-
我国苹果栽植面积和产量均居世界第一位。据FAO统计,世界苹果种植面积约460万hm2,产量基本稳定在8300~8700万t;中国苹果种植面积约190万hm2,产量基本稳定在3900~4200万t,分别占到世界苹果种植面积和产量的41%和47%。中国苹果产业在世界苹果产业中占据重要地位,也成为推动乡村振兴、农民增收致富的特色产业和主导产业之一。高品质果品是果业高质量发展的内涵之一[1−2],也是消费者更加关注的方面[3]。相关研究表明,苹果品质的影响因素众多,品种、土壤特性、气候因素、栽培管理措施、植保措施等均能影响果实品质的形成[4−6]。其中,栽培管理措施中的施肥技术是影响苹果品质的关键,直接影响果实的大小、色泽、糖酸、香气等品质[7]。
相关研究表明,施用有机肥可明显提高苹果的单果重和产量[8−9]。巴西南部的两年研究也证实,施用有机肥可使苹果果实底色更黄,果皮红色的百分比更高[10]。刘利民等[11]在黄河故道地区的研究发现,果实可溶性固形物含量随着施入有机肥量的增加而增加,虽然不同处理间的差异不显著,但均高于对照处理。赵佐平等[12]与张鹏飞等[13]的研究结果证实,有机肥和无机肥配施处理与其他单独施用不同肥料处理相比,能显著提高果实的可溶性固形物、维生素C含量,降低可滴定酸含量。
果实风味品质较为复杂,主要是人的感觉器官对果实产生的感觉,包括味觉、嗅觉等。它是果实综合品质的重要组成部分,对消费者选择果品有着重要的引导作用。果实的风味主要受果实中糖酸含量以及香气物质种类及其含量的影响[14−18],其中有机糖酸主要包括蔗糖、果糖、山梨醇、葡萄糖、苹果酸、奎宁酸、莽草酸,果实香气物质主要包括酯类、醇类、醛类、酮类、醚类、萜类和烷烃等。赵满兴等[19]研究表明,生物有机肥配合施用化肥能够提高红枣果实中还原性糖组分。另有研究证实,有机肥的施用能够提高肥城桃果实中葡萄糖和蔗糖含量,降低苹果酸、琥珀酸、酒石酸和总酸含量[20−21]。同时,王孝娣等[22]研究结果显示,与化肥处理相比,施用有机肥会使苹果芳香物质种类更多、相对含量更高。有报道称,鸡粪和化肥配施能够促进甜瓜果实香气物质的合成[23]。但也有研究表明,有机肥无机肥配施与单独施用化肥和有机肥相比,果实香气的化合物并无显著差异[24]。
目前,有关有机肥与无机肥配施对水果品质的影响已有大量研究,但不同施肥条件下果实品质呈现的规律性变化,尤其鸡粪替代不同比例的化肥对苹果品质影响的研究还鲜有报道。因此,考虑到环境保护、化肥减施等因素,深入研究化肥减量配施鸡粪对苹果果实品质的影响,为果园科学施肥提供依据。
-
长期定位施肥试验位于中国农业科学院果树研究所砬山综合试验基地(120.73°E,40.70°N)。果园土壤类型为棕壤,质地为沙土,建园前取试验地0—40 cm土壤样品,测定土壤基本理化性状,其中土壤容重为1.51 g/cm3,pH为6.05,电导率为0.08 μs/cm,土壤全氮含量为0.51 g/kg,速效氮含量为43.00 mg/kg,有机质含量为9.86 g/kg,有效磷含量为2.62 mg/kg,速效钾含量为7.64 mg/kg。
-
以2017年春季定植的‘嘎拉’/SH38/山定子(Malus pumila Mill/SH38/Malus baccata (L.) Borkh.)苹果为试材,开展长期定位施肥试验,设置6个处理:不施肥对照(CK)、100%化肥(100%CF)、75%化肥+25%鸡粪(25%CHM)、50%化肥+50%鸡粪(50%CHM)、25%化肥+75%鸡粪(75%CHM)、100%鸡粪(100%CHM)。每个处理选5棵长势较为一致相邻的苹果树,中间的3棵树作为试验树,边缘的2棵树作为保护树。每个处理设置3次重复,采用随机区组设计。肥料包括腐熟的鸡粪和化学肥料[尿素(N 46%),硫酸钾( K2O 50%),磷酸二铵(N 18%、P2O5 48%)]。鸡粪氮含量在2017年为1.93%,2018年为2.83%,2019年为3.45%,2020年为2.97%。根据Wang等[25]设置本试验幼树期(2017—2018)的氮素用量为240 kg/hm2,2019—2020年为480 kg/hm2。
鸡粪用量根据其含氮量和氮肥用量计算。鸡粪在秋季果实采收后落叶前一次性施用。化肥分3个时期施用,1/3的氮肥、1/4的磷肥和1/5的钾肥在春季缓慢生长期施用,1/3的氮肥、1/4的磷肥和3/5的钾肥在果实膨大期施用,1/3的氮肥、1/2的磷肥和1/5的钾肥在秋季果实采收后施用。肥料混合均匀后于果树树冠投影的中间位置开沟施入。2017—2020年的具体施肥量见表1。
表 1 2017—2020年各处理肥料具体施用量(kg/hm2)
Table 1. Fertilizer application amount in the treatment from 2017 to 2020
处理
Treatment化肥氮与鸡粪氮比例
Ratio of fertilizer N
to chicken manure N2017—2018 2019—2020 化肥养分
Chemical nutrient
(N–P2O5–K2O)鸡粪氮
N from
chicken manure总氮
Total N化肥养分
Chemical nutrient
(N–P2O5–K2O)鸡粪氮
N from
chicken manure总氮
Total NCK 0 0 0 0 0 0 100%CF 100%∶0% 240–120–240 0 240 480–240–480 0 480 25%CHM 75%∶25% 180–90–180 60 240 360–180–360 120 480 50%CHM 50%∶50% 120–60–120 120 240 240–120–240 240 480 75%CHM 25%∶75% 60–30–60 180 240 120–60–120 360 480 100%CHM 0%∶100% 0 240 240 0 480 480 -
果实成熟后,分别从中间3棵苹果树的东、西、南、北4个方向均匀取样,每个处理取具有代表性的果实20个。其中10个果实用于测量单果重、纵横径、果实硬度和色泽等指标;10个果实用于测定果实糖酸组分、香气物质种类及含量等。
单果重使用百分之一电子天平测定;纵横径使用游标卡尺测定;果实色泽使用色差仪(NR20XE,中国)测定;可溶性固形物采用数显折光仪(PLA-1,日本)测定;可滴定酸采用905全自动电位滴定仪测定;糖组分采用ICS-5000多功能离子色谱仪(美国,Thermo Fisher Scientific公司)测定;酸组分采用高效液相色谱仪LC-10Avp (日本,岛津公司)测定;果实香气物质种类及其含量采用TSQ Quantum XLS气相色谱−串联质谱联用仪(美国,Thermo Fisher Scientific公司)测定。
-
测定数据利用Microsoft Excel 2003进行数据的预处理;应用SAS软件进行统计分析,用最小显著差数法(LSD)进行差异性分析(P<0.05)。采用Prims 8软件制图。
-
施肥显著影响“嘎拉”苹果果实的单果重和纵横径;各施肥处理单果重、纵径和横径均显著高于不施肥的CK处理(P<0.05,表2)。
表 2 鸡粪与化肥不同配施比例下果实发育情况
Table 2. Fruit development under different substitution rates of chicken manure for chemical fertilizer
处理
Treatment单果重 (g)
Single fruit
weight纵径 (mm)
Longitudinal
diameter横径 (mm)
Diameter
diameter100%CF 157.64±3.97 b 61.68±0.55 c 70.37±0.71 b 25%CHM 157.79±6.22 b 61.93±0.36 c 70.54±1.01 ab 50%CHM 161.31±4.61 b 62.14±0.20 bc 70.90±1.21 ab 75%CHM 172.80±5.96 a 63.21±0.91 ab 71.99±0.69 ab 100%CHM 172.82±6.64 a 63.63±0.26 a 72.13±0.17 a CK 127.21±6.77 c 56.53±0.67 d 64.51±1.21 c 注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
