-
花生是我国重要的油料作物、经济作物和出口创汇作物,在农业生产中具有重要地位[1]。花生喜钙且对钙极其敏感,其钙需求量仅次于氮,高于磷[2],当土壤缺钙时,易导致花生荚果发育减退或籽仁败育,造成烂果、空果、秕果,限制花生产量和品质的提升[3]。因此,适量增施钙肥对花生产量和绿色持续发展具有重要意义。
钙不仅是一种营养元素,还作为胞内信号分子调控植物代谢和发育[4]。前人研究已证实,施钙肥可提高花生叶片叶绿素含量增加净光合速率,促进光合产物的积累,协调营养物质向生殖器官转运,进而提高荚果产量[5−6]。但当土壤缺钙时,花生叶片衰老加速,叶绿素含量下降,光合生产能力降低[7]。另外,钙调控的光合产物转运对籽仁发育有重要影响,王建国等[8]研究发现增施钙肥有利于提高生殖器官光合产物分配率;Coskun等[9]发现土壤供钙不足时,花生光合产物转运失调,对籽仁正常生理代谢及胚细胞形态发育产生不利影响。光合产物的积累和向籽仁/粒的转运是作物产量形成的基础,权宝全等[10]研究表明适当摘除花生果针(含幼果),可促进花生植株生长发育,提高干物质积累量和荚果产量;王海琪等[11]发现,适量减氮能改善小麦光合性能,在增加干物质累积的基础上促进光合产物向籽粒分配转运,从而利于作物产量形成。目前,13C脉冲标记技术在作物光合产物积累、分配特征方面已有广泛应用,张川等[12]利用13C脉冲标记技术探究高温胁迫对玉米生产性能及产量的影响;孙昭安等[13]用13C脉冲标记法定量标记冬小麦光合碳分配及其向地下输入比例。由于花生独特的生长特性及光合产物“就近供应”的特点[14−15],利用该技术明确钙调控下光合产物在花生植株中的积累与分配特征,对解析钙调控花生籽仁发育的机制有积极意义。
因此,本研究设置CaO 0、75、150和300 kg/hm2 4个施钙量,基于盆栽试验,在不同花生荚果发育时期进行13C脉冲标记,探究不同施钙量对光合产物在花生植株中积累与分配的影响,以期为探明钙调控光合产物积累转运影响花生籽仁发育的机制奠定基础,为优化花生钙肥管理、提高花生产量和品质提供科学依据。
-
盆栽试验于青岛农业大学莱阳试验站(120°74′E,36°99′N)进行,供试土壤采集于山东省荣成市虎山镇(122°27′E,36°96′N),为前期种植过程中发现的低钙土壤,其上种植花生出现空荚现象。供试花生品种为‘湘花55号’。供试土壤为砂质壤土,试验期间0—20 cm土层土壤化学性质如下:有机质10.28 g/kg,碱解氮70.76 mg/kg,有效磷6.33 mg/kg,速效钾120.19 mg/kg,交换性钙0.89 g/kg,pH 6.1。供试钙肥为CaO试剂(国药,分析纯),供试肥料为金正大牌复合肥(N–P2O5–K2O为15–15–15),标记材料为13C-Na2CO3 (Cambridge Isotope Laboratorics, Inc,99.0 atom%)。
-
盆栽试验设4个CaO 施用水平:0、75、150和300 kg/hm2,分别标记为Ca0、Ca75、Ca150和Ca300处理。试验所用花盆为PVC材质,高43 cm,直径30 cm。以20 cm为1个土层,采集田间0—40 cm土层土壤,分层风干,过5 mm筛。首先将20—40 cm土层土壤装填至花盆20 cm高度处,自然沉实3天后,再将0—20 cm土层土壤与肥料充分混匀后装填至花盆40 cm高度处,每盆按照750 kg/hm2的施肥量施入复合肥5.3 g,Ca0、Ca75、Ca150和Ca300处理分别施入CaO 0、1.0、2.0和4.0 g,保持所有盆装土重量一致(37 kg),每处理36盆。为减少盆栽环境条件的影响,将花盆埋入土中,只露出距盆沿3 cm高度。土壤装盆自然沉实1周后,于5月8日播种,9月17日收获,每盆播种3穴,每穴2粒,出苗后每穴选留1株健壮苗;其他管理同常规大田生产。
-
标记试验同步设计非标记处理,每处理种植16盆,参考前人研究的花生荚果发育时期[16],共设4次标记,标记时间如表1,每次标记每个处理用4盆。选择晴好天气,于9:00—15:00时进行13C标记,标记箱用水将底部密封,保证密闭性。标记前,通过气泵和NaOH溶液吸收掉背景的CO2,13C-CO2通过13C-Na2CO3和H2SO4溶液(1 mol/L)自动反应获得,根据标记箱内CO2浓度来确定是否加入硫酸,并通过控制H2SO4添加量使标记箱中13C-CO2浓度维持在300~350 mg/kg。标记结束后,标记箱内剩余的13C-CO2气体通过真空循环泵和NaOH溶液回收(回收 0.5 h)。花生继续培养至收获,标记与未标记植株间隔10 m以上,花生标记结束后继续培养至收获。
表 1 13C脉冲标记时期
Table 1. Period for 13C pulse labeling
下针后天数
Days after pegging荚果发育时期
Pod development period采样日期 (mm-dd)
Sampling date6 鸡咀幼果期
Young fruit stage (YFS)07–19 18 荚果膨大期
Pod bulking stage (PBS)07–31 30 荚果定型期
Pod setting stage (PSS)08–12 48 籽仁充实期
Kernel filling stage (KFS)08–29 注:播种后66天下针。
Note: Pegging starts at 66 days after sowing. -
于花生收获期,从各处理PVC盆中取出完整植株,按照根、茎(包括下胚轴)、叶、果针、果壳、籽仁分开,于烘箱105℃杀青30 min,75℃烘干至恒重,用于测定植株干物质积累量;其中,标记处理按上述部位分开后,先用自来水冲洗,再用0.5 mol/L CaCl2 (pH 6.2)浸泡3~5 min后,用去离子水冲洗并去除吸附在植株表面的土壤及杂质,烘干至恒重后,磨碎过0.15 mm筛(100目),用于13C丰度测定。花生荚果自然晒干入库,平衡30天后,用于测产和考种。
植株13C丰度委托中国农业科学院农业环境稳定同位素实验室(AESIL,CAAS)测定,以国际标准的V-PDB为基准进行校正。相关指标计算公式如下:
1) 花生植株各部位(根、茎、叶、果针、果壳、籽仁) 13C含量的测定由标记样和非标记样中13C的丰度来确定,样品δ13C (‰)计算方法如下[17]:
$ \text{δ}^{13}{\rm{C}} =\left(\frac{{R}_{S}}{{R}_{PDB}}-1\right)\times 1000{\text{‰}} $ 式中:RS表示样品的同位素比值,RPDB表示标准物质(pee dee belemnite,PDB)的同位素比值。
2) 花生植株各器官13C积累量(mg)计算方法如下[18]:
$ {}^{13}{\rm{C_S}}=[(\text{atom}^{13}{\rm{C}}\%)_{1}-{(\text{atom}^{13}{\rm{C}}\%)_{\text{ul}}]\times\text{TC}_{\rm{S}}\times100} $ 式中:13CS为样品中的13C量,mg;(atom13C%) l和(atom13C%) ul分别表示标记和非标记样品的13C丰度,TCS表示植株的总碳量,mg。
3) 花生植株各器官13C的分配比例(%)计算方法如下:
$ {}^{13}{\rm{C}}_{i} = ^{13}{\rm{C_{S}} }/ ^{13}{\rm{C}}_{{\rm{recovery}}} \times 100\%$ 式中,Crecovery 为花生植株13C总回收量(mg),即,13Crecovery =13C根 + 13C茎+13C叶 + 13C果壳 + 13C籽仁 + 13C果针
-
试验数据采用Microsoft Excel 2021计算,利用SPSS 19.0 软件统计分析数据,利用origin 2022软件进行作图。
-
各施钙处理下,植株干物质积累较不施钙(Ca0)均有不同程度提升(表2)。其中,Ca75处理下,花生根、茎、果针、籽仁和全株干物质积累量均显著高于Ca0,分别提升12.36% 、12.33%、20.00%、11.17%和5.22%,但果壳干物质积累量较Ca0显著降低7.21%;Ca150处理下,除茎干物质积累量与Ca0无明显差异外,其余各部位均显著高于Ca0,其中叶、果针、籽仁、果壳和全株干物质积累量分别较Ca0显著增加12.43%、33.60%、34.35%、11.91%和14.82%,且以籽仁提升率最高;Ca300处理下,仅果针和籽仁干物质积累量显著高于Ca0,较之分别提升12.80%和22.34%。除茎部外,花生植株其他部位干物质积累量随施钙量增加均呈现先增高后降低的趋势,在Ca150处理达到最大值,说明当施钙量增加到一定水平时,花生干物质积累将不再随施钙量的增加而增加。
表 2 不同施钙量下花生收获期植株各器官干物质积累量(g/plant)
Table 2. Dry matter accumulation in different peanut organs at harvesting stage as affected by calcium application rate
处理 Treatment 根 Root 茎 Stem 叶 Leaf 果针 Peg 籽仁 Kernel 果壳 Shell 全株 Total Ca0 0.89 b 8.03 b 12.07 bc 1.25 c 9.49 d 6.38 b 38.12 c Ca75 1.00 a 9.02 a 12.13 b 1.50 a 10.55 c 5.92 c 40.11 b Ca150 0.99 a 7.63 b 13.57 a 1.67 a 12.75 a 7.14 a 43.77 a Ca300 0.83 b 7.75 b 11.26 c 1.41 b 11.61 b 6.51 b 39.37 bc 注:同列数据后不同小写字母表示处理间量差异显著 (P<0.05)。
