2.5 a 38.5±0.4 b 227.7±2.5 c
        注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规施肥;50%Cr—控释氮肥与普通尿素5∶5掺混;30%Cr—控释氮肥与普通尿素3∶7掺混。数据后不同小写字母表示处理间差异显著 (P<0.05)。
        Note: CP—Conventional tillage and seding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Cmmon urea applied as base aand topdressing fertilizers; 50%Cr, and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5, and 3∶7, and completely applied as base fertilizer. Different small letters after data in the same column indicate significant difference among treatments (P<0.05).
      • 表8可知,RST处理的净收益最大,较NT、CP和RNT处理分别提高了 7.0%、9.6%和10%。秸秆覆盖条耕下,施肥模式50%Cr处理的净收益最大,较30%Cr、Sd处理分别提高了3.5%和6.9%。从成本构成分析,控释肥与尿素掺混增加了肥料成本,但是降低了人工费用和机械作业成本,加之产量收入提高,最终增加了纯收入,提高了玉米种植经济效益。

        表 8  不同耕作及施肥模式经济效益分析(yuan/hm2)

        Table 8.  Economic benefit analysis of different tillage and fertilization modes

        处理
        Treatment
        支出 Cost 产量收益
        Yield income
        净收益
        Net income
        种子
        Seed
        化肥
        Fertilizer
        农药
        Pesticide
        人工费
        Labor
        机械作业
        Mechanical work
        耕作方式
        Tillage method
        CP 1020 1506 450 157.5 930 26035.3 21971.8
        NT 1020 1506 450 135.0 855 26488.0 22522.0
        RNT 1020 1506 450 90.0 765 25736.8 21905.8
        RST 1020 1506 450 108.8 840 28012.3 24087.5
        施肥模式
        Fertilization mode
        Sd 1020 1506 450 108.8 840 28012.3 24087.5
        50%Cr 1020 1950 450 86.3 795 30044.3 25743.0
        30%Cr 1020 1770 450 86.3 795 29002.8 24881.5
        注:CP—常规垄作;NT—秸秆离田免耕;RNT—秸秆覆盖免耕;RST—秸秆覆盖条耕;Sd—常规施肥;50%Cr—控释氮肥与普通尿素5∶5掺混;30%Cr—控释氮肥与普通尿素3∶7掺混。玉米价格按2.3元/kg计,常规NPK复合肥、控释氮肥、普通尿素分别按3200、3200和2000元/t计,劳动力价格按22.5元/hm2 (主要农机驾驶及施肥)计,机械作业耗油按7.3元/升计;成本核算不包含土地成本。
        Note: CP—Conventional tillage and seeding on ridges; NT—No-tillage without straw mulch; RNT—No-tillage with straw mulch; RST—Strip tillage with straw mulch; Sd—Common urea applied as base and topdressing fertilizers; 50%Cr, and 30%Cr—Controlled release fertilizer mixed with common urea in ratio of 5∶5, and 3∶7, and completely applied as base fertilizer. The price (in RMB) is maize 2.3 yuan/kg, compound fertilizer 3200 yuan/t, controlled-release fertilizer 3200 yuan/t, common urea 2000 yuan/t, respectively, labor 22.5 yuan/hm2 (mainly farm machinery driving and fertilizer application), oil consumption for machinery works 7.3 yuan/L; the costing does not include land costs.
      • 耕作措施通过影响土壤环境进而影响作物生长发育及对养分的吸收,科学合理的耕作措施是提高作物产量和肥料利用效率的有效途径[19]。玉米秸秆覆盖条耕技术,在北美玉米生产中被广泛应用[20],通过条耕技术解决了秸秆覆盖下春季土壤湿度大免耕播种困难的问题,提高了播种质量和出苗率,促进玉米幼苗生长发育[21]。长期定位试验研究结果显示,玉米条耕技术平均产量较秸秆覆盖免耕显著增加6%[2223]。在雨养条件下,条耕技术增产效果更加明显,其中在美国高产竞赛中,雨养区条耕玉米产量可达22.2 t/hm2[24]。石东峰等[6]在吉林梨树试验研究表明,秸秆覆盖条耕技术下玉米出苗率平均在96%以上,行间秸秆覆盖下土壤含水量显著提高,可实现抗旱、秸秆全量还田和保全苗。本研究在大兴安岭沿麓半干旱区的试验结果表明,秸秆覆盖条耕(RST)较秸秆离田免耕(NT)、常规垄作(CP)、秸秆覆盖免耕(RNT)玉米群体生物量分别增加了2.7%、9.1%和9.1%,产量分别提高了4.2%、6.0%和7.2%;其中群体生物量差异主要表现在花前,秸秆覆盖条耕下玉米有效穗数的增加是增产的主要原因。从氮素积累来看,RST处理氮素积累量与NT处理无显著差异,较CP、RNT处理氮素积累量分别提高了6.3%和10.8%,氮素转运量分别提高了22.5%、34.7%,而花后籽粒氮素积累量均降低了12.9%;且其营养器官氮素转运对籽粒氮产量贡献率高于花后籽粒氮素积累,说明在常规施肥方式下,秸秆覆盖条耕玉米籽粒氮素主要来自花前氮素转运,花后氮素吸收不足,玉米生育中后期可能因土壤氮素耗竭出现氮素缺失。张敏[25]的研究也认为,在低氮素条件下,玉米籽粒中的氮素以营养器官转运氮素为主,而高氮条件下,花后籽粒氮素积累对籽粒氮素的贡献率增大。从肥料利用效率来看,RST与NT、CP和RNT处理相比,氮肥农学效率分别提高了29.7%、45.5%和60.0%,氮肥生理效率平均分别提高了22.6%、23.8%和19.8%,氮肥回收效率RST与NT处理间无显著差异,较CP和RNT处理分别提高了17.9%和32.7%。推测其原因,秸秆覆盖条耕技术在播种前使用条耕机对苗带进行耕作,创造疏松平整的苗带,利于玉米根系向下生长汲取养分,并且施肥位置在苗带下方5—10 cm处,促进了根系的垂直生长[26]。在玉米生长期间,苗带无秸秆覆盖,土壤温度升温较快,有利于播种及幼苗生长。行间保持秸秆覆盖,有利于保持土壤水分供给[27],且秸秆腐解后会向表层土壤释放氮素,供植株吸收利用。