Note: Values followed by different lowercase letters in the same column indicate significant difference among treatments (P<0.05).100%CHM处理果实单果重(172.82 g)显著高于100%CF处理(157.64 g)。鸡粪配施化肥处理下,随着鸡粪替代化肥比例增加苹果单果重呈上升趋势,其中75%CHM处理果实单果重(172.80 g)显著高于25%CHM和50%CHM 两个处理。100%CHM处理果实纵径最大,为63.63 mm;鸡粪配施化肥处理中,随着鸡粪替代化肥比例增加果实纵径呈上升趋势,其中75%CHM处理果实纵径达到63.21 mm,均高于25%CHM和50%CHM 2个处理。100%CHM处理果实横径最大,为72.13 mm;鸡粪配施化肥处理中,随着鸡粪比例增加果实横径呈上升趋势,各处理间差异未达显著水平。
果实色泽也是决定市场接受程度和消费者选择的关键因子。从表3可以看出:果实色泽受不同施肥处理影响较小,其中阳面果实色泽各指标均无显著差异;阴面果实的色调角在75%CHM处理时显著低于其余各处理,而色彩饱和度在75%CHM处理最高,与50%CHM处理有显著差异。
表 3 鸡粪与化肥不同配施比例下苹果果实色泽
Table 3. The color of apple fruit under different substitution rates of chicken manure for chemical fertilizer
果实方位
Fruit orientation处理
TreatmentL* a* b* C* H° 阳面果实
Sunny side100%CF 53.99±5.86 a 36.23±2.50 a 15.91±2.55 a 39.10±1.96 a 22.82±4.73 a 25%CHM 52.23±0.92 a 40.22±0.52 a 15.24±0.21 a 42.57±0.99 a 20.55±1.03 a 50%CHM 52.55±1.45 a 38.95±2.51 a 14.80±2.01 a 41.80±0.70 a 21.02±3.37 a 75%CHM 50.37±4.00 a 40.10±2.01 a 15.08±2.16 a 43.00±1.76 a 20.72±3.17 a 100%CM 54.12±3.45 a 36.75±1.42 a 16.15±1.16 a 40.40±2.55 a 23.74±3.84 a CK 54.64±1.51 a 36.61±2.86 a 15.82±2.63 a 40.33±1.36 a 23.30±5.54 a 阴面果实
Shade side100%CF 67.79±4.23 a 22.41±2.41 a 22.08±2.67 a 32.09±0.99 ab 45.21±4.98 ab 25%CHM 68.58±3.01 a 23.34±4.48 a 21.98±1.63 a 33.34±1.46 ab 42.41±4.01 b 50%CHM 69.31±4.84 a 20.56±3.22 a 21.39±2.40 a 30.86±2.81 b 44.19±0.92 ab 75%CHM 61.73±7.06 a 29.27±7.90 a 20.47±3.46 a 36.09±4.69 a 30.67±5.63 c 100%CHM 67.41±3.39 a 23.29±4.69 a 23.70±1.75 a 35.38±1.43 a 44.16±3.16 ab CK 70.22±1.22 a 20.80±2.47 a 23.42±2.82 a 32.33±1.73 ab 50.27±4.57 a 注:L*—果面亮度,a*—红绿色差,b*—黄绿色差,C*—色彩饱和度,H°—色调角。同列数字后不同小写字母表示处理间差异显著 (P<0.05).
Note: L*—Lightness, a*—Red-green color difference, b*—Yellow-green color difference, C*—Color saturation, H°—Hue angle. Different lowercase letters after data in the same column indicate significant difference among treatments (P<0.05). -
果实风味品质受糖和酸含量及组分的影响很大,苹果酸是苹果特有的酸,是苹果中酸味的主要来源,奎宁酸会影响苹果果实涩味,在甜味的感知中起着重要作用[26]。施肥处理的果实总可溶性固形物(图1A)和可滴定酸(图1B)含量均高于不施肥处理。本研究中嘎拉苹果果实中的糖类有多种组分,主要有4种,包括山梨醇、葡萄糖、果糖和蔗糖,其中果糖和蔗糖的占比较高(图1C~F)。有机酸组分主要有3种,包括苹果酸、奎宁酸、莽草酸(图1G~I),其中苹果酸的比例最高,达95%以上,其余的酸含量都很低,与前人在其他品种中的研究结果[27-28]相似。果糖和蔗糖在糖类部分所占的比例较高,苹果酸在有机酸部分的比例最高。25%CHM处理果实葡萄糖(图1D)含量显著高于其余处理,75%CHM和100%CHM处理果实中苹果酸(图1G)含量显著高于其他处理。
-
在嘎拉苹果样品中共鉴定出27种挥发性香气成分,如表4所示,酯类占比最高,其次为醇类,少量醛类,极少量醚类和酮类。含量最高的3种酯类物质分别为乙酸丁酯、乙酸己酯和2-甲基丁基乙酸酯,含量最高的2种醇类物质分别为己醇和正丁醇,含量最高的醛类物质为己醛。75%CHM处理的果实酯类和醇类成分含量最高,分别为897.17和209.30 μg/g,显著高于其余各处理;25%CHM处理果实醛类和醚类香气成分含量最高,分别为48.20和6.76 μg/g,显著高于其余各处理。
表 4 鸡粪与化肥不同配施下果实香气物质含量(μg/g)
Table 4. Content of aromatic substances in fruits under different substitution rates of chicken manure for chemical fertilizer
香气物质 Aromatic substance 100%CF 25%CHM 50%CHM 75%CHM 100%CHM CK 乙酸丁酯 Butyl acetate 199.11±23.15 c 247.65±26.06 b 244.92±17.13 b 317.90±17.17 a 210.82±16.73 bc 178.54±6.19 c 乙酸己酯 Hexyl acetate 196.30±13.43 d 225.98±14.61 c 250.93±11.98 b 310.92±9.31 a 169.50±2.15 e 147.51±17.14 e 2-甲基丁基乙酸酯
2-Methylbutyl acetate57.08±8.45 c 97.65±3.32 b 92.85±3.31 b 120.08±8.18 a 89.27±5.87 b 41.58±6.78 d 己酸丁酯 Butyl hexanoate 33.67±0.99 b 27.17±0.91 d 29.24±1.23 c 36.34±1.59 a 27.85±0.46 cd 18.16±0.04 e 乙酸戊酯 Pentyl acetate 22.31±1.81 c 29.31±1.30 b 24.59±2.27 c 34.59±0.58 a 23.22±1.13 c 18.22±0.72 d 己酸己酯
Hexanoic acid hexyl ester22.25±0.40 a 16.46±2.02 b 16.37±1.28 b 23.64±1.68 a 11.19±0.21 c 11.33±1.46 c 丁酰乳酸丁酯
Butyl butyryl lactate15.66±7.65 b 23.39±3.84 ab 18.07±3.52 ab 26.33±8.80 a 18.72±3.98 ab 16.53±4.68 b 2-甲基-丁酸己酯
Hexyl-2-methylbutyrate15.78±1.61 a 13.31±2.19 b 17.13±1.54 a 15.68±0.72 a 12.18±1.15 b 9.69±0.85 c 丙酸丁酯 Butyl propionate 3.69±0.56 ab 3.14±0.36 b 3.61±0.80 ab 4.01±0.38 a 3.68±0.40 ab 1.37±0.25 c 2-甲基丁酸乙酯