Note: Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05). -
各施钙处理均可显著提高花生产量(表3),呈Ca150>Ca75>Ca300的趋势,三者荚果产量较Ca0处理分别提升10.51%、7.07%和5.71%,Ca75和Ca300处理间无明显差异,但二者均显著低于Ca150处理;各施钙处理花生千克果数均显著低于Ca0处理,较之降低8.04%~13.93%;各施钙处理花生出仁率和饱果率均显著高于Ca0处理,且均以Ca150处理最高,较Ca0分别提升4.15~11.13和9.38~20.94个百分点;施钙量对花生双仁果率无明显影响。
表 3 施钙量对花生产量及产量性状的影响
Table 3. Effects of calcium application on peanut yield and its characteristics
处理
Treatment荚果产量 (kg/hm2)
Peanut pod yield千克果数
Pod number per kg出仁率 (%)
Kernel percentage双仁果率 (%)
Double-seed pod percentage饱果率 (%)
Full pod percentgeCa0 3761.40 c 930.81 a 61.93% c 68.90% a 66.20% c Ca75 4027.50 b 845.82 b 69.90% b 73.16% a 79.12% b Ca150 4156.80 a 801.12 c 73.06% a 72.25% a 87.14% a Ca300 3977.40 b 856.01 b 66.08% b 71.00% a 75.58% b 注:同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05). -
施钙量影响荚果发育不同时期光合产物在花生各部位的分配(图1)。鸡咀幼果期(YFS),Ca300处理下植株叶、茎、根和果壳δ13C丰度均显著高于其余处理,分别较Ca0处理显著提升72.27%、70.77%、116.88%和387.43%;荚果膨大期(PBS),Ca150处理下籽仁和果壳的δ13C丰度显著高于其余处理,分别较Ca75处理增加68.16%和34.20%,而Ca300处理下叶和Ca75处理下茎和果针的δ13C丰度均最高,其中,Ca300处理下叶中δ13C丰度较Ca150处理显著提升11.01%;荚果定型期(PSS),除Ca75处理的果针外,其余各器官均以Ca0处理δ13C丰度最高,Ca0处理下叶和根的δ13C丰度较Ca300处理分别显著提升79.88%和97.83%,Ca0处理下茎、籽仁和果壳的δ13C丰度较Ca75处理分别显著增加25.74%、75.29%和24.09%;籽仁充实期(KFS),Ca75处理下籽仁的δ13C丰度显著高于其他处理且较Ca150处理显著增加146.32%,Ca150处理下茎的δ13C丰度和Ca0处理下叶的δ13C丰度均显著高于其余处理,二者较Ca300处理分别对应提高42.53%和29.40%。鸡咀幼果期和荚果膨大期标记,花生各器官δ13C丰度均较高,且Ca150处理更有利于提高果壳和籽仁δ13C丰度。
图 1 不同施钙量下花生荚果发育时期各器官δ13C丰度
Figure 1. Abundance of δ13C in peanut organs at different periods of pod development stage as affected by calcium application rate
在鸡咀幼果期标记,花生整株13C积累量随着施钙量的增加呈增加趋势,且Ca150和Ca300处理均显著高于Ca0和Ca75处理,较Ca0提升62.19%~68.19%,较Ca75提升31.48%~36.35%;在荚果膨大期、荚果定型期和籽仁充实期标记,花生整株13C积累量随施钙量的增加呈先增加后降低趋势,Ca150处理植株13C积累量最高,且显著高于Ca0和Ca75处理,较之分别提升19.81%~28.95%、9.51%~10.03%和15.18%~20.63%,但在荚果定型期和籽仁充实期Ca150与Ca300处理无明显差异。各处理植株13C积累量均在荚果膨大期达到最高,且显著高于其余各标记时期,较鸡咀幼果期、荚果定型期和籽仁充实期标记分别提升16.89%~93.12%、81.02%~119.09%和64.32%~104.45%;除Ca0处理外,各施钙处理植株13C积累量在鸡咀幼果期均显著高于荚果定型期和籽仁充实期标记,但在荚果定型期和籽仁充实期标记,相同处理下植株13C积累量均无明显差异。在籽仁充实期,Ca150和Ca300处理植株13C积累量差异不显著,但二者较Ca75、Ca0分别显著增加15.18%、20.63% (Ca150)和12.36%、17.68% (Ca300)。综上,各处理花生植株13C积累量均在荚果膨大期达到峰值,在各花生荚果发育时期,Ca150、Ca300处理均可提高花生植株13C积累量,并显著高于Ca0、Ca75处理(图2)。
图 2 施钙处理下不同花生荚果发育时期各器官13C积累量
Figure 2. 13C accumulation in each peanut organ at different periods of pod development stage under different calcium application
随着荚果发育进程的推进,各施钙处理下13C在花生籽仁中的分配比例均呈增加趋势(图3),其中在籽仁发育的关键时期(即籽仁充实期),13C的分配比例可高达41.0% (Ca0)~48.3% (Ca75);在荚果定型期和籽仁充实期,均以Ca75处理下13C在花生籽仁中的分配比例最高,鸡咀幼果期和荚果膨大期则分别以Ca150 (19.0%)和Ca300 (27.3%)处理最高。整个荚果发育时期13C在花生叶片中的分配比例均较高,在鸡咀幼果期,Ca0和Ca75处理相当(33.9%~34.8%)且显著高于Ca150和Ca300处理,其中Ca75处理较Ca150、Ca300分别提高5.2、7.3个百分点;在荚果膨大期,以Ca75处理最高(37.7%),较Ca0、Ca150、Ca300处理分别高出6.8、3.0、6.4个百分点;在籽仁充实期,各处理下13C在叶片中的分配比例均显著低于荚果发育时期。随着荚果发育进程的推进,各施钙处理下13C在花生茎和果壳中的分配比例总体亦呈下降趋势,分别由鸡咀幼果期的平均22.8%和24.2%下降到籽仁充实期的平均17.6%和11.7%;在荚果定型期Ca0和Ca300处理13C在花生果壳中分配比例较Ca75、Ca150分别提高6.1、6.7个百分点(Ca0)和6.7、7.4个百分点(Ca300)。不同时期、不同处理下根部13C分配比例均较低(0.3%~2.5%)。综上,在鸡咀幼果期和荚果膨大期Ca150、Ca300处理可提高籽仁中13C分配比例;各处理花生籽仁13C分配比例随荚果发育进程的推进逐渐升高,其他部位均呈降低趋势。
-
基于对不同施钙处理下花生各荚果发育时期植株13C积累的主成分分析发现(图4),第1主成分(PC1)占总变化的51.7%,第2主成分(PC2)占总变化的23.9%;不同荚果发育时期对植株13C积累有明显影响,其中,鸡咀幼果期对茎、根和果针13C积累量表现出较高影响,荚果膨大期对花生叶、籽仁、果壳和全株的13C积累量均表现出较高影响。
-
对钙肥施用量与花生各部位13C分配比例分别进行多项式拟合发现(图5),除茎部外,钙肥施用量与花生各部位13C分配比例均有较好的拟合关系(P<0.05),其中,根和果针13C分配比例随施钙量的增加呈先降低后升高趋势,叶部13C分配比例随施钙量的增加呈先升高后降低趋势,而果壳和籽仁13C分配比例随施钙量的增加分别逐渐降低和逐渐升高。据此我们推测,中低量的施钙量(75~150 kg/hm2)有利于协调根和果针的13C向籽仁转运,但高量施钙(300 kg/hm2)有利于协调叶片和果壳中的13C向籽仁转运,对花生产量的贡献更高。
-
光合作用是作物产量形成的根本途径,研究光合碳的分配对作物产量形成具有重要意义[19],而钙作为重要的营养及信号物质,影响着植物体内的物质积累与转运[20−21],众多学者普遍认为合理施用钙肥可有效促进作物生长发育,具有丰产、提质、增效的调控效果[22]。花生是喜钙作物,需钙量大,仅次于氮、钾,居第三位。但近年来,随着花生产量水平持续提高及施肥结构的改变,土壤钙素入不敷出;加之,随着土壤酸化加剧,有效钙含量大幅降低[23−25],由土壤缺钙导致的花生空秕现象越来越多[26],土壤钙胁迫已成为限制花生产量和品质的主要因素之一。
叶片是进行光合作用的直接场所,本研究发现,施钙对花生叶片光合碳转运有影响,中低施钙量更有利于叶片自身光合碳积累,中高施钙量可调控根、果针和果壳等器官的光合产物向籽仁转运,从而促进籽仁发育。这可能是由于光合产物具有“就近供应”特点[14−15],而花生的根、果针和果壳等器官的光合产物向籽仁转运更具“距离”优势;前人研究也表明,施钙是促进花生干物质积累及荚果发育的重要措施[27],适量钙肥能够调控花生光合产物的转运分配,减少花生空、秕果数,提高荚果产量[28−29]。Yang等[6]基于RNA-seq基因表达谱分析也证实,钙充足和不足条件下,花生果针和荚果的大量基因在转录水平上发生了显著变化;但也有研究认为,施用氧化钙会提高土壤pH,缓解酸胁迫,提高土壤微生物多样性和丰度,从而促进作物的生长和产量提升[30−31]。虽然钙肥施用对花生荚果产量提升的调控机制还有待于进一步研究,但本研究从光合碳产物转运角度证实,适宜施钙量可调控根、果针和果壳等“就近”器官的光合产物向籽仁转运,促进籽仁发育和荚果产量的提升,为从光合产物转运角度揭示钙调控花生籽仁发育的机制提供了科学依据。