        相关研究表明,控释氮肥与普通尿素按比例掺混一次性基施,是提高作物产量、氮肥利用效率、减少生产投入和获得更高收益的有效途径[2830]。在秸秆覆盖还田条件下,缓控释掺混尿素一次性施入能满足玉米全生育期对氮素的需求,使得玉米生长发育状况优于常规配方施肥[31]。本研究表明,在秸秆覆盖条耕下,与常规施肥相比,控施氮肥与普通尿素掺混一次性基施可以显著提高玉米群体生物量和产量,其中50%Cr处理效果更加明显,较30%Cr、Sd处理分别增产3.6%、8.9%,群体生物量分别提高了3.3%、10.6%。控释氮肥与普通尿素掺混,可以避免作物生长前期缺氮后期贪青晚熟,使其氮素供应与玉米生长对养分的需求规律较好吻合,从而提高氮肥吸收及利用效率[32]。在本研究中,玉米氮素积累量50%Cr较30%Cr、Sd处理分别提高了3.6%、14.6%。花前、花后氮素积累量均表现为50%Cr处理最大,其花后氮素积累量与30%Cr处理差异不显著,较Sd处理提高了21.4%。说明50%Cr处理既满足了玉米花前对氮素的需求,同时避免了玉米花后氮素缺失,使其获得较高的玉米产量。氮肥吸收利用效率可以作为评价氮肥施用是否科学合理的重要指标,能够直接反映作物对氮肥吸收利用的效果[33]。本研究发现,50%Cr较30%Cr、Sd处理氮肥农学效率分别提高了16.3%、49.0%,氮肥回收效率分别提高了8.1%、37.1%,而氮素生理效率差异不显著,说明50%Cr处理主要是通过改善土壤氮素供应,提高玉米对氮素的吸收而提高了氮肥利用效率。另外试验结果还表明,50%Cr处理显著降低了土壤无机氮残留和氮素表观损失,与30%Cr和Sd相比,土壤无机氮残留分别降低2.8%、4.5%,氮素表观损失分别降低了8.2%和21.3%,这与张杰等[34]的研究结果相似。从经济效益来看,秸秆覆盖条耕结合控释氮肥与普通尿素掺混一次性基施,虽然增加了肥料投入成本,但与常规农户处理相比,可降低人工和机械作业成本,加之其增产收益,可提高玉米种植经济效益。

      • 秸秆覆盖条耕相较于秸秆覆盖免耕显著提高了玉米出苗率,增加了玉米穗数、花前群体生物量和氮素积累量,提高了玉米产量及氮肥利用效率。秸秆覆盖条耕下,控释氮肥与普通尿素以5∶5比例掺混一次性基施相比于3∶7比例掺混一次性基施和常规施肥,增加玉米花前、花后群体生物量、氮素积累量,降低土壤无机氮残留和氮素表观损失,从而提高产量、氮肥利用效率。可见,秸秆覆盖条耕5∶5比例掺混施肥可作为大兴安岭沿麓寒旱区玉米抗旱保苗、氮素高效、轻简生产的可行途径。

    参考文献 (34)

    目录

      /

      返回文章
      返回