Ethyl-2-methylbutyrate2.69±1.80 ab 4.17±1.68 a 3.11±0.94 ab 4.18±2.27 a 2.40±0.89 ab 1.48±0.39 b 乙酸乙酯 Ethyl acetate 0.81±0.16 b 1.05±0.12 ab 1.11±0.22 a 0.88±0.02 ab 0.44±0.02 c 1.10±0.23 a 己酸甲酯 Methyl hexanoate 0.96±0.70 a 1.17±0.56 a 1.30±1.15 a 1.46±0.76 a 0.96±0.08 a 0.82±0.23 a 丁酸辛酯 Octyl butyrate 0.63±0.29 b 1.03±0.26 ab 0.75±0.12 ab 1.14±0.60 a 0.72±0.04 ab 0.60±0.11 b 酯类物质总量 Total esters 570.94±12.38 c 691.47±45.33 b 703.97±12.26 b 897.17±19.35 a 570.93±15.90 c 446.93±21.50 d 己醇 Hexanol 97.80±6.03 b 80.10±9.29 c 92.90±9.92 b 137.38±4.30 a 67.71±6.69 d 71.63±2.21 cd 正丁醇 1-Butanol 35.61±2.89 b 29.23±2.99 cd 33.74±0.28 bc 46.52±4.84 a 31.40±2.79 bcd 26.93±0.11 d 2-甲基乙醇 2-Methyl alcohol 10.22±3.06 ab 11.95±0.66 a 8.12±1.49 bc 10.48±1.68 ab 6.81±1.29 c 3.22±0.54 d 5-己烯-1-醇 5-Hexen-1-ol 7.73±3.29 a 9.29±2.13 a 7.90±1.50 a 10.67±1.74 a 8.52±2.87 a 7.45±2.03 a 3-壬醇 3-Nonanol 1.86±0.08 a 1.58±0.17 a 1.75±0.09 a 1.65±0.27 a 1.80±0.24 a 1.62±0.21 a 3-己烯-1-醇 3-Hexen-1-ol 1.25±0.16 a 1.23±0.00 a 1.12±0.16 a 1.39±0.28 a 1.07±0.23 a 1.17±0.34 a 1-辛醇 1-Octanol 0.65±0.42 a 0.92±0.20 a 0.66±0.11 a 0.88±0.15 a 0.79±0.28 a 0.54±0.15 a 苯乙醇 Phenethyl alcohol 0.22±0.13 a 0.36±0.13 a 0.20±0.01 a 0.32±0.06 a 0.25±0.08 a 0.25±0.12 a 醇类物质总量 Total alcohols 155.33±6.81 b 134.65±12.84 c 146.39±10.58 bc 209.30±9.00 a 118.34±11.99 d 112.80±4.39 d 己醛 Hexanal 8.41±1.11 b 11.25±0.24 a 5.94±0.24 c 7.33±0.15 bc 7.48±0.30 b 7.83±1.53 b 2-庚烯醛 2-Heptenal 1.35±0.76 ab 2.25±0.31 a 2.19±1.03 a 2.25±0.64 a 0.55±0.04 b 2.20±1.07 a 苯甲醛 Benzaldehyde 0.25±0.09 b 0.58±0.32 ab 0.43±0.11 ab 0.72±0.35 a 0.29±0.14 b 0.46±0.20 ab 醛类物质总量 Total aldehydes 29.58±2.84 bc 48.20±2.30 a 25.20±1.58 c 31.36±0.96 b 25.37±2.36 c 33.62±2.96 b 4-烯丙基苯甲醚 4-Allyl anisole 3.90±0.16 c 6.76±0.53 a 3.78±0.12 c 4.04±0.05 c 6.12±0.12 b 1.47±0.22 d 6-甲基-5-庚烯-2-酮
6-Methyl-5-hepten-2-tone1.33±0.58 bc 3.30±1.55 a 1.94±0.70 abc 2.92±0.68 abc 1.16±0.33 c 3.02±1.43 ab 香气物质总量
Total aroma substances761.07±7.44 c 884.38±48.55 b 881.29±21.30 b 1144.78±25.25 a 721.92±26.48 c 597.84±29.14 d 注:同行数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: Different lowercase letters after data in a row indicate significant difference among treatments (P<0.05).随着鸡粪比例增加,果实乙酸丁酯、乙酸己酯、2-甲基丁基乙酸酯含量呈先上升后下降的趋势,75%CHM处理3种脂类成分含量分别为317.90、310.92、120.08 μg/g,75%CHM显著高于其余各处理。75%CHM处理果实己醇、正丁醇含量分别为137.38、46.52 μg/g,也显著高于其余各处理。己醛含量以25%CHM处理最高,为11.25 μg/g,显著高于50%CHM和75%CHM两个处理。
-
选取单果重、可溶性固形物、可滴定酸、苹果酸、果糖、蔗糖、酯类物质、醇类物质、总香气物质共计9个指标进行主成分分析,其中主成分1中主要包括单果重、可溶性固形物、可滴定酸、苹果酸、果糖、酯类物质、总香气物质,主成分2中主要包括蔗糖和醇类物质。结果表明,75%CHM处理综合得分最高,为0.6291,100%CHM处理次之,为0.6198;CK分数最低,为−1.0388 (表5)。
表 5 不同鸡粪化肥施用比例处理的果实品质指标主成分得分及综合得分
Table 5. Comprehensive scores of fruit quality calculated by principal for different chicken manure and chemical fertilizaer application ratio treatments
处理
Treatment主成分1
Principle 1主成分2
Principle 2综合得分
Comprehensive score100%CF −0.3713 −1.1392 −0.4736 25%CHM 0.1839 0.4049 0.2003 50%CHM 0.1518 −0.1415 0.0630 75%CHM 1.3160 −0.8440 0.6291 100%CHM 0.4217 1.6746 0.6198 CK −1.7024 0.0453 −1.0388 -
相关调研表明,消费者对果实外观,特别是形状、大小、颜色等非常重视[29]。本研究结果表明,单施鸡粪、化肥以及鸡粪化肥配施均能够提高果实单果重。肥料的施用能够提高土壤肥力,进而提高树体养分的吸收量提高单果重,但不同肥料对于养分的供给方式略有不同,化肥的养分较为单一且速效,而鸡粪的养分较为复杂且肥料养分释放速率与化肥不同。本研究中各施肥处理氮的总投入量相同,只是化肥与鸡粪中的氮形态不同。75%CHM处理果实单果重在各处理中最高,这一研究结果表明,化肥与鸡粪配施肥料的养分释放更利于果树对于养分的吸收从而利于果实生长。前人研究表明,有机肥的施用与其余肥料相比,果实单果重无明显变化[30],这可能与未固定养分投入量有关,而本试验固定了氮施用量,确保果实养分充足。同时果实的纵横径在各处理间的变化规律与单果重相似。但也有研究表明,果实形状受施肥影响较小,主要由品种等其他因素决定[31]。
研究表明,果皮颜色是决定一个品种的市场接受度的首选性状之一,苹果的果实颜色主要由其底色所决定,其次是花青素沉积。光照、温度、矿质营养、生长调节剂、碳水化合物利用率等因素都会影响花青素的积累。光照强度和低温对苹果果皮中花青素的积累起着至关重要的作用[32]。本研究发现,不同的施肥处理对于果实色泽影响较小。
-