众多学者开展了花生适宜施钙量研究,但所推荐的施钙量(CaO)有较大差异,在150~750 kg/hm2不等[3, 8, 29],如修俊杰等[32]认为花生饱果数、单株干重、出仁率及荚果产量等均随施钙量增加而增加,但当施钙量超过150 kg/hm2时,继续增加施钙量后花生产量及干物质积累量反而下降;李岳等[33]研究也表明,施钙肥可影响花生饱果率,导致花生荚果产量随施钙量的增加呈先增高后降低趋势,在施钙量为150 kg/hm2时达到最大;但周录英等[34]基于大田试验认为施钙量为300 kg/hm2时花生产量最高、籽仁品质最好;王建国等[35]发现施钙量为750 kg/hm2时可有效促进花生籽仁养分积累与分配,提高收获指数,进而增加荚果产量。在本研究条件下,施钙量为150 kg/hm2 (Ca150)时明显提升了花生的荚果产量,适宜施钙量更接近于前人研究的低限,同时也发现施钙量持续增加对花生产量表现出一定抑制作用。钙肥的施用效果受多种因素影响:一是,土壤条件的差异,包括土壤本身含钙量、土壤理化性质及土壤肥力等方面[36],其中土壤pH是影响土壤钙流失的重要原因之一[37],研究表明,低pH土壤环境下土壤有效钙含量大幅降低,造成花生荚果发育受阻,极易出现秕果或烂果,导致减产[38];二是,品种特性的差异,由于不同品种钙吸收利用效率不同,导致钙肥施用效果存在差异[38],如于天一等[39]研究表明不同花生品种间对钙肥敏感性不同,低钙胁迫下花生荚果饱满的品种存在显著差异性;三是栽培管理方式不同,种植模式与施钙量间存在互作关系[40],林松明等[41]发现玉米–花生间作系统下,施用适量钙肥可提高靠近玉米边行的花生单株碳代谢产物的积累,提高单株饱果数和百果重,显著提高间作花生产量。可见,实际生产过程钙肥管理不能盲从,应依据花生品种特性因地制宜确定适宜的钙肥用量。
-
在缺钙土壤上,施钙量(CaO)对花生干物质积累和产量均有显著影响,在施钙量为150 kg/hm2时达到最大值;施钙量为150 kg/hm2时,可提高鸡咀幼果期和荚果膨大期果壳和籽仁δ13C丰度和各花生荚果发育时期花生植株13C积累量;施钙能调控光合13C在花生植株中的分配,中低量的施钙量(75~150 kg/hm2)有利于协调根和果针的13C向籽仁转运,但高量施钙量(300 kg/hm2)更有利于协调叶片和果壳中的13C向籽仁转运;综合考虑施肥效益、荚果产量和光合产物转运分配,本研究条件下推荐的适宜CaO施用量为150 kg/hm2。
施钙量对花生荚果不同发育时期光合产物分配的影响
Effects of calcium application on the distribution of photosynthetic products in peanut plant during pod development stages
-
摘要:
【目的】 探究施钙对荚果发育过程中光合产物在花生植株各部位分配的影响,以明确钙肥促进花生生长和产量形成的机理。 【方法】 以‘湘花55号’为供试花生品种进行低钙土壤盆栽试验。CaO 施用量设置4个水平:0、75、150和300 kg/hm2,分别记为Ca0、Ca75、Ca150、Ca300。在花生荚果幼果期、膨大期、定型期、籽仁充实期,采用13C-Na2CO3和H2SO4溶液(1 mol/L)反应获得13C-CO2 (300~350 mg/kg)的方法,对花生光合产物进行13C标记。于花生收获期取样,测定各部位干物质积累量、13C丰度和产量。 【结果】 施钙量提升花生植株干物质积累的效果显著,与Ca0相比,Ca75处理显著提高根、茎干物质积累量,Ca150处理分别显著提高叶、果针、籽仁、果壳和全株干物质积累量12.43%、33.60%、34.35%、11.91%和14.82%。施钙影响着花生荚果产量、出仁率和饱果率,但不影响双仁果率,荚果产量以Ca150处理最高,较Ca0处理显著提升了10.5%。Ca0、Ca75、Ca300处理下籽仁δ13C丰度在籽仁充实期达到最高,而Ca150处理在荚果膨大期最高。随着荚果期延长,各处理花生整株13C积累量先增后降,在荚果膨大期达到最高,然后降低;Ca150花生整株13C积累量显著高于其他处理。随着生育时期的推进,各施钙处理的13C在花生籽仁中的分配比例均呈增加趋势,在籽仁充实期的分配比例可高达41.0% (Ca0)~48.3% (Ca75)。籽仁13C分配比例随施钙量的增加而增加,中低施钙量(75~150 kg/hm2)处理有利于协调根、果针的13C向籽粒转运,而高施钙量(150~300 kg/hm2)有利于促进叶、果壳13C向籽粒转运。 【结论】 适宜施钙量可调控13C在花生植株中的分配和积累,显著提升光合13C向花生籽仁中的分配比例,为产量提升奠定基础。本研究条件下,获得最高生产效益的适宜施钙量为CaO 150 kg/hm2。 Abstract:【Objectives】 The effect of calcium application rate on the distribution of photosynthetic carbon in peanut plant across pod development stage was studied, to understand the mechanism of calcium fertilizer in peanut growth and yield formation. 【Methods】 A peanut cultivar ‘Xianghua 55’ was used as the test materials to carry out a pot experiment. The treatments were basal applying CaO 0, 75, 150, and 300 kg/hm2, denoted as Ca0, Ca75, Ca150 and Ca300, respectively. At the young fruit, pod bulking, pod setting, and kernel filling stage, 13C-CO2 (300–350 mg/kg) were prepared through reaction of 13C-Na2CO3 and H2SO4 solution (1 mol/L) inside the growth chamber, to label the photosynthetic carbon in plants, respectively. At harvest, plant was divided into different organs for the determination of 13C abundance, dry matter accumulation (DMA), and the kennel yields. 【Results】 Ca application had significant effects on DMA of peanut plants. Ca75 treatment increased more DMA in roots and stems, and Ca150 increased more DMA in leaves, pegs, kernels, shells, and whole plant which were 12.43%, 33.60%, 34.35%, 11.91% and 14.82% higher than Ca0 did (P<0.05). Ca application significantly increased the peanut pod yield, kernel rate and the full fruit rate, did not affect the double kernel fruit rate. Ca150 was recorded the highest pod yield, which was 10.5% higher than that of Ca0. The δ13C abundance in kernel was highest at kernel filling stage under Ca0, Ca75 and Ca300 treatments, and was the highest at pod bulking stage under Ca150 treatment. With the extension of pod stage, the accumulation of 13C in peanut plant increased first and then decreased, with the peak accumulation at pod bulking stage. The total accumulation of 13C in peanut plant in Ca150 treatment was significantly higher than that in other treatments. With development of the peanut pod, the distribution rate of 13C in peanut kernel kept increasing until as high as 41.0% (Ca0)–48.3% (Ca75) at kennel filling period. The higher the CaO rate, the higher the distribution rate of 13C in kernel. The CaO rate 75–150 kg/hm2 was conducive to transfer 13C from root and needle to kernel, while the CaO rate 150–300 kg/hm2 was conducive to transport 13C from leaves and shells to kernels. 