有研究表明,有机肥处理可以增加水果的可滴定酸含量[33]。在本研究中,所有肥料处理中水果的可滴定酸含量都高于不施肥处理,而且鸡粪与化肥不同比例的处理中果实的可滴定酸含量都高于单独施用化肥的处理,这与对柠檬的研究结果一致,即有机柠檬的可滴定酸浓度低于以常规方式种植的柠檬[34]。还有人认为,有机肥可以降低水果的酸含量[35],施用有机肥可以降低百香果的可滴定酸含量[36],有机肥替代化肥可以降低苹果果实的可滴定酸含量[37]。本研究结果表明,与单独施用化肥相比,鸡粪与化肥配施处理可以提高果实的果糖和蔗糖含量,并明显提高果实的苹果酸含量。该结果与以前对蓝莓果实的研究[38]一致。
-
影响苹果香气的物质主要由多种挥发性有机物组成,主要包括萜烯类、醛类、醇类、酯类、酮类及含硫化合物等。但是,并不是所有的挥发性物质都会促成果实香气的产生,只有当其物质含量达到一定数值才会对果实香气产生影响。植物中香气物质的种类极其丰富,已鉴别出超过2000种。前人研究表明不同施肥处理显著影响了果实中香气物质的含量[24],在红枣上的研究发现有机处理下的红枣会有更高的糖、酸以及香气物质[39]。从初级代谢物到形成各种芳香族化合物至少有4条途径[40]。脂肪酸和氨基酸途径是水果中合成酯类的两条主要代谢途径。酯类芳烃挥发物的产生受乙烯控制[41]。酯类是苹果中最丰富的挥发性物质。氮供应在香气的形成中起着作用,在缺氮的条件下,香气的形成受到限制。脂肪酸和氨基酸是合成香气物质的重要底物[42]。因此,我们推测,氮肥的投入可以促进果实中氨基酸等前体物质的合成,进而影响到香气物质的合成。本研究发现,在苹果果实香气物质中酯类物质占比极高,为75%左右,其次为醇类物质,约占20%,其余为醛类、醚类、酮类物质。酯类物质中乙酸丁酯、乙酸己酯、2-甲基丁基乙酸酯含量较高。75%CHM处理果实中上述3种以及总酯类物质含量最高,鸡粪配施化肥处理酯类物质含量显著高于单施化肥以及CK处理,说明有机肥的施用能够显著提高果实中酯类物质的积累。醇类物质中己醇和正丁醇含量较高,其余醇类含量较低。75%CHM处理果实中己醇正丁醇以及总醇类含量最高,有机无机肥配施处理果实中醇含量显著高于单施化肥和CK处理。果实中总香气物质含量也在75%CHM处理更高,显著高于单施化肥与CK处理。因此,鸡粪与化肥的不同配比对果实中多种香气物质的合成均有促进作用,其中75%CHM处理提升效果最为明显。
-
以适宜比例的鸡粪替代化肥可提高果实外在品质,增加单果重和果实体积,还可提升决定果品风味的苹果酸、酯类香气物质以及总香气物质含量。在供试条件下,鸡粪与化肥按3∶1的比例施用效果最佳。
鸡粪部分替代化肥改善嘎拉苹果外观品质和风味
Partial replacement of chemical nitrogen fertilizer with chicken manure improves fruit appearance quality and taste of Gala apples
-
摘要:
【目的】 研究鸡粪替代不同比例的化肥对嘎拉苹果外观品质和内在品质的影响,为果园有机肥替代化肥和化肥减量增效提供数据支撑。 【方法】 2017年,以‘嘎拉’/SH38/山定子(Malus pumila Mill/SH38/Malus baccata (L.) Borkh.)苹果为试材,在辽宁兴城中国农业科学院果树研究所砬山综合试验基地开展定位施肥试验。试验共设置6个处理:无肥对照(CK)、100%化肥(100%CF)、75%化肥+25%鸡粪(25%CHM)、50%化肥+50%鸡粪(50%CHM)、25%化肥+75%鸡粪(75%CHM)、100%鸡粪(100%CHM)。果实成熟后,每个处理取具有代表性的果实20个,10个果实用于测量单果重、纵横径、果实硬度、色泽等指标,10个果实用于测定果实糖酸组分、香气物质种类及含量。 【结果】 与100%CF处理相比,25%CHM和50%CHM处理的单果重没有显著变化,75%CHM和100%CHM处理单果重显著提高,但这二者之间无显著差异;25%CHM和50%CHM处理的果实纵径及25%CHM、50%CHM和75%CHM处理横径没有显著变化,而100%CHM处理增加显著。阳面果实色泽各处理间均无显著差异;阴面果实亮度、红绿色差和黄绿色差各处理间也无显著差异,但与100%CF处理相比,50%CHM处理降低了果实阴面色彩饱和度,75%CHM处理降低了色调角(P<0.05)。苹果酸、奎宁酸是苹果酸味和涩味的主要来源。在各施肥处理中,果实奎宁酸含量无显著差异,苹果酸含量以75%CHM、100%CHM处理最高,显著高于25%CHM和50%CHM处理,后者又显著高于100%CF处理,且100%CHM处理的可滴定酸含量也显著高于25%CHM和100%CF处理。75%CHM处理的果实酯类、醇类香气物质含量最高,分别为897.17、209.30 μg/g,显著高于其余各处理;25%CHM处理果实醛类、醚类香气物质含量最高,分别为48.20、6.76 μg/g,显著高于其余各处理。主成分分析结果表明,75%CHM处理其综合评分最高,为0.6291。 【结论】 以适宜比例的鸡粪替代化肥可增加单果重和果实体积,还可提升决定果品的苹果酸、酯类香气物质以及总香气物质含量,在供试条件下,建议鸡粪与化肥按3∶1的比例施用。 Abstract:【Objectives】 We studied the effect of different proportion of chicken manure in total fertilizer input on the appearance and inner taste qualities, as well as the yields of Gala apples, to provide reference for the organic substitution in fruit production. 【Methods】 In 2017, a localized fertilizer experiment was started in Lashan Comprehensive Experimental Base of the Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng City, Liaoning province. The tested apple cultivar was ‘Gala’/SH38/Shan Dingzi (Malus pumila Mill/SH38/Malus baccata (L.) Borkh.). Six treatments were set up: no fertilizer control (CK), 100% chemical fertilizer (100%CF), 75% chemical fertilizer + 25% chicken manure (25%CHM), 50% chemical fertilizer + 50% chicken manure (50%CHM), 25% chemical fertilizer + 75% chicken manure (75%CHM), and 100% chicken manure (100%CHM). At fruit ripening stage, 20 representative fruits were taken from each treatment plot, 10 fruits for measurement of the appearance quality, and 10 for taste. 【Results】 Compared with 100%CF, 25%CHM and 50%CHM treatment did not impact the single fruit weight, while 75%CHM and 100%CHM treatment increased the single fruit weight significantly; 25%CHM, 50%CHM, and 75%CHM treatment did not affect fruit longitudinal and transverse diameter, while 100%CHM significantly increased the indexes. The manure substitution rates did not cause significant differences in the sunny side color, shade side lightness, red-green color difference, and yellow-green color difference of the fruits, but 50%CHM decreased the color saturation, and 75%CHM decreased the hug angle (P<0.05). Malic acid and quinic acid decide the tart and astringent flavor of fruit. The manure substitution rates did not influence fruit quinic acid content, but 75%CHM and 100%CHM fruits were recorded higher malic acid content than the 25%CHM and 50%CHM fruits. In addition, 100%CHM fruits had the highest titratable acid, the 75%CHM fruits had the highest esters (897.14 μg/g) and alcohols aroma substances (209.30 μg/g), the 25%CHM fruits had the highest aldehydes (48.20 μg/g) and ether aroma substances (6.76 μg/g), respectively. The results of the principal component analysis showed that the 75%CHM treatment had the highest overall score of 0.6291. 【Conclusions】 Replacing chemical fertilizer with appropriate proportion of chicken manure can increase single fruit weight and size, form more saturated color of fruit, enhance malic acid, ester aroma substances, as well as total aroma substances that determine the flavor of the fruit. Without change the total nitrogen input, the appropriate ratio of chicken manure and chemical fertilizer N is 3∶1 for high quality and yield Gala apple production. -
表 1 2017—2020年各处理肥料具体施用量(kg/hm2)
Table 1. Fertilizer application amount in the treatment from 2017 to 2020
处理
Treatment化肥氮与鸡粪氮比例
Ratio of fertilizer N
to chicken manure N2017—2018 2019—2020 化肥养分
Chemical nutrient
(N–P2O5–K2O)鸡粪氮
N from
chicken manure总氮
Total N化肥养分
Chemical nutrient
(N–P2O5–K2O)鸡粪氮
N from
chicken manure总氮
Total NCK 0 0 0 0 0 0 100%CF 100%∶0% 240–120–240 0 240 480–240–480 0 480 25%CHM 75%∶25% 180–90–180 60 240 360–180–360 120 480 50%CHM 50%∶50% 120–60–120 120 240 240–120–240 240 480 75%CHM 25%∶75% 60–30–60 180 240 120–60–120 360 480 100%CHM 0%∶100% 0 240 240 0 480 480 表 2 鸡粪与化肥不同配施比例下果实发育情况
Table 2. Fruit development under different substitution rates of chicken manure for chemical fertilizer
处理
Treatment单果重 (g)
Single fruit
weight纵径 (mm)
Longitudinal
diameter横径 (mm)
Diameter
diameter100%CF 157.64±3.97 b 61.68±0.55 c 70.37±0.71 b 25%CHM 157.79±6.22 b 61.93±0.36 c 70.54±1.01 ab 50%CHM 161.31±4.61 b 62.14±0.20 bc 70.90±1.21 ab 75%CHM 172.80±5.96 a 63.21±0.91 ab 71.99±0.69 ab 100%CHM 172.82±6.64 a 63.63±0.26 a 72.13±0.17 a CK 127.21±6.77 c 56.53±0.67 d 64.51±1.21 c 注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
Note: Values followed by different lowercase letters in the same column indicate significant difference among treatments (P<0.05).表 3 鸡粪与化肥不同配施比例下苹果果实色泽
Table 3. The color of apple fruit under different substitution rates of chicken manure for chemical fertilizer
果实方位
Fruit orientation处理
TreatmentL* a* b* C* H° 阳面果实
Sunny side100%CF 53.99±5.86 a 36.23±2.50 a 15.91±2.55 a 39.10±1.96 a 22.82±4.73 a 25%CHM 52.23±0.92 a 40.22±0.52 a 15.24±0.21 a 42.57±0.99 a 20.55±1.03 a 50%CHM 52.55±1.45 a 38.95±2.51 a 14.80±2.01 a 41.80±0.70 a 21.02±3.37 a 75%CHM 50.37±4.00 a 40.10±2.01 a 15.08±2.16 a 43.00±1.76 a 20.72±3.17 a 100%CM 54.12±3.45 a 36.75±1.42 a 16.15±1.16 a 40.40±2.55 a 23.74±3.84 a CK 54.64±1.51 a 36.61±2.86 a 15.82±2.63 a 40.33±1.36 a 23.30±5.54 a 阴面果实
Shade side100%CF 67.79±4.23 a 22.41±2.41 a 22.08±2.67 a 32.09±0.99 ab 45.21±4.98 ab 25%CHM 68.58±3.01 a 23.34±4.48 a 21.98±1.63 a 33.34±1.46 ab 42.41±4.01 b 50%CHM 69.31±4.84 a 20.56±3.22 a 21.39±2.40 a 30.86±2.81 b 44.19±0.92 ab 75%CHM 61.73±7.06 a 29.27±7.90 a 20.47±3.46 a 36.09±4.69 a 30.67±5.63 c 100%CHM 67.41±3.39 a 23.29±4.69 a 23.70±1.75 a 35.38±1.43 a 44.16±3.16 ab CK 70.22±1.22 a 20.80±2.47 a 23.42±2.82 a 32.33±1.73 ab 50.27±4.57 a 注:L*—果面亮度,a*—红绿色差,b*—黄绿色差,C*—色彩饱和度,H°—色调角。同列数字后不同小写字母表示处理间差异显著 (P<0.05).