【Conclusions】 In Ca deficient soil, appropriate calcium application rate could promote the accumulation of 13C in peanut plants, significantly increase the distribution ratio of photosynthetic 13C in peanut kernel, laying a foundation for the increase of yield. Under the test conditions, CaO 150 kg/hm2 was recommended as the appropriate amount of calcium fertilizer to obtain the highest production benefit. -
Key words:
- peanut /
- calcium application rate /
- 13C labeling /
- pod development stage /
- dry matter distribution /
- yield
-
表 1 13C脉冲标记时期
Table 1. Period for 13C pulse labeling
下针后天数
Days after pegging荚果发育时期
Pod development period采样日期 (mm-dd)
Sampling date6 鸡咀幼果期
Young fruit stage (YFS)07–19 18 荚果膨大期
Pod bulking stage (PBS)07–31 30 荚果定型期
Pod setting stage (PSS)08–12 48 籽仁充实期
Kernel filling stage (KFS)08–29 注:播种后66天下针。
Note: Pegging starts at 66 days after sowing.表 2 不同施钙量下花生收获期植株各器官干物质积累量(g/plant)
Table 2. Dry matter accumulation in different peanut organs at harvesting stage as affected by calcium application rate
处理 Treatment 根 Root 茎 Stem 叶 Leaf 果针 Peg 籽仁 Kernel 果壳 Shell 全株 Total Ca0 0.89 b 8.03 b 12.07 bc 1.25 c 9.49 d 6.38 b 38.12 c Ca75 1.00 a 9.02 a 12.13 b 1.50 a 10.55 c 5.92 c 40.11 b Ca150 0.99 a 7.63 b 13.57 a 1.67 a 12.75 a 7.14 a 43.77 a Ca300 0.83 b 7.75 b 11.26 c 1.41 b 11.61 b 6.51 b 39.37 bc 注:同列数据后不同小写字母表示处理间量差异显著 (P<0.05)。
Note: Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05).表 3 施钙量对花生产量及产量性状的影响
Table 3. Effects of calcium application on peanut yield and its characteristics
处理
Treatment荚果产量 (kg/hm2)
Peanut pod yield千克果数
Pod number per kg出仁率 (%)
Kernel percentage双仁果率 (%)
Double-seed pod percentage饱果率 (%)
Full pod percentgeCa0 3761.40 c 930.81 a 61.93% c 68.90% a 66.20% c Ca75 4027.50 b 845.82 b 69.90% b 73.16% a 79.12% b Ca150 4156.80 a 801.12 c 73.06% a 72.25% a 87.14% a Ca300 3977.40 b 856.01 b 66.08% b 71.00% a 75.58% b 注:同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05). -
[1] 张克朝, 董奇琦, 霍元元, 等. 不同钙肥用量对花生养分吸收利用与生长发育的影响[J]. 花生学报, 2020, 49(3): 22−31. Zhang K C, Dong Q Q, Huo Y Y, et al. Effects of different dosage of calcium fertilizer on plant nutrient uptake, utilization and growth in plant[J]. Journal of Peanut Science, 2020, 49(3): 22−31. doi: 10.14001/j.issn.1002-4093.2020.03.004 Zhang K C, Dong Q Q, Huo Y Y, et al . Effects of different dosage of calcium fertilizer on plant nutrient uptake, utilization and growth in plant[J]. Journal of Peanut Science,2020 ,49 (3 ):22 −31 . doi: 10.14001/j.issn.1002-4093.2020.03.004[2] 于俊红, 彭智平, 黄继川, 等. 水稻土施钙、硼对花生养分吸收及产量品质的影响[J]. 热带作物学报, 2009, 30(9): 1261−1264. Yu J H, Peng Z P, Huang J C, et al. Effects of calcium and boron applied on the nutrient absorption, yield and quality of peanut in paddy soil[J]. Chinese Journal of Tropical Crops, 2009, 30(9): 1261−1264. doi: 10.3969/j.issn.1000-2561.2009.09.008 Yu J H, Peng Z P, Huang J C, et al . Effects of calcium and boron applied on the nutrient absorption, yield and quality of peanut in paddy soil[J]. Chinese Journal of Tropical Crops,2009 ,30 (9 ):1261 −1264 . doi: 10.3969/j.issn.1000-2561.2009.09.008[3] 李东霞, 符海泉, 杨伟波, 等. 不同钙处理对花生农艺性状和钙含量的影响[J]. 西南农业学报, 2018, 31(2): 354−359. Li D X, Fu H Q, Yang W B, et al. Effect of different calcium treatments on agronomic characters and calcium contents of different peanut varieties and germplasms[J]. Southwest China Journal of Agricultural Science, 2018, 31(2): 354−359. Li D X, Fu H Q, Yang W B, et al . Effect of different calcium treatments on agronomic characters and calcium contents of different peanut varieties and germplasms[J]. Southwest China Journal of Agricultural Science,2018 ,31 (2 ):354 −359 .[4] 张佳蕾, 杨莎, 郭峰, 等. 酸性土壤花生增施钙肥高产栽培技术研究[J]. 