Note: L*—Lightness, a*—Red-green color difference, b*—Yellow-green color difference, C*—Color saturation, H°—Hue angle. Different lowercase letters after data in the same column indicate significant difference among treatments (P<0.05).表 4 鸡粪与化肥不同配施下果实香气物质含量(μg/g)
Table 4. Content of aromatic substances in fruits under different substitution rates of chicken manure for chemical fertilizer
香气物质 Aromatic substance 100%CF 25%CHM 50%CHM 75%CHM 100%CHM CK 乙酸丁酯 Butyl acetate 199.11±23.15 c 247.65±26.06 b 244.92±17.13 b 317.90±17.17 a 210.82±16.73 bc 178.54±6.19 c 乙酸己酯 Hexyl acetate 196.30±13.43 d 225.98±14.61 c 250.93±11.98 b 310.92±9.31 a 169.50±2.15 e 147.51±17.14 e 2-甲基丁基乙酸酯
2-Methylbutyl acetate57.08±8.45 c 97.65±3.32 b 92.85±3.31 b 120.08±8.18 a 89.27±5.87 b 41.58±6.78 d 己酸丁酯 Butyl hexanoate 33.67±0.99 b 27.17±0.91 d 29.24±1.23 c 36.34±1.59 a 27.85±0.46 cd 18.16±0.04 e 乙酸戊酯 Pentyl acetate 22.31±1.81 c 29.31±1.30 b 24.59±2.27 c 34.59±0.58 a 23.22±1.13 c 18.22±0.72 d 己酸己酯
Hexanoic acid hexyl ester22.25±0.40 a 16.46±2.02 b 16.37±1.28 b 23.64±1.68 a 11.19±0.21 c 11.33±1.46 c 丁酰乳酸丁酯
Butyl butyryl lactate15.66±7.65 b 23.39±3.84 ab 18.07±3.52 ab 26.33±8.80 a 18.72±3.98 ab 16.53±4.68 b 2-甲基-丁酸己酯
Hexyl-2-methylbutyrate15.78±1.61 a 13.31±2.19 b 17.13±1.54 a 15.68±0.72 a 12.18±1.15 b 9.69±0.85 c 丙酸丁酯 Butyl propionate 3.69±0.56 ab 3.14±0.36 b 3.61±0.80 ab 4.01±0.38 a 3.68±0.40 ab 1.37±0.25 c 2-甲基丁酸乙酯
Ethyl-2-methylbutyrate2.69±1.80 ab 4.17±1.68 a 3.11±0.94 ab 4.18±2.27 a 2.40±0.89 ab 1.48±0.39 b 乙酸乙酯 Ethyl acetate 0.81±0.16 b 1.05±0.12 ab 1.11±0.22 a 0.88±0.02 ab 0.44±0.02 c 1.10±0.23 a 己酸甲酯 Methyl hexanoate 0.96±0.70 a 1.17±0.56 a 1.30±1.15 a 1.46±0.76 a 0.96±0.08 a 0.82±0.23 a 丁酸辛酯 Octyl butyrate 0.63±0.29 b 1.03±0.26 ab 0.75±0.12 ab 1.14±0.60 a 0.72±0.04 ab 0.60±0.11 b 酯类物质总量 Total esters 570.94±12.38 c 691.47±45.33 b 703.97±12.26 b 897.17±19.35 a 570.93±15.90 c 446.93±21.50 d 己醇 Hexanol 97.80±6.03 b 80.10±9.29 c 92.90±9.92 b 137.38±4.30 a 67.71±6.69 d 71.63±2.21 cd 正丁醇 1-Butanol 35.61±2.89 b 29.23±2.99 cd 33.74±0.28 bc 46.52±4.84 a 31.40±2.79 bcd 26.93±0.11 d 2-甲基乙醇 2-Methyl alcohol 10.22±3.06 ab 11.95±0.66 a 8.12±1.49 bc 10.48±1.68 ab 6.81±1.29 c 3.22±0.54 d 5-己烯-1-醇 5-Hexen-1-ol 7.73±3.29 a 9.29±2.13 a 7.90±1.50 a 10.67±1.74 a 8.52±2.87 a 7.45±2.03 a 3-壬醇 3-Nonanol 1.86±0.08 a 1.58±0.17 a 1.75±0.09 a 1.65±0.27 a 1.80±0.24 a 1.62±0.21 a 3-己烯-1-醇 3-Hexen-1-ol 1.25±0.16 a 1.23±0.00 a 1.12±0.16 a 1.39±0.28 a 1.07±0.23 a 1.17±0.34 a 1-辛醇 1-Octanol 0.65±0.42 a 0.92±0.20 a 0.66±0.11 a 0.88±0.15 a 0.79±0.28 a 0.54±0.15 a 苯乙醇 Phenethyl alcohol 0.22±0.13 a 0.36±0.13 a 0.20±0.01 a 0.32±0.06 a 0.25±0.08 a 0.25±0.12 a 醇类物质总量 Total alcohols 155.33±6.81 b 134.65±12.84 c 146.39±10.58 bc 209.30±9.00 a 118.34±11.99 d 112.80±4.39 d 己醛 Hexanal 8.41±1.11 b 11.25±0.24 a 5.94±0.24 c 7.33±0.15 bc 7.48±0.30 b 7.83±1.53 b 2-庚烯醛 2-Heptenal 1.35±0.76 ab 2.25±0.31 a 2.19±1.03 a 2.25±0.64 a 0.55±0.04 b 2.20±1.07 a 苯甲醛 Benzaldehyde 0.25±0.09 b 0.58±0.32 ab 0.43±0.11 ab 0.72±0.35 a 0.29±0.14 b 0.46±0.20 ab 醛类物质总量 Total aldehydes 29.58±2.84 bc 48.20±2.30 a 25.20±1.58 c 31.36±0.96 b 25.37±2.36 c 33.62±2.96 b 4-烯丙基苯甲醚 4-Allyl anisole 3.90±0.16 c 6.76±0.53 a 3.78±0.12 c 4.04±0.05 c 6.12±0.12 b 1.47±0.22 d 6-甲基-5-庚烯-2-酮
6-Methyl-5-hepten-2-tone1.33±0.58 bc 3.30±1.55 a 1.94±0.70 abc 2.92±0.68 abc 1.16±0.33 c 3.02±1.43 ab 香气物质总量
Total aroma substances761.07±7.44 c 884.38±48.55 b 881.29±21.30 b 1144.78±25.25 a 721.92±26.48 c 597.84±29.14 d 注:同行数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: Different lowercase letters after data in a row indicate significant difference among treatments (P<0.05).表 5 不同鸡粪化肥施用比例处理的果实品质指标主成分得分及综合得分
Table 5. Comprehensive scores of fruit quality calculated by principal for different chicken manure and chemical fertilizaer application ratio treatments
处理
Treatment主成分1
Principle 1主成分2
Principle 2综合得分
Comprehensive score100%CF −0.3713 −1.1392 −0.4736 25%CHM 0.1839 0.4049 0.2003 50%CHM 0.1518 −0.1415 0.0630 75%CHM 1.3160 −0.8440 0.6291 100%CHM 0.4217 1.6746 0.6198 CK −1.7024 0.0453 −1.0388 -
[1] 陈学森, 韩明玉, 苏桂林, 等. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见[J] 果树学报, 2010, 27(4): 598−604. Chen X S, Han M Y, Su G L, et al. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science. 2010, 27(4): 598−604. Chen X S, Han M Y, Su G L, et al. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science. 2010, 27(4): 598−604. [2] 曹永生. 推进果业5.0, 实现果业高质量发展[J] 中国果树, 2021, (2): 1−2. Cao Y S. Promote fruit industry 5.0 to achieve high quality development of fruit industry[J]. China Fruits, 2021, (2): 1−2. Cao Y S. Promote fruit industry 5.0 to achieve high quality development of fruit industry[J]. China Fruits, 2021, (2): 1−2. [3] Harker F R, Gunson F A, Jaeger S R. The case for fruit quality: An interpretive review of consumer attitudes, and preferences for apples[J]. Postharvest Biology and Technology, 2003, 28(3): 333−347. doi: 10.1016/S0925-5214(02)00215-6 [4] Legua P, Forner J, Hernández F, et al. Total phenolics, organic acids, sugars and antioxidant activity of mandarin (Citrus clementina Hort. ex Tan.): Variation from rootstock[J]. Scientia Horticulturae, 2014, 174: 60−64. doi: 10.1016/j.scienta.2014.05.004 [5] Serra S, Leisso R, Giordani L et al. Crop load influences fruit quality, nutritional balance, and return bloom in ‘Honeycrisp’apple[J]. HortScience, 2016, 51(3): 236−244. doi: 10.21273/HORTSCI.51.3.236 [6] Musacchi S, Serra S. Apple fruit quality: Overview on pre-harvest factors[J]. Scientia Horticulturae, 2018, 234: 409−430. doi: 10.1016/j.scienta.2017.12.057 [7] Jia H, Hirano K, Okamoto. Effects of fertilizer levels on tree growth and fruit quality of 'Hakuho' peaches (Prunus persica)[J]. Journal of the Japanese Society for Horticultural Science, 1999, 68(3): 487−493. doi: 10.2503/jjshs.68.487 [8] Mosa W G, Paszt L, Frąc M et al. The influence of biofertilization on the growth, yield and fruit quality of cv. Topaz apple trees[J]. Horticultural Science, 2016, 43(3): 105−111. doi: 10.17221/154/2015-HORTSCI [9] Liang B, Ma C, Fan L, et al. Soil amendment alters soil physicochemical properties and bacterial community structure of a replanted apple orchard[J]. Microbiological Research, 2018, 216: 1−11. doi: 10.1016/j.micres.2018.07.010 [10] Amarante C V T D, Steffens C A, Mafra Á L, et al. Yield and fruit quality of apple from conventional and organic production systems[J]. Pesquisa agropecuária brasileir, 2008, 43: 333−340. [11] 刘利民, 曹依静, 孙昂, 等. 不同施肥组合对黄河故道地区富士苹果树体生长和果实品质的影响[J] 农业科技通讯, 2018, (7): 156−159. Liu L M, Cao Y J, Sun A, et al. Effects of different fertilizer combinations on the growth and fruit quality of Fuji apple trees in the Yellow River Forbidden Road area[J]. Bulletin of Agricultural Science and Technology, 2018, (7): 156−159. Liu L M, Cao Y J, Sun A, et al. Effects of different fertilizer combinations on the growth and fruit quality of Fuji apple trees in the Yellow River Forbidden Road area[J]. Bulletin of Agricultural Science and Technology, 2018, (7): 156−159. [12] 赵佐平, 高义民, 刘芬, 等. 化肥有机肥配施对苹果叶片养分、品质及产量的影响[J]. 园艺学报, 2013, 40(11): 2229−2236. Zhao Z P, Gao Y M, Liu F, et al. Effects of organic manure application combined with chemical fertilizers on the leaf nutrition, quality and yield of Fuji apple[J]. Acta Horticulturae Sinica, 2013, 40(11): 2229−2236. doi: 10.3969/j.issn.0513-353X.2013.11.015 Zhao Z P, Gao Y M, Liu F, et al . Effects of organic manure application combined with chemical fertilizers on the leaf nutrition, quality and yield of Fuji apple[J]. Acta Horticulturae Sinica,2013 ,40 (11 ):2229 −2236 . doi: 10.3969/j.issn.0513-353X.2013.11.015[13] 张鹏飞, 王爱玲, 梁哲军, 等. 生物有机肥配施化肥对红富士苹果品质的影响[J] 山西农业科学, 2020, 48(9): 1464-1466. Zhang P F, Wang A L, Liang Z J, et al. Effects of bio-organic fertilizer combined with chemical fertilizer on quality of Fuji apple[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(9): 1464−1466. Zhang P F, Wang A L, Liang Z J, et al. Effects of bio-organic fertilizer combined with chemical fertilizer on quality of Fuji apple[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(9): 1464−1466. [14] 姜凤超, 王玉柱, 孙浩元, 等. 桃果实细胞内糖酸分布对果实甜酸风味的影响[J] 西北植物学报, 2014, 34(6): 1227−1232. Jiang F C, Wang Y Z, Sun H Y, et al. Effects of intracellular distribution of sugar and acid on sweetness and sourness of peach[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1227−1232. Jiang F C, Wang Y Z, Sun H Y, et al. Effects of intracellular distribution of sugar and acid on sweetness and sourness of peach[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1227−1232. [15] 李芳芳, 张虎平, 何子顺, 等. 套袋对‘库尔勒香梨’果实糖酸组分与香气成分的影响[J] 园艺学报, 2014, 41(7): 1443-1450. Li F F, Zhang H P, He Z S, et al. Effects of bagging on soluble sugars, organic acids, and aroma compounds in pyrus sinkiangensis “Korla Xiangli” fruit[J]. Acta Horticulturae Sinica. 2014, 41(7): 1443-1450. Li F F, Zhang H P, He Z S, et al. Effects of bagging on soluble sugars, organic acids, and aroma compounds in pyrus sinkiangensis “Korla Xiangli” fruit[J]. Acta Horticulturae Sinica. 2014, 41(7): 1443-1450. [16] 郑丽静, 聂继云, 闫震. 糖酸组分及其对水果风味的影响研究进展[J] 果树学报, 2015, 32(2): 304−312. Zheng L J, Nie J Y, Yan Z. Advances in research on sugars, organic acids and their effects on taste of fruits[J]. Journal of Fruit Science, 2015, 32(2), 304−312. Zheng L J, Nie J Y, Yan Z. Advances in research on sugars, organic acids and their effects on taste of fruits[J]. Journal of Fruit Science, 2015, 32(2), 304−312. [17] 刘羽, 刘盛雨, 卢娟芳, 等. 新疆红肉苹果3个品系的风味品质与抗氧化能力评价[J] 中国农业科学, 2017, 50(8): 1495−1504. Liu Y, Liu S Y, Lu J F, et al. Evaluation of flavour quality and antioxidant capacity of apple fruits from three Xinjiang red-flesh lines[J]. Scientia Agricultura Sinica, 2017, 50(8): 1495−1504. Liu Y, Liu S Y, Lu J F, et al. Evaluation of flavour quality and antioxidant capacity of apple fruits from three Xinjiang red-flesh lines[J]. Scientia Agricultura Sinica, 2017, 50(8): 1495−1504. [18] Beaudry R. Aroma generation by horticultural products: What can we control? Introduction to the workshop[J]. HortScience, 2000, 35(6): 1001−1002. doi: 10.21273/HORTSCI.35.6.1001 [19] 赵满兴, 刘慧, 白二磊, 等. 腐殖酸肥或生物有机肥替代部分化肥对土壤肥力、红枣产量和品质的影响[J]. 西北农业学报, 2019, 28(6): 981−987. Zhao M X, Liu H, Bai E L, et al. Effects of combined application of chemical fertilizer with humic acid and bio-organic fertilizer on soil fertility and jujube yield and quality[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(6): 981−987. Zhao M X, Liu H, Bai E L, et al . Effects of combined application of chemical fertilizer with humic acid and bio-organic fertilizer on soil fertility and jujube yield and quality[J]. Acta Agriculturae Boreali-occidentalis Sinica,2019 ,28 (6 ):981 −987 .[20] 张蕊, 王钰馨, 赵雪惠, 等. 海藻有机肥不同施用量对土壤肥力及‘肥城’桃品质的影响[J]. 植物生理学报, 2016, 52(12): 1819−1828. Zhang R, Wang Y X, Zhao X H, et al. Effects of different seaweed fertilizer levels on soil fertility and fruit quality of ‘Feicheng’ peach[J]. Plant Physiology Journal, 2016, 52(12): 1819−1828. doi: 10.13592/j.cnki.ppj.2016.0030 Zhang R, Wang Y X, Zhao X H, et al . Effects of different seaweed fertilizer levels on soil fertility and fruit quality of ‘Feicheng’ peach[J]. Plant Physiology Journal,2016 ,52 (12 ):1819 −1828 . doi: 10.13592/j.cnki.ppj.2016.0030[21] 赵亚楠, 王钰馨, 付喜玲, 等. 牛粪肥和贝壳肥对肥城桃内在品质的影响[J]. 山东农业大学学报(自然科学版), 2016, 47(1): 1−8. Zhao Y N, Wang Y X, Fu X L, et al. The effect of cow dung and shell fertilizer on the intrinsic quality of Feicheng peach fruit[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2016, 47(1): 1−8. Zhao Y N, Wang Y X, Fu X L, et al . The effect of cow dung and shell fertilizer on the intrinsic quality of Feicheng peach fruit[J]. Journal of Shandong Agricultural University (Natural Science Edition),2016 ,47 (1 ):1 −8 .