山东农业科学, 2018, 50(6): 150−153. Zhang J L, Yang S, Guo F, et al. High-yield cultivation technique of application of calcium to peanut in acid soil[J]. Shandong Agricultural Sciences, 2018, 50(6): 150−153. doi: 10.14083/j.issn.1001-4942.2018.06.027 Zhang J L, Yang S, Guo F, et al . High-yield cultivation technique of application of calcium to peanut in acid soil[J]. Shandong Agricultural Sciences,2018 ,50 (6 ):150 −153 . doi: 10.14083/j.issn.1001-4942.2018.06.027[5] 田家明, 张智猛, 戴良香, 等. 外源钙对盐碱土壤花生荚果生长及籽仁品质的影响[J]. 中国油料作物学报, 2019, 41(2): 205−210. Tian J M, Zhang Z M, Dai L X, et al. Effects of exogenous calcium on peanut pod growth and kernel quality in saline-alkali soil[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(2): 205−210. doi: 10.7505/j.issn.1007-9084.2019.02.007 Tian J M, Zhang Z M, Dai L X, et al . Effects of exogenous calcium on peanut pod growth and kernel quality in saline-alkali soil[J]. Chinese Journal of Oil Crop Sciences,2019 ,41 (2 ):205 −210 . doi: 10.7505/j.issn.1007-9084.2019.02.007[6] Yang S, Li L, Zhang J L, et al. Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development[J]. Frontiers in Plant Science, 2017, 8: 1609. [7] 张彩军, 赵亚飞, 邹晓霞, 等. 钙肥施用对花生荚果不同发育时期衰老特性和产量的影响[J]. 花生学报, 2021, 50(1): 54–59. Zhang C J, Zhao Y F, Zou X X, et al. Effect of calcium fertilizer application on senescence characteristics and yield of peanut at different pod development stages[J]. Journal of Peanut Science, 2021, 50(1): 54-59. Zhang C J, Zhao Y F, Zou X X, et al. Effect of calcium fertilizer application on senescence characteristics and yield of peanut at different pod development stages[J]. Journal of Peanut Science, 2021, 50(1): 54-59. [8] 王建国, 张佳蕾, 万书波, 等. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666−1679. Wang J G, Zhang J L, Wan S B, et al. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut[J]. Acta Agronomica Sinica, 2021, 47(9): 1666−1679. Wang J G, Zhang J L, Wan S B, et al . Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut[J]. Acta Agronomica Sinica,2021 ,47 (9 ):1666 −1679 .[9] Coskun D, Britto D T, Shi W M, et al. How plant root exudates shape the nitrogen cycle[J]. Trends in Plant Science, 2017, 22: 661–673. [10] 权宝全, 白冬梅, 田跃霞, 等. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102−105. Quan B Q, Bai D M, Tian Y X, et al. Effects of different leaf-peg ratio on photosynthesis and yield of peanut[J]. Crops, 2018, (4): 102−105. Quan B Q, Bai D M, Tian Y X, et al . Effects of different leaf-peg ratio on photosynthesis and yield of peanut[J]. Crops,2018 , (4 ):102 −105 .[11] 王海琪, 王荣荣, 蒋桂英, 等. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211−224. Wang H Q, Wang R R, Jiang G Y, et al. Effects of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves[J]. Acta Agronomica Sinica, 2023, 49(1): 211−224. Wang H Q, Wang R R, Jiang G Y, et al . Effects of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves[J]. Acta Agronomica Sinica,2023 ,49 (1 ):211 −224 .[12] 张川, 刘栋, 王洪章, 等. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响[J]. 中国农业科学, 2022, 55(19): 3710−3722. Zhang C, Liu D, Wang H Z, et al. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize[J]. Science Agricultural Sinica, 2022, 55(19): 3710−3722. doi: 10.3864/j.issn.0578-1752.2022.19.003 Zhang C, Liu D, Wang H Z, et al . Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize[J]. Science Agricultural Sinica,2022 ,55 (19 ):3710 −3722 . doi: 10.3864/j.issn.0578-1752.2022.19.003[13] 孙昭安, 陈清, 韩笑, 等. 13C脉冲标记法定量冬小麦光合碳分配及其向地下的输入[J]. 环境科学, 2018, 39(6): 2837−2844. Sun Z A, Chen Q, Han X, et al. Estimation of winter wheat photosynthesized carbon distribution and allocation belowground via 13C pulse-labeling[J]. Environmental Science, 2018, 39(6): 2837−2844. Sun Z A, Chen Q, Han X, et al . Estimation of winter wheat photosynthesized carbon distribution and allocation belowground via 13C pulse-labeling[J]. Environmental Science,2018 ,39 (6 ):2837 −2844 .[14] 邹晓霞, 蔺益民, 赵亚飞, 等. 施钙量对不同花生荚果发育时期光合碳在植株−土壤系统分配的影响[J]. 作物学报, 2023, 49(1): 239−248. Zou X X, Lin Y M, Zhao Y F, et al. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages[J]. Acta Agronomica Sinica, 2023, 49(1): 239−248. Zou X X, Lin Y M, Zhao Y F, et al . Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages[J]. Acta Agronomica Sinica,2023 ,49 (1 ):239 −248 .[15] Yoneyama T, Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of 15N-tracing, enzymes involved, reductant supply, and nitrate signaling: A review and synthesis[J]. Plant Physiology Biochemistry, 2019, 136: 245–254. [16] 李安妮, 叶柏荣, 刘敏敏, 等. 花生荚果发育过程中形态及有机成分的变化[J]. 华南农学院学报, 1983, 4(1): 21−30. Li A N, Ye B R, Liu M M, et al. Changes in morphology and composition of developing peanut fruit[J]. Journal of South China Agricultural College, 1983, 4(1): 21−30. Li A N, Ye B R, Liu M M, et al . Changes in morphology and composition of developing peanut fruit[J]. Journal of South China Agricultural College,1983 ,4 (1 ):21 −30 .[17] 王莹莹, 肖谋良, 张昀, 等. 水稻光合碳在植株-土壤系统中分配与稳定对施磷的响应[J]. 环境科学,2019, 40(4): 1957-1964. Wang Y Y, Xiao M L, Zhang Y, et al. Allocation and stabilization responses of rice photosynthetic carbon in the plant-soil system to phosphorus application[J]. Environmental Science, 2019, 40(4): 1957−1964. Wang Y Y, Xiao M L, Zhang Y, et al. Allocation and stabilization responses of rice photosynthetic carbon in the plant-soil system to phosphorus application[J]. Environmental Science, 2019, 40(4): 1957−1964. [18] 王婷婷, 祝贞科, 朱捍华, 等. 施氮和水分管理对光合碳在土壤-水稻系统间分配的量化研究[J]. 环境科学, 2017, 38(3): 1227−1234. Wang T T, Zhu Z K, Zhu H H, et al. Input and distribution of photosynthesized carbon in soil-rice system affected by water management and nitrogen fertilization[J]. Environmental Science, 2017, 38(3): 1227-1234. Wang T T, Zhu Z K, Zhu H H, et al. Input and distribution of photosynthesized carbon in soil-rice system affected by water management and nitrogen fertilization[J]. Environmental Science, 2017, 38(3): 1227-1234. [19] 陈志德, 沈一, 刘永惠. 花生光合作用特性研究进展[J]. 农业科学与技术, 2014, 15(6): 922−925. Chen Z D, Shen Y, Liu Y H. Advances in photosynthetic characteristics if peanut[J]. Agricultural Science & Technology, 2014, 15(6): 922−925. Chen Z D, Shen Y, Liu Y H . Advances in photosynthetic characteristics if peanut[J]. Agricultural Science & Technology,2014 ,15 (6 ):922 −925 .[20] Gaiona L, Júniora J, Barretob R, et al. Amplification of gibberellins response in tomato modulates calcium metabolism and blossom end rot occurrence[J]. Scientia Horticulturae, 2019, 26: 498–505. [21] Arfaoui A, Hadrami A E, Daayf F. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum[J]. Plant Physiology Biochemistry, 2018, 122: 121–128. [22] 尹雪巍, 张翼飞, 杨克军, 等. 不同施钙水平对松嫩平原西部玉米干物质积累、产量及品质的影响[J]. 玉米科学, 2020, 28(3): 155−162. Yin X W, Zhang Y F, Yang K J, et al. Effects of different calcium fertilizer application levels on dry matter accumulation, grain yield and quality of maize in the western Songnen plain[J]. Journal of Maize Sciences, 2020, 28(3): 155−162. Yin X W, Zhang Y F, Yang K J, et al . Effects of different calcium fertilizer application levels on dry matter accumulation, grain yield and quality of maize in the western Songnen plain[J]. Journal of Maize Sciences,2020 ,28 (3 ):155 −162 .[23] Anderson C , Peterson M , Curtin D . Base cations, K+ and Ca2+, have contrasting effects on soil carbon, nitrogen and denitrification dynamics as pH rises[J]. Soil Biology and Biochemistry, 2017, 113: 99−107. [24] Zhu Q, Zeng M, Liu X, et al. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010[J]. Science of the Total Environment, 2018, 618: 1497−1505. [25] Zhang T, Yang J, Sun Y W, et al. Calcium deprivation enhances non-selective fluid-phase endocytosis and modifies membrane lipid profiles in Arabidopsis roots[J]. Journal of Plant Physiology, 2018, 226: 25−30. [26] 于天一, 王春晓, 路亚, 等. 不同改良剂对酸化土壤花生钙素吸收利用及生长发育的影响[J]. 核农学报, 2018, 32(8): 1619−1626. Yu T Y, Wang C X, Lu Y, et al. Effect of different modifiers on calcium (Ca) uptake, utilization and growing development of peanut under acidified soil[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1619−1626. doi: 10.11869/j.issn.100-8551.2018.08.1619 Yu T Y, Wang C X, Lu Y, et al . Effect of different modifiers on calcium (Ca) uptake, utilization and growing development of peanut under acidified soil[J]. Journal of Nuclear Agricultural Sciences,2018 ,32 (8 ):1619 −1626 . doi: 10.11869/j.issn.100-8551.2018.08.1619[27] 王建国, 张昊, 李林, 等. 