[22] 王孝娣, 史大川, 宋烨, 等. 有机栽培红富士苹果芳香成分的GC-MS分析[J]. 园艺学报, 2005, 32(6): 998−1002. Wang X D, Shi D C, Song Y, et al. GC-MS analysis of fruit aroma components of organic ‘Fuji’ apple[J]. Acta Horticulturae Sinica, 2005, 32(6): 998−1002. doi: 10.3321/j.issn:0513-353X.2005.06.006 Wang X D, Shi D C, Song Y, et al . GC-MS analysis of fruit aroma components of organic ‘Fuji’ apple[J]. Acta Horticulturae Sinica,2005 ,32 (6 ):998 −1002 . doi: 10.3321/j.issn:0513-353X.2005.06.006[23] 靳亚忠, 陈业雯, 陆淼, 等. 鸡粪及其配施尿素对甜瓜香味物质、酶活性及基因表达的影响[J]. 干旱地区农业研究, 2019, 37(6): 184−192. Jin Y Z, Chen Y W, Lu M, et al. Effect of chicken manure and its co-application with urea on aroma substances, aroma-related enzyme activities and gene expression of oriental melon[J]. Agricultural Research in the Arid Areas, 2019, 37(6): 184−192. doi: 10.7606/j.issn.1000-7601.2019.06.27 Jin Y Z, Chen Y W, Lu M, et al . Effect of chicken manure and its co-application with urea on aroma substances, aroma-related enzyme activities and gene expression of oriental melon[J]. Agricultural Research in the Arid Areas,2019 ,37 (6 ):184 −192 . doi: 10.7606/j.issn.1000-7601.2019.06.27[24] Raffo A, Baiamonte I, Bucci R, et al. Effects of different organic and conventional fertilisers on flavour related quality attributes of cv. Golden Delicious apples[J]. LWT-Food Science and Technology, 2014, 59(2): 964−972. doi: 10.1016/j.lwt.2014.06.045 [25] Wang L, Yang F, Yaoyao E, et al. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil[J]. Frontiers in Microbiology, 2016, 7: 1893. [26] Roth E, Berna A, Beullens K, et al. Postharvest quality of integrated and organically produced apple fruit[J]. Postharvest Biology & Technology, 2007, 45(1): 11−19. [27] 李娅楠, 闫雷玉, 张波, 等. 不同苹果品种果实糖酸组分特征研究[J]. 果树学报, 2021, 38(11): 1877−1889. Li Y N, Yan L Y, Zhang B, et al. A study on sugar and organic acid components in different apple cultivars[J]. Journal of Fruit Science, 2021, 38(11): 1877−1889. doi: 10.13925/j.cnki.gsxb.20210209 Li Y N, Yan L Y, Zhang B, et al . A study on sugar and organic acid components in different apple cultivars[J]. Journal of Fruit Science,2021 ,38 (11 ):1877 −1889 . doi: 10.13925/j.cnki.gsxb.20210209[28] Ma B, Chen J, Zheng H et al. Comparative assessment of sugar and malic acid composition in cultivated and wild apples[J]. Food Chemistry, 2015, 172: 86−91. doi: 10.1016/j.foodchem.2014.09.032 [29] Jaeger S R, Antúnez L, Ares G, et al. Quality perceptions regarding external appearance of apples: Insights from experts and consumers in four countries[J]. Postharvest Biology and Technology, 2018, 146: 99−107. doi: 10.1016/j.postharvbio.2018.08.014 [30] Khorram M S, Zhang G, Fatemi A, et al. Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a four-year field study[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1862−1869. doi: 10.1002/jsfa.9380 [31] 薛志霞. “富士”苹果果实偏斜影响因素的研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2011. Xue Z X. Study on affecting factors of the fruit shape in ‘Fuji’ apple[J]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2011. Xue Z X. Study on affecting factors of the fruit shape in ‘Fuji’ apple[J]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2011. [32] Dar J A, Wani A A, Ahmed M, et al. Peel colour in apple (Malus× domestica Borkh.): An economic quality parameter in fruit market[J]. Scientia Horticulturae, 2019, 244: 50−60. doi: 10.1016/j.scienta.2018.09.029 [33] Cen Y, Li L, Guo L, et al. Organic management enhances both ecological and economic profitability of apple orchard: A case study in Shandong Peninsula[J]. Scientia Horticulturae, 2020, 265: 109201. doi: 10.1016/j.scienta.2020.109201 [34] 杜玉霞, 李晶, 高俊燕, 等. 有机无机配施对柠檬产量和品质的影响[J] 中国农学通报, 2017, 33(7): 92-97. Du Y X, Li J, Gao J Y, et al. Effect of combined application of organic and inorganic fertilizer on yield and quality of lemon[J]. Chinese Agricultural Science Bulletin, 2017, 33(7): 92-97. Du Y X, Li J, Gao J Y, et al. Effect of combined application of organic and inorganic fertilizer on yield and quality of lemon[J]. Chinese Agricultural Science Bulletin, 2017, 33(7): 92-97. [35] Reganold J P, Glover J D, Andrews P K, et al. Sustainability of three apple production system[J]. Nature, 2001, 410: 926−930. doi: 10.1038/35073574 [36] De Oliveira A B, De Almeida Lopes M M, Moura C F H, et al. Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation[J]. Scientia Horticulturae, 2017, 222: 84−89. doi: 10.1016/j.scienta.2017.05.021 [37] 杜春燕. 有机肥替代化肥对果实产量、品质及土壤肥力的影响[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2019. Du C Y. Effect of organic fertilizer substituting fertilizer on fruit yield, quality and soil fertility[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2019. Du C Y. Effect of organic fertilizer substituting fertilizer on fruit yield, quality and soil fertility[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2019. [38] Wang S Y, Chen C T, Sciarappa W, et al. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries[J]. Journal of Agricultural and Food Chemistry, 2008, 56(14): 5788−5794. doi: 10.1021/jf703775r [39] Reche J, Hernández F, Almansa M, et al. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit[J]. LWT - Food Science and Technology, 2019, 99: 438−444. doi: 10.1016/j.lwt.2018.10.012 [40] Robert J S, Ellen N F, Edwige J F S, et al. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway[J]. Plant Physiology, 2007, 144(4): 1899−1912. doi: 10.1104/pp.106.093765 [41] Wang S, Saito T, Ohkawa K, et al. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples[J]. Journal of Plant Physiology, 2018, 221: 85−93. doi: 10.1016/j.jplph.2017.12.007 [42] El Hadi M, Zhang F J, Wu F F, et al. Advances in fruit aroma volatile research[J]. Molecules, 2013, 18(7): 8200−8229. doi: 10.3390/molecules18078200 -