施钙与覆膜栽培对缺钙红壤花生干物质生产、熟相、产量构成及品质的影响[J]. 华北农学报, 2018, 33(4): 131−138. Wang J G, Zhang H, Li L, et al. Effects of calcium fertilizer and plastic film mulching cultivation on dry matter production, maturity performance, yield components and quality of peanut in red soli under Ca deficiency[J]. Acta Agriculture Boreali-Sinica, 2018, 33(4): 131−138. doi: 10.7668/hbnxb.2018.04.019 Wang J G, Zhang H, Li L, et al . Effects of calcium fertilizer and plastic film mulching cultivation on dry matter production, maturity performance, yield components and quality of peanut in red soli under Ca deficiency[J]. Acta Agriculture Boreali-Sinica,2018 ,33 (4 ):131 −138 . doi: 10.7668/hbnxb.2018.04.019[28] 尤召阳, 杨莎, 张佳蕾, 等. 钙肥类型及施用时期对花生干物质积累量和产量的影响[J]. 中国油料作物学报, 2023, 45(2): 359−367. You Z Y, Yang S, Zhang J L, et al. Effects of calcium fertilizer types and application periods on growth, dry matter accumulation and yield of peanut[J]. Chinese Journal of Oil Crop Sciences, 2023, 45(2): 359−367. doi: 10.19802/j.issn.1007-9084.2022047 You Z Y, Yang S, Zhang J L, et al . Effects of calcium fertilizer types and application periods on growth, dry matter accumulation and yield of peanut[J]. Chinese Journal of Oil Crop Sciences,2023 ,45 (2 ):359 −367 . doi: 10.19802/j.issn.1007-9084.2022047[29] 王建国, 唐朝辉, 万书波, 等. 钙在花生抗逆高产和减肥增效栽培中的应用[J]. 中国油料作物学报, 2020, 42(6): 951−955. Wang J G, Tang Z H, Wan S B, et al. Calcium in peanut high-yield cultivation under stress resistance and efficiency cultivation with reduced fertilizer[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 951−955. doi: 10.19802/j.issn.1007-9084.2020243 Wang J G, Tang Z H, Wan S B, et al . Calcium in peanut high-yield cultivation under stress resistance and efficiency cultivation with reduced fertilizer[J]. Chinese Journal of Oil Crop Sciences,2020 ,42 (6 ):951 −955 . doi: 10.19802/j.issn.1007-9084.2020243[30] 石杰, 张磊, 张琴, 等. 接种耐酸根瘤菌和施钙对酸性土上紫花苜蓿生长的影响[J]. 植物营养与肥料学报, 2008, 14(3): 602−607. Shi J, Zhang L, Zhang Q, et al. The effects of calcium and acid-tolerant rhizobium on the growth of alfalfa planted in acid soil[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(3): 602−607. doi: 10.3321/j.issn:1008-505X.2008.03.032 Shi J, Zhang L, Zhang Q, et al . The effects of calcium and acid-tolerant rhizobium on the growth of alfalfa planted in acid soil[J]. Journal of Plant Nutrition and Fertilizers,2008 , 14(3 ):602 −607 . doi: 10.3321/j.issn:1008-505X.2008.03.032[31] 罗俊, 林兆里, 李诗燕, 等. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596−613. Luo J, Lin Z L, Li S Y, et al. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field[J]. Acta Agronomica Sinica, 2020, 46(4): 596−613. doi: 10.3724/SP.J.1006.2020.94102 Luo J, Lin Z L, Li S Y, et al . Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field[J]. Acta Agronomica Sinica,2020 ,46 (4 ):596 −613 . doi: 10.3724/SP.J.1006.2020.94102[32] 修俊杰, 刘学良. 施钙对花生干物质积累及产量的影响[J]. 黑龙江农业科学, 2018, (1): 48−50. Xiu J J, Liu X L. Effects of calcium application rate on dry matter accumulation and yield of peanut[J]. Heilongjiang Agricultural Sciences, 2018, (1): 48−50. doi: 10.11942/j.issn1002-2767.2018.01.0048 Xiu J J, Liu X L . Effects of calcium application rate on dry matter accumulation and yield of peanut[J]. Heilongjiang Agricultural Sciences,2018 , (1 ):48 −50 . doi: 10.11942/j.issn1002-2767.2018.01.0048[33] 李岳, 王月福, 王铭伦, 等. 施钙对花生衰老特性和产量的影响[J]. 青岛农业大学学报(自然科学版), 2012, 29(2): 89−93. Li Y, Wang Y F, Wang M L, et al. Effects of calcium application rate on senescence characteristics and yield of peanut[J]. Journal of Qingdao Agricultural University (Natural Science Edition), 2012, 29(2): 89−93. Li Y, Wang Y F, Wang M L, et al . Effects of calcium application rate on senescence characteristics and yield of peanut[J]. Journal of Qingdao Agricultural University (Natural Science Edition),2012 ,29 (2 ):89 −93 .[34] 周录英, 李向东, 王丽丽, 等. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(5): 879−885. Zhou L Y, Li X D, Wang L L, et al. Effects of different Ca application on physiological characteristics, yield and quality in peanut[J]. Acta Agronomica Sinica, 2008, 34(5): 879−885. doi: 10.3321/j.issn:0496-3490.2008.05.022 Zhou L Y, Li X D, Wang L L, et al . Effects of different Ca application on physiological characteristics, yield and quality in peanut[J]. Acta Agronomica Sinica,2008 , 34(5 ):879 −885 . doi: 10.3321/j.issn:0496-3490.2008.05.022[35] 王建国, 张昊, 李林, 等. 施钙与覆膜对缺钙红壤花生氮、磷、钾吸收利用的影响[J]. 中国油料作物学报, 2018, 40(1): 110−118. Wang J G, Zhang H, Li L, et al. Effects of calcium application and plastic film mulching cultivation on N, P, K utilization efficiency of peanut in red soil under Ca deficiency[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(1): 110−118. doi: 10.7505/j.issn.1007-9084.2018.01.014 Wang J G, Zhang H, Li L, et al . Effects of calcium application and plastic film mulching cultivation on N, P, K utilization efficiency of peanut in red soil under Ca deficiency[J]. Chinese Journal of Oil Crop Sciences,2018 ,40 (1 ):110 −118 . doi: 10.7505/j.issn.1007-9084.2018.01.014[36] 王鑫悦, 肖梦娇, 黄活志, 等. 耐低钙花生品种的筛选研究[J]. 花生学报, 2022, 51(1): 49−58. Wang X Y, Xiao M J, Huang H Z, et al. Screening of peanut varieties resistant to low-calcium[J]. Journal of Peanut Science, 2022, 51(1): 49−58. doi: 10.14001/j.issn.1002-4093.2022.01.007 Wang X Y, Xiao M J, Huang H Z, et al . Screening of peanut varieties resistant to low-calcium[J]. Journal of Peanut Science,2022 ,51 (1 ):49 −58 . doi: 10.14001/j.issn.1002-4093.2022.01.007[37] 孙雁君, 张勇, 杨宇芳. 南方红壤区环境因子及其侵蚀特征研究[J]. 山西水土保持科技, 2011, (4): 19−22. Sun Y J, Zhang Y, Yang Y F. Study on environmental factors and erosion characteristics in southern red soil[J]. Soil and Water Conservation Science and Technology in Shanxi, 2011, (4): 19−22. doi: 10.3969/j.issn.1008-0120.2011.04.009 Sun Y J, Zhang Y, Yang Y F . Study on environmental factors and erosion characteristics in southern red soil[J]. Soil and Water Conservation Science and Technology in Shanxi,2011 , (4 ):19 −22 . doi: 10.3969/j.issn.1008-0120.2011.04.009[38] Beam J B, Jordan D L, York A C, et al. Influence of prohexadione calcium on pod yield and pod loss of peanut[J]. Agronomy Journal, 2002, 94(2): 331−336. doi: 10.2134/agronj2002.3310 [39] 于天一, 郑亚萍, 邱少芬, 等. 酸化土壤施钙对不同花生品种(系)钙吸收、利用及产量的影响[J]. 作物杂志, 2021, (4): 80−85. Yu T Y, Zheng Y P, Qiu S F, et al. Effects of calcium (Ca) application in acidified soil on Ca absorption, utilization and yield of different peanut varieties (lines)[J]. Crops, 2021, (4): 80−85. doi: 10.16035/j.issn.1001-7283.2021.04.012 Yu T Y, Zheng Y P, Qiu S F, et al . Effects of calcium (Ca) application in acidified soil on Ca absorption, utilization and yield of different peanut varieties (lines)[J]. Crops,2021 , (4 ):80 −85 . doi: 10.16035/j.issn.1001-7283.2021.04.012[40] 傅惠林,董露琳,唐康,等.施钙和起垄对低钙耐性差异花生品种光合性能与产量的影响[J/OL] . 中国油料作物学报, https://doi.org/10.19802/j.issn.1007-9084.2022187, 2022−09−30/2023−03−06. Fu H L,Dong L L,Tang K, et al. Effects of calcium application and Riding on photosynthetic performance and yield of different peanut varieties with low calcium tolerance[J/OL]. Chinese Journal of Oil Crop Sciences. https://doi.org/10.19802/j.issn.1007-9084.2022187, 2022−09−30/2023−03−06. Fu H L,Dong L L,Tang K, et al. Effects of calcium application and Riding on photosynthetic performance and yield of different peanut varieties with low calcium tolerance[J/OL]. Chinese Journal of Oil Crop Sciences. https://doi.org/10.19802/j.issn.1007-9084.2022187, 2022−09−30/2023−03−06. [41] 林松明, 孟维伟, 南镇武, 等. 施钙对间作遮荫条件下花生生育后期光合特性、糖代谢及产量的影响[J]. 中国油料作物学报, 2020, 42(2): 277−284. Lin S M, Meng W W, Nan Z W, et al. Effects of calcium application on photosynthetic characteristics, sugar metabolism in late growth stage and yield of peanut under inter-cropping and shading[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(2): 277−284. doi: 10.19802/j.issn.1007-9084.2019213 Lin S M, Meng W W, Nan Z W, et al . Effects of calcium application on photosynthetic characteristics, sugar metabolism in late growth stage and yield of peanut under inter-cropping and shading[J]. Chinese Journal of Oil Crop Sciences,2020 ,42 (2 ):277 −284 . doi: 10.19802/j.issn.1007-9084